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Given a graph G = (V,E) and a list of available colors L(v) for each vertex
v ∈ V , where L(v) ⊆ {1, 2, . . . , k}, List k-Coloring refers to the problem
of assigning colors to the vertices of G so that each vertex receives a color
from its own list and no two neighboring vertices receive the same color. The
decision version of the problem, List k-Coloring, is NP-complete even for
bipartite graphs. As an application of list coloring problem we are interested
in the Futoshiki Problem. Futoshiki is an NP-complete Latin Square Com-
pletion Type Puzzle. Considering Futoshiki puzzle as a constraint satisfaction
problem, we first give a list coloring based algorithm for it which is efficient
for small boards of fixed size. To thoroughly investigate the efficiency of our
algorithm in comparison with a proposed backtracking-based algorithm, we
conducted a substantial number of computational experiments at different dif-
ficulty levels, considering varying numbers of inequality constraints and given
values. Our results from the extensive range of experiments indicate that the
list coloring-based algorithm is much more efficient.

Keywords:
List coloring
Precoloring extension
Latin square completion puzzle
Futoshiki puzzle
Personnel scheduling

AMS Classification 2010:
90C27; 05C85; 68Q25

1. Introduction

Since the 1980s, there has been significant the-
oretical analysis and exploration of applications
for pencil puzzle games. In recent decades, re-
search has focused on algorithmic solutions and
the computational complexity of pencil puzzle
games, including optimization versions of vari-
ous puzzle types. Latin Square Completion-Type
Puzzles (LSCP) are among the most common
types of these games.

A Latin Square Completion Puzzle (LSCP) is
a partial Latin square with empty cells. A
Partial Latin Square (PLS) is an n × n grid
that is partially filled with some numbers from
[n] = {1, . . . , n}. The goal is to fill in all the
blank cells with numbers in such a way that the
numbers are distinct in each row and each col-
umn. The objective of LSCP is to complete the
grid by filling the remaining cells with numbers
such that each number appears exactly once in

each row and each column. Two notable puzzles
in this category are Sudoku and Futoshiki.

The Futoshiki puzzle, also known as Unequal, is
a popular Japanese board-based puzzle played on
an n× n square board with additional inequality
constraints between certain cells. The objective
is to fill the cells with numbers, satisfying the
Latin square property while respecting the spec-
ified inequalities. Inequalities can occur between
horizontally or vertically neighboring cells, indi-
cating that a number in a particular cell must
be greater or smaller than the number in the ad-
jacent cell. Let S denote the set of inequality
constraints and T the set of pre-assigned cells.

The decision version of the Futoshiki game,
known as the Futoshiki Problem, is defined
as follows:

Futoshiki Problem (Futoshiki)

Instance: Fn(T, S), an n × n board, a set T of

*Corresponding Author
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pre-assigned cells, and a set S of inequality con-
straints.
Question: Is the Futoshiki puzzle solvable on
Fn(T, S)?

The solvability of a partial Latin square is closely
related to Hall’s condition. However, Bobga et
al. [1] demonstrated that satisfying Hall’s condi-
tion is insufficient. They provided necessary and
sufficient conditions on the configuration of the
prescribed cells to ensure the solvability of LSCP.
Further results on related topics, such as partial
Latinized rectangles, can be found in [2] and [3].

Both the decision version of the Latin Square
completion problem and the Futoshiki Prob-
lem have been proven to be NP-Complete [4, 5].

Let us define the optimization version of Fu-
toshiki Problem.

Maximum Futoshiki (MaxFutoshiki)

Input: Fn(T, S) and sign set S ⊆ SL.
Output: A Futoshiki board Fn(T, S) filled with
maximum number of valid entries.

Various studies examine the computational com-
plexity of problems defined on partial latin
squares. The Latin Square completion problem
is NP-Complete by reduction from 3-SAT [4]. In
particular the Futoshiki problem is also known
to be NP-Complete, as proved by Haraguchi et
al. [5]. As for the optimization version of the
Futoshiki, Haraguchi and Ono [5] examined the
approximability of LSCPs and formulated three
LSCP puzzles as maximization problems, present-
ing polynomial-time approximation algorithms.
These maximization problems aim to fill as many
cells as possible, instead of determining whether it
is possible to complete the entire board. MaxFu-
toshiki was shown to be NP-Hard by Haraguchi
[5], and related work on optimization versions of
LSCP problems is reviewed by Donovan [6].

Properties of Latin squares and improvements to
Galvin’s solution [7] have been explored by Ivanyi
and Nemeth [8]. Yato and Seta [9] investigated
the computational complexity and completeness
of finding alternative solutions to LSCP problems
and proposed two algorithms.

The solvability of LSCP puzzles has been exten-
sively studied in terms of time complexity, and
numerous algorithmic solutions have been pro-
posed. Sudoku, a well-known puzzle, has been ap-
proached using various algorithmic techniques for
both deterministic and metaheuristic approaches.

A deterministic algorithm does not contain any
randomness or probabilistic elements. It always
produces the same output and follows a fixed se-
quence of steps. Some major deterministic ap-
proaches to solve LSCP type problems are the
exact cover problem with, Norvig’s work with con-
straint propagation [10] and constraint program-
ming that Crawford gave [11]. As for nondeter-
ministic approaches, one can refer to the “Danc-
ing Links” algorithm that Knuth presented [12].

The term “Metaheuristic” was first used in the
study of Glover [13]. Metaheuristics are known
as one of the best methods for finding sufficiently
good solutions to NP-Hard problems. Traveling
salesman problems, scheduling problems, and as-
signment problems are some of the examples that
metaheuristics are used. Sudoku has been solved
with one of the metaheuristic methods that are ar-
tificial bee colony algorithm [14], particle swarm
optimisation [15], and ant colony optimisation al-
gorithm [16]. Moreover, as a heuristics, we can
show the study of Musliu [17] that proposes a hy-
brid method for solving Sudoku.

In this work, we concentrate on deterministic
approaches rather than solving the puzzle with
metaheuristic methods. One of the most common
techniques to solve PLSs as a combinatorial op-
timization problem is coloring [4]. Furthermore,
many graph coloring variants have been utilized
to solve LSCP puzzles. For instance, in [18], the
Sudoku puzzle is shown to illustrate the precolor-
ing extension problem [19]. Precoloring extension
is a variant of the precoloring problem in which
some vertices are precolored and others are as-
signed lists of allowed colors. Notice that the NP-
Completeness of the list coloring problem for gen-
eral graphs [20] and bipartite graphs [21] has been
proven.

Our motivation for studying the list coloring ap-
proach for the Futoshiki puzzle game stems from
the fact that while Sudoku has been extensively
studied as a graph coloring problem, Futoshiki
has not been analyzed in the same context. In
this paper, we adapt the Futoshiki puzzle game to
a new variant of the list coloring problem, which
we refer to as the list precoloring extension prob-
lem (formally defined in Section 2). We propose
a list precoloring extension algorithm and discuss
its complexity.

The rest of the paper is organized as follows. Sec-
tion 2 provides problem definitions. Section 3 ex-
plores applications related to the Futoshiki game.
Section 4 establishes the equivalence between the
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list precoloring extension instance and the Fu-
toshiki problem instance. Section 5 presents an
algorithm to solve the Futoshiki problem when
the board size is fixed. Section 6 analyzes the ex-
perimental results. Finally, Section 7 concludes
the paper.

2. Problem definitions

In this section, we provide formal notation and
terminology related to graph coloring and intro-
duce a new graph coloring problem that models
the Futoshiki problem. The notation and ba-
sic terminology used in this section follow Dies-
tel [22].

We consider simple, finite, undirected graphs G =
(V,E) with a vertex set V and an edge set E. A
coloring of a graph G is a labeling of its vertices.
A k-coloring is a coloring that uses at most k col-
ors from the set [k] = 1, 2, . . . , k. A coloring is
proper if no two adjacent vertices have the same
color. The decision version of the graph coloring
problem is defined as follows:

Coloring (Col)

Instance: A graph G = (V,E) and an integer
k ≥ 1.
Question: Does G have a k-coloring?

1 1

2 2 2

Figure 1. A graph G and

a valid coloring for it.

In coloring, k is a part of the input. On the other
hand, when k is fixed, i.e., when k is not a part of
the input, we have the k-coloring problem. As an
example, a 2-coloring is given in Figure 1: vertices
in one part receive one color, while vertices in the
other part receive a different color. It is worth
noting that every bipartite graph can be colored
using only two colors.

k-Coloring (k-Col)

Instance: A graph G = (V,E).
Question: Does G have a k-coloring? k-Col is

NP-Complete for k ≥ 3 [23] and polynomial time
solvable when k = 1 or 2 [24]. List coloring is
a generalization of graph coloring. It is a proper
coloring in which each vertex v receives a color
from its own list of allowed colors. The list color-
ing problem is defined by Vizing [23] and Erdös,
Rubin and Taylor [25] independently.

List-Coloring (LiCol)

Instance: A graph G = (V,E) and a list assign-
ment L for G.
Question: Does G have a coloring where each ver-
tex v receives a color from its list L(v)?

A list assignment of a graph G = (V,E) is a
mapping L that assigns each vertex v ∈ V a List
L(v) ⊆ {1, 2, . . .} of admissible colors for v. When
L(v) ⊆ [k] = {1, 2, . . . k} for every v ∈ V we say
that L is a k-list assignment of G. Thus, the to-
tal number of available colors is bounded by k
in a k-list assignment. On the other hand, when
|L(v)| ≤ k for every v ∈ V , then we say that L is
a list k-assignment of G. Thus, the size of each
list is bounded by k in a list k-assignment.

1 1

3 2 2 3

{1, 2} {1, 3}

{1, 3} {2} {1, 2} {3}

Figure 2. A list assignment L for

the vertices of G, and a coloring

that respects L.

The List k-Coloring problem is to decide whether
a graph G = (V,E) with a list L(u) ⊆ {1, . . . , k}
for each u ∈ V has a coloring c such that c(u) ∈
L(u) for every u ∈ V . It is clearly a generaliza-
tion of k-coloring, and hence it is NP-Complete
for k ≥ 3. Refer to Figure 2 for an example. It is
important to note that, despite the graph being
bipartite in Figure 2, two colors were not enough
to color it while satisfying the constraints imposed
by the assigned lists L.

List k-Coloring (Li k-Col)

Instance: A graph G = (V,E) and a k-list as-
signment L.
Question: Does G have a coloring where each ver-
tex v receives a color from its list L(v)?

A k-precoloring of a graph G = (V,E) is a map-
ping cW : W → {1, 2, . . . k} for some subset
W ⊆ V . We say that a k-coloring c of G is
an extension or a k-extension of a k-precoloring
cW of G if c(v) = cW (v) for each v ∈ W . For
a given graph G, a positive integer k and a k-
precoloring cW of G, the Precoloring Extension
problem (PrExt) asks whether cW can be ex-
tended to a k-coloring of G. If k is fixed we denote
this problem as the k-Precoloring Extension prob-
lem (k-PrExt). Let us define the latter problem
formally.
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k-Precoloring Extension (k-PrExt)

Instance: A graph G = (V,E) and a k-
precoloring cW .
Question: Is there a k-extension for cW ?

For general graphs PrExt is NP-Complete [26].
In fact, the NP-Completeness of the LSCP prob-
lem is shown via its equivalence to the k-PrExt
when it is restricted to the cartesian product of
Kn with itself [4].

We define a new coloring problem called the List
k-Precoloring Extension problem (Li k-PrExt).

List k-Precoloring Extension (Li k-PrExt)

Instance: A graph G = (V,E),W ⊆ V , a k-
precoloring cW , and a list k-assignment L for each
v ∈ V/W
Question: Is there a k-extension for cW that obeys
the list L?

Notice that when the list L is not assigned to
the vertices in V/W , then Li k-PrExt reduces
to k-PrExt. Let us denote an instance of Li k-
PrExt with LG(cW , L).

3. Applications

In this section, we will first provide a brief
overview of some notable applications related to
the problems under consideration, namely the Fu-
toshiki problem, list coloring, and its variants.
Subsequently, we will introduce a novel applica-
tion of the Futoshiki problem in the field of sched-
uling, specifically to optimize the efficiency of the
job assignment problem.

Applications of the Futoshiki problem: The
Futoshiki problem has found applications in var-
ious domains. Mahmood [27] proposed a random
number generator that utilizes the Futoshiki prob-
lem to generate numbers satisfying given condi-
tions. This generator, with good linear complex-
ity, has potential application as an encryption
key in mathematical analysis, security systems,
and simulations. Additionally, Haraguchi [28] ex-
plored the evaluation values achievable in a Fu-
toshiki puzzle with a high number of inequality
signs.

The Futoshiki configuration technique, consid-
ering partial shading conditions in photovoltaic
(PV) systems, has been proposed by Sahu et al.
[29]. They observed that incorporating the Fu-
toshiki structure increases the power generation of
PV arrays, leading to improved energy efficiency.
The technique avoids the need for changing the
electrical connection of modules by rearranging
them, and it effectively reduces mismatch loss un-
der different shading models.

Applications of List Coloring and its Vari-
ants: The list coloring problem has been widely
applied to solve optimization and scheduling
problems [30]. In Orden and Moreira’s work [31],
the problem of minimizing interference threshold
and the number of colors respecting that thresh-
old was modeled as list coloring. They demon-
strated that the problems are NP-Hard and pro-
posed DSATUR, a graph coloring algorithm, to
tackle them.

Garg et al. [32] tackled the channel frequency al-
location problem in mobile communication net-
works by modeling it as a generalized list coloring
problem. Their solutions prevented signal inter-
ference by selecting channels for neighboring base
stations in a way that they did not overlap. This
approach effectively addressed the crash failures
caused by distance limitations.

In the domain of register assignment, Zeitlhofer et
al. [33] presented a list-coloring algorithm that op-
timally assigns a large number of target variables
to a small number of CPU registers. This algo-
rithm preserves the structure of the interference
graph, ensuring the retention of interval graph
properties.

Sudoku puzzles can also be formulated as list col-
oring problems. Each cell corresponds to a ver-
tex, and the relationships between cells are repre-
sented as edges in rows and columns. The num-
bers used in Sudoku can only appear once in each
row and column, making it an instance of the
list coloring problem. Additionally, Lastrina et
al. [18] demonstrated how the precoloring exten-
sion problem can be used to illustrate the Sudoku
puzzle.

4. Li k-PrExt and Futoshiki

In this section, we show that the Futoshiki prob-
lem can be reduced to the list precoloring exten-
sion problem for the Futoshiki graph G. In the
reduction the revealed cells given in the Futoshiki
problem are used to construct the pre-coloring for
G. In addition, the list assignment is obtained us-
ing the inequality constraints.

Let n ≥ 2 be a positive integer. A Partial Latin
Square is an n×n grid that is partially filled with
some numbers from [k] = {1, . . . , n}. Let us de-
note a cell that is in the i’th row and the j’th
column of a grid as (i, j). Each cell (i, j) is repre-
sented in the graph with a vertex vij . Two cells
(i, j) and (i′, j′) are adjacent whenever they are
in the same column or in the same row.
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Thus, a Latin square is represented as a graph
G = (V,E) such that V = {vij : 1 ≤ i, j ≤ n},
and E = {(vij , vi′j′) : ((i = i′) ∧ (j ̸= j′)) ∨ ((j =
j′) ∧ (i ̸= i′)} [34]. This graph is called the Fu-
toshiki graph of size n. Notice that the Futoshiki
graph G has n2(n− 1) edges. The graph G is iso-
morphic to the graphKn⊠Kn, which is the strong
product of Kn with itself [18] and it is (2n − 2)-
regular.

Recall that the Futoshiki problem of size n,
Fn(T, S), is defined on the Futoshiki graph of
size n where S is the set of inequality constraints.
Thus there are at most 2n(n−1) inequality signs.
In Figure 3, for n = 4, there are n2 = 16 vertices
and n2(n − 1) = 48 edges. An instance of the
problem on this graph can take up to 24 inequal-
ity constraints in total, yet in this instance, there
are only 5 inequality constraints.

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

{3,4} {3,4} {2,4} {1,2}

{2,3} {3,4} {1,2} {1,2}

{1} {2} {3} {4}

{2,4} {1} {2,4} 3

Figure 3. Vertices of the Futoshiki Puzzle.

Theorem 1. For every Futoshiki problem
Fn(T, S) there exists an equivalent instance of
the List k-Precoloring Extension problem
LG(cW , L) on the Futoshiki graph where k = n.

Proof. We give a polynomial time reduction that
converts a Futoshiki problem Fn(T, S) of size n×n
to a Futoshiki graph G and a list-assignment L
that corresponds to the list k-precoloring exten-
sion problem LG(cW , L) for some precoloring cW .
We also show that Fn(T, S) is solvable whenever
LG(cW , L) is solvable on G. We do the latter by
converting each solution of Fn(T, S) to a solution
of LG(cW , L) and vice versa.

Given an instance Fn(T, S) of the Futoshiki prob-
lem the entries of the n × n board cells corre-
spond to vertices of G, occurring exactly once in
each row and column. Thus, the graph G will
have n2 vertices. The cells represent vertices and
adjacent cells in each row and column represent
the edges. At the beginning of the problem, if a
number l is revealed in a cell that is represented
with a vertex v, then we say v is precolored with
color l. This gives a one-to-one correspondence
between the revealed cells T and the precoloring

cW . If no number is revealed in the cell, then
the corresponding vertex will be assigned the list
{1, 2, . . . , k}. If, in addition, there is an inequality
sign > located between some adjacent cells that
are represented with vertices u and v in G, then
for every color i ∈ L(u), there must be at least one
color j ∈ L(v) such that i > j. For the inequality
sign <, the construction of the list assignments
of the related vertices are done similarly. This
gives the construction of the list assignment L,
thereby completing the reduction of Fn(T, S) to
LG(cW , L).

Each solution of Fn(T, S) will naturally give a
proper coloring for G which is an extension of the
precoloring cW and it will obey the list L. On the
other hand, a list coloring solution of LG(cW , L)
yields a solution to the given Futoshiki problem
Fn(T, S). Notice that the precoloring and the list
assignment L are constructed so that the solution
to the list precoloring extension problem gives a
number assignment that satisfies the inequalities
located between adjacent cells.

□

3

4 3 2 1

3 4 1 2

1 2 3 4

2 1 4 3

a) Futoshiki puzzle game b) Solution to Futoshiki puzzle game

c) List precoloring extension

3

{3,4} {3,4} 4 3 2 1

3 4 1 2

1 2 3 4

2 1 4 3

{1,2}{2,4}

{3,4}{2,3}

{4}{1} {3}

{1,2}

{2}

{1,2}

{2,4} {1} {2,4}

d) Coloring

Figure 4. A Futoshiki puzzle in-
stance and the cells that correspond
to the vertices in the related Futoshiki
Graph.

Figure 4 illustrates an instance of a 4×4 Futoshiki
problem and the corresponding Futoshiki graph
construction along with the list assignment: Fig-
ure 4.a shows the initial board of the game, Fig-
ure 4.b shows the solution of the game, Figure 4.c
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shows the list precoloring extension instance and,
finally, Figure 4.d shows the corresponding color-
ing as a solution to the list precoloring extension
problem.

5. List coloring-based algorithm for the
Futoshiki Problem

There are various algorithmic approaches to solve
pencil puzzles. The backtracking algorithm is
used for the class of Constraint Satisfaction Prob-
lems (CSPs). These problems are defined as a set
of variables, a set of their respective domains of
values, and a set of constraints [10]. The goal of
a CSP is to find a consistent assignment of val-
ues to variables that satisfies all constraints, sub-
ject to certain conditions. CSPs have applications
in various domains, including scheduling, plan-
ning, configuration, and puzzle-solving. LSCP-
type puzzles are seen as constraint satisfaction
problem CSPs that find a solution that satisfies
all the constraints considering assignment of vari-
ables. These problems include Sudoku, Futoshiki,
and Kakuro. Sudoku is the most popular one that
is solved as CSP by the researchers. Norvig [10]
describes two methods to solve Sudoku, namely,
constraint propogation (CP) and Local Search.
Constraint propagation is a technique that is com-
monly used in CSPs to efficiently update and re-
duce the domain of variables based on the con-
straints imposed by the problem.

In this section, we present two different determin-
istic algorithms for solving the Futoshiki Puzzle,
called FutoshikiBT and ColorFutoshik, each in-
corporating backtracking, and filtering methods
respectively.

5.1. BackTracking algorithm

The backtracking algorithm can be seen as the
simplest solution for Sudoku puzzles which are
the most commonly studied problem. Backtrack-
ing uses a recursive approach in which each cell
is assigned a number from 1 . . . n when the board
size is n×n. The backtracking algorithm system-
atically explores the solution space by iteratively
assigning values to empty cells in the puzzle and
backtracking when a contradiction or violation of
constraints is encountered.

Here, we give a backtracking algorithm that solves
the Futoshiki Puzzle to compare its efficiency with
the proposed method called ColorFutoshiki which
we give in Section 5.2. The backtracking algo-
rithm starts by selecting an empty cell in the puz-
zle and attempts to assign a value that satisfies

the row and column constraints, as well as the in-
equality constraints associated with neighboring
cells. It then moves on to the next empty cell and
repeats the process. If a contradiction arises, such
as a repeated number in a row or column, or a vi-
olation of an inequality constraint, the algorithm
backtracks to the previous cell and explores alter-
native value assignments. Although this method
guarantees a solution, it is not efficient in terms of
time complexity. Let us present our FutoshikiBT
Algorithm.

Algorithm 1 FutoshikiBT Algorithm

1: Input: Futoshiki board with constraints.
2: Output: Solution of the puzzle.

3: if colorG(n, list, v = 1, given) == False
4: print (“No solution”)
5: else
6: print (list)
7: colorG(n, list, v, given):
8: if(v == V + 1)
9: return True

10: for c in range(1, n)
11: if safe(v, list, c, given) == True
12: list[v] = c
13: if colorG(n, list, v + 1, given)
14: return True
15: end if
16: if v not in given
17: list[v] = 0
18: end if
19: return False
20: end if
21: end for
22: return False
23: safe(v, list, c, given):
24: if v in given and list[v] == c
25: return True
26: else if v in given
27: return False
28: end if
29: for (i in range(1, V ))
30: if list[i] == c and neighbour(v, i)
31: return False
32: end if
33: if constraints are not satisfied
34: return False
35: end if
36: end for
37: return True
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5.2. ColorFutoshiki algorithm

In this section, using the equivalence between the
Futoshiki Problem and the Li k-PrExt prob-
lem for the Futoshiki graph, as assured by Theo-
rem 1, we construct the ColorFutoshiki algorithm
to solve the Futoshiki Problem. We will ob-
serve that, this approach is equivalent to the back-
tracking algorithm with forward checking for the
Futoshiki Problem.

The backtracking algorithm considers every solu-
tion by iterating every possible number in each
cell under all satisfying conditions, assigns the
first available option, backtracks when a solution
is not possible for the next cell under consider-
ation, and tries the next possible option for the
previous cell. These methods guarantee the solu-
tion, but they do not give the solution in optimal
time. Here we aim to improve the backtracking
algorithm. This is why we need a problem space
that helps our solver save us more time. The back-
tracking method of solving the Futoshiki problem
fills each cells from left to right and top to bottom
with considering inequality constraints.

The ColorFutoshiki algorithm is an improved ver-
sion of the FutoshikiBT algorithm. Our aim is to
reduce the number of colors in each list by elimi-
nating inconsistent ones. This reduces the search
space to be explored. At the beginning of the
ColorFutoshiki algorithm, we use a filtering tech-
nique. In this filtering step we do forward check-
ing in order to create color lists. Forward checking
keeps track of the remaining possible values for
unassigned variables after a variable is assigned
a value. It propagates constraints by eliminating
values from the domains of other variables that
conflict with the newly assigned value. This tech-
nique is applied to create lists for each cell that
they can use. Thus, it will begin coloring the puz-
zle with the minimum number of colors in the list
for each cell.

5.3. Analysis of the algorithms

The input parameters for the algorithm are the
Futoshiki graph of size n, the inequality con-
straints, and the pre-assigned entries. The algo-
rithm begins by examining the constraints and
pre-assigned numbers of the Futoshiki instance
Fn(T, S), which then produces a k-precoloring in-
stance LG(cW , L). Next, it determines how to
color the given Futoshiki graph using the list of
colors assigned to each vertex through the reduc-
tion process described above. If LG(cW , L) is
a YES instance, the algorithm outputs a matrix

MG = [mij]n× n indicating the colors of the ver-
tices of the graph G. Otherwise, it concludes that
no solution exists.

First, let us analyze the FutoshikiBT algorithm,
which builds candidates for the solutions incre-
mentally and abandons candidates when it deter-
mines that they cannot possibly be solved with a
valid solution.

The function colorG(n, list, v, given) is a recur-
sive function that ensures the coloring process is
completed by checking all vertices. It attempts
to use the colors in the list for the corresponding
vertex in order. Here, n represents the puzzle di-
mension, which is equal to the size of the color
list. list is the list of colors assigned to vertices
(solution). v is the vertex number. V represents
the total number of vertices. given denotes the
values given before the game starts.

The function safe(v, list, c, given) checks whether
the given vertex can be colored with the chosen
color by verifying the constraints. In this process,
neighbour(v, i) checks the adjacency of the two
relevant vertices, ensuring that adjacent vertices
are not colored with the same color.

It is worth noting that the FutoshikiBT algorithm
does not include a process for creating preassigned
color lists. On the other hand, ColorFutoshiki
first traverses the graph and creates a list of colors
that minimizes the number of candidate colors for
each cell. It then attempts to color empty cells,
starting from the first vertex v11.

The ColorFutoshiki algorithm is an improved ver-
sion of the FutoshikiBT algorithm. Its aim is to
reduce the number of colors in each list by elim-
inating inconsistent ones. This reduction effec-
tively reduces the search space that needs to be
explored.

The pseudocode of the algorithm is provided be-
low.
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Algorithm 2 ColorFutoshiki Algorithm

1: Input: Futoshiki board with constraints.
2: Output: Solution of the puzzle.

3: if colorG(pcList[1].length, list, v = 1, given)
4: print (list)
5: else
6: print (“No solution”)
7: end if

8: colorG(n, list, v, given):
9: if (v == V + 1)

10: return True
11: end if
12: for c in range(1, n)
13: if safe(v, list, pcList[v][c], given)
14: list[i] = pcList[v][c]
15: nextN = pcList[v + 1].length
16: if colorG(nextN, list, v + 1, given)
17: return True
18: end if
19: if v not in given
20: list[v] = 0
21: end if
22: return False
23: end if
24: end for
25: return False

26: safe(v, list, c, given):
27: if v in given and list[v] == c
28: return True
29: else if v in given
30: return False
31: end if
32: if constraints are not satisfied
33: return False
34: end if
35: for i in range(1,n)
36: if (hNeighbor == c & hNeighbor! = v)
37: return False
38: end if
39: if (vNeighbor == c & vNeighbor! = v)
40: return False
41: end if
42: end for
43: return True

In the ColorFutoshiki algorithm, first, we perform
filtering and create color lists for each cell based
on their admissible colors and constraints. Conse-
quently, the algorithm begins coloring the puzzle
using the minimum number of colors available in
the lists.

Unlike the FutoshikiBT algorithm, Color-
Futoshiki uses a recursive structure that does

not traverse the entire graph to color the related
vertex. Instead, it only checks the horizontal and
vertical neighbors of the vertex being colored. It
is observed that ColorFutoshiki outperforms the
FutoshikiBT algorithm in all instances of varying
difficulty levels.

Now, let us explain the ColorFutoshiki algorithm.

In lines 3-7, we call the colorG function, which
displays the solution if found. Here pcList is the
list that each cell takes.

In lines 8-25, the recursive colorG function checks
the termination condition. If this condition is not
met, it checks whether the related vertex v can
be colored based on the possible color list of v. If
v cannot be colored, the algorithm moves on to
the next color in its list. If it cannot be colored
with any color in the list, the recursive function
returns to previous vertex and the color of the
previous vertex is updated. If it can be colored,
the algorithm moves on to the next vertex, and
the admissible color is added to the color list.

In lines 26-43, if the vertex to be colored has a
preassigned (given) value, the algorithm proceeds
to the next vertex. Then, it checks whether there
is a constraint in front of or above the vertex to
be colored or not. If there is, it verifies whether
the constraint conditions are satisfied. After this
step, we check the colors of the adjacent vertices if
they have the same color. Instead of traversing all
nodes, it only checks the horizontal and vertical
neighbors of the relevant vertex.

Now let us analyze the time complexities of the
algorithms. The FutoshikiBT algorithm traverses
all vertices to check the neighborhood of the ver-
tex being colored and to decide whether the col-
ors are the same or not. For each empty cell,
there are n possible options, where n is the to-
tal number of colors. As a result, the time com-

plexity becomes O(nn2
). In the ColorFutoshiki

algorithm some values are removed from some do-
mains. Since there will be some early pruning the
time taken will be much less than the backtrack-
ing algorithm. However, the upper bound time
complexity remains the same. The reason is that
we don’t know how many values are removed. As

a result, the time complexity becomes O(nn2
).

Although the worst case time complexity of the
ColorFutoshiki algorithm is only a slight improve-
ment over the FutoshikiBT algorithm, as we will
observe below, its speed is remarkably faster in all
of the computational experiments that we have
done.
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6. Results and discussion

We aim to solve the Futoshiki as an instance
of the LiCol problem. For this reason we first
improved the ColorFutoshiki algorithm. It is
an enumeration algorithm that incorporates ad-
ditional search space reductions and bounding el-
ements, making it an enhanced version compared
to FutoshikiBT. Due to the fact that Futoshiki
is classified as an NP-Complete problem, Color-
Futoshiki proves to be highly effective and suit-
able for numerous applications and purposes. Its
capabilities make it a valuable tool in addressing
the complexity of Futoshiki.

Here, we present the computational experiments
conducted to assess the efficiency of the Color-
Futoshiki algorithm in solving instances of the
Futoshiki problem. All the codes were imple-
mented in the Python programming language,
and the experiments were executed on a sys-
tem with an Intel Core i7-6700HQ CPU oper-
ating at 2.60 GHz, with 16GB RAM, running
Windows 10 (64-bit). Different instances have
been generated and tested on nxn boards for
n = 6, 7, 8, 9, 15, 20, 30, 40, 50. We ran the related
code 50 times per instance and took their aver-
age. In total, 1800 Futoshiki puzzles have been
used for each algorithms. Due to space limita-
tions, we are unable to provide a table containing
the running times for each individual test. This is
why, we present the average experimental results
for each algorithm in Table 1 and Table 2.

Solutions to the Futoshiki Problem are of partic-
ular interest due to the given application in sched-
uling on n×n boards when the size n is large. As
our experimental results demonstrate, the Color-
Futoshiki algorithm works much better even on
boards of a larger size where the number of in-
equality constraints is not necessarily restricted
to be less than n for an n× n board.

A standard deviation denotes the spread of data
concerning its mean. When the standard devia-
tion is small, it signifies that the data is tightly
clustered around the mean. Conversely, a high or
large standard deviation suggests that the data is
more widely spread.

All the results and standard deviations can be
seen in Table 1. Different numbers of constraints
and different numbers of givens are examined for
each algorithm.

The performance of the proposed algorithms for
standard search algorithms is illustrated in Figure
5 and Figure 6 with standard deviations. In this
figures, we maintain a constant number of con-
straints while showcasing the increasing number

of given values. Notably, ColorFutoshiki consis-
tently outperforms FutoshikiBT in solving puz-
zles, even when the number of constraints is held
constant. These results underscore the efficiency
of the ColorFutoshiki algorithm, particularly on
larger-sized boards, providing a performance com-
parison with the FutoshikiBT algorithm.

Figure 5. Comparison of
ColorFutoshiki(CF) and
FutoshikiBT(BT) on
smaller board sizes.

In addition to running times, we also measure
the number of operations for both ColorFutoshiki
and FutoshikiBT. Since the number of explored
nodes provides insights into the efficiency of the
algorithm, we show both the number of explored
nodes and the number of removed values of each
algorithm in Table 2. A lower number of explored
nodes generally indicates a more efficient algo-
rithm, as it suggests that the algorithm is able
to reach a solution without exhaustively search-
ing through a large portion of the puzzle’s solu-
tion space. The number explored nodes allows for
comparison with other algorithms or approaches
for solving the same puzzle. For this reason, we
use this parameter to compare the ColorFutoshiki
algorithm that we present with FutoshikiBT.

We observe that the number of explored nodes
varies significantly across different instances of the
puzzle, it may indicate that the algorithm’s per-
formance is sensitive to certain characteristics of
the puzzle. Similar to the number of explored
nodes, the number of removed nodes provides in-
sight into the efficiency of the algorithm. In cer-
tain search algorithms, such as backtracking or
constraint satisfaction algorithms, removed nodes
typically refer to nodes that are pruned from the
search space because they are deemed unneces-
sary or invalid. A lower number of removed nodes
indicates that the algorithm is effectively prun-
ing the search space, which can lead to improved
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Table 1. Run time for all algorithms reported in milliseconds.

size inequalities givens CF BT
6 6 1 1.54± 0.11 1.61± 0.44
6 6 20 0.28± 0.05 0.29± 0.1
6 6 30 0.19± 0.04 0.24± 0.1
6 1 6 0.59± 0.08 0.66± 0.22
6 20 6 0.5± 0.08 0.54± 0.27
6 30 6 0.53± 0.17 0.4323± 0.1073
7 7 1 1.40± 0.16 1.47± 0.52
7 7 30 0.43± 0.17 0.46± 0.18
7 7 40 0.29± 0.04 0.35± 0.08
7 1 7 1.37± 0.3 1.58± 0.5
7 30 7 2.07± 0.46 2.33± 0.58
7 40 7 1.19± 0.37 1.21± 0.52
8 8 1 3.53± 0.80 3.64± 1.33
8 8 40 0.5± 0.04 0.77± 0.29
8 8 50 0.37± 0.08 0.63± 0.2
8 1 8 2.01± 0.33 2.29± 0.73
8 40 8 6.72± 1.71 9.33± 2.32
8 50 8 5.34± 1.55 10.04± 2.3
9 9 1 8.08± 3.11 8.11± 3.06
9 9 70 0.46± 0.16 0.84± 0.2
9 18 35 1.28± 0.32 1.92± 0.63
9 1 9 3.78± 1.33 4.7± 1.69
9 70 9 8.86± 0.3 10.71± 0.92
9 35 18 2.27± 3.27 2.95± 3.22
15 15 150 2.77± 0.64 11.65± 2.54
15 15 170 2.25± 0.86 11.75± 2.86
15 15 200 1.44± 0.45 10.52± 3.94
15 1 150 11.82± 0.7 12.04± 3.26
15 90 130 3.47± 1.10 12.61± 3.33
15 150 15 2987.7± 336.8 3064.9± 103.2
20 20 300 4.98± 1.48 38.54± 8.12
20 30 320 11.58± 1.27 62.2± 3.43
20 20 370 1.575± 1.62 31.57± 6.07
20 30 300 5.21± 3.48 35.98± 8.52
20 80 250 349.97± 1.42 644.16± 7.26
20 50 350 3.55± 27.31 33.27± 29.87
30 30 500 11.000± 37.377 2585.5± 133.84
30 30 600 612.73± 34.274 1360.2± 441.69
30 30 750 41.852± 4.9579 1192.3± 78.302
30 50 500 1103.7± 135.63 2412.5± 102.47
30 100 600 608.17± 29.557 1274.6± 71.195
30 300 750 40.34± 5.8942 993.95± 34.361
40 40 750 2827.7± 97.233 12159± 402.91
40 40 950 702.37± 33.654 9869.8± 234.02
40 40 1300 91.642± 8.8446 1257.7± 51.235
40 100 750 2913.0± 599.59 9359.7± 255.39
40 300 950 437.39± 23.055 4845.2± 130.88
40 400 950 438.99± 27.05 4995.3± 142.66
50 50 1200 4443.1± 151.71 37727± 579.75
50 100 1500 2158.0± 93.02 21803.0± 358.64
50 250 2000 1817.7± 75.545 20849± 538.47
50 400 1600 1092.8± 54.712 13279± 162.22
50 400 2000 1067.5± 39.437 13145± 263.9
50 500 2000 835.95± 40.199 11559± 284.97

efficiency as it can be seen in Table 2. As the
FutoshikiBT algorithm lacks a filtering step, no

values are removed from its domains, unlike the
filtering steps in the ColorFutoshiki algorithm.
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The running time of the algorithm varies depend-
ing on the puzzle’s difficulty level. We observe
that as the number of inequality signs approaches
the maximum limit, the computation time signif-
icantly decreases. This behavior can be attrib-
uted to the utilization of the backtracking method
in the ColorFutoshiki algorithm. Typically, Fu-
toshiki puzzles are played on 5×5 to 9×9 boards
(occasionally on 15× 15 boards), and existing al-
gorithmic solutions are primarily tested on boards
with dimensions up to n = 9.

In Figure 5, we compare the performance of our
method with previous solutions employing the Fu-
toshikiBT algorithm on smaller-sized boards.

Motivated by the lack of performance analysis for
larger-sized boards, we conducted experiments us-
ing the ColorFutoshiki algorithm on larger board
sizes. Additionally, we wanted to assess the al-
gorithm’s effectiveness on larger-sized boards due
to the relationship between the Futoshiki puzzle
game and larger scheduling problems, as discussed
in Section 3. In Figure 6, we compare the per-
formance of our method with previous solutions
employing the FutoshikiBT algorithm on larger-
sized boards. We even conducted experiments for
50× 50 boards. The results demonstrate that the
ColorFutoshiki algorithm efficiently solves even
30×30, 40×40 and 50×50 board games as shown
in Figure 7.

Figure 6. Comparison of
ColorFutoshiki(CF) and
FutoshikiBT(BT) on
larger board sizes.

Overall, these findings highlight the efficiency
of the ColorFutoshiki algorithm, especially on
larger-sized boards, and provide a performance
comparison with the FutoshikiBT algorithm.

7. Conclusion

The Futoshiki problem is aimed to be solved as
a list coloring problem in ColorFutoshiki. It is
an enumeration algorithm that incorporates ad-
ditional search space reductions and bounding el-
ements, making it an enhanced version compared
to FutoshikiBT. Due to the fact that Futoshiki
is classified as an NP-Complete problem, Color-
Futoshiki proves to be highly effective and suit-
able for numerous applications and purposes. Its
capabilities make it a valuable tool in addressing
the complexity of Futoshiki.

A considerable number of experiments were con-
ducted to test ColorFutoshiki and FutoshikiBT,
providing a robust foundation for drawing mean-
ingful conclusions. The extensive set of experi-
ments carried out ensures that the findings are
sufficiently supported and reliable. Observing Ta-
ble 1 and Table 2, we see that ColorFutoshiki is
much more efficient than FutoshikiBT.

Figure 7. Comparison of
ColorFutoshiki(CF) and
FutoshikiBT(BT) on
larger board sizes.

We incorporate a short discussion on these meta-
heuristic methods and their applications to Su-
doku. This will enhance the comprehensiveness
of our paper and provide a broader perspective
on the algorithmic techniques used to solve LSCP
type puzzles.

We are also interested in studying the Futoshiki
problem as an application of the Li k-col prob-
lem. To find approximation algorithms for the
Futoshiki puzzle, we would like to use metaheuris-
tics.

As for future work related with nature based al-
gorithms, one can see whether an Ant Colony op-
timization (ACO) algorithm gives a more efficient
algorithm to solve the Futoshiki problem. ACO
is a Swarm intelligence algorithm which is one of
the artificial intelligence techniques. A solution
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Table 2. The count of removed nodes and explored nodes. NRN stands for ”No
Removed Nodes”.

size inequalities givens FC-EN FC-RN BT-EN BT-RN
6 6 1 528 15 540 NRN
6 6 20 40 173 126 NRN
6 6 30 36 180 126 NRN
6 1 6 151 78 198 NRN
6 30 6 111 81 156 NRN
6 20 6 100 81 144 NRN
7 7 1 456 18 469 NRN
7 7 30 59 276 196 NRN
7 7 40 50 291 196 NRN
7 1 7 298 113 406 NRN
7 40 7 268 125 392 NRN
7 30 7 474 124 392 NRN
8 8 1 1145 29 1160 NRN
8 8 50 65 446 288 NRN
8 8 40 78 423 288 NRN
8 1 8 580 156 736 NRN
8 40 8 1851 161 2744 NRN
8 50 8 1293 174 2920 NRN
9 9 1 2279 24 2313 NRN
9 9 70 81 647 405 NRN
9 18 35 187 546 603 NRN
9 1 9 988 194 1357 NRN
9 70 9 1629 213 2070 NRN
9 35 18 489 385 855 NRN
15 15 150 286 3040 2010 NRN
15 15 170 239 3102 1800 NRN
15 15 200 229 3139 1800 NRN
15 1 150 286 3028 2010 NRN
15 90 130 331 2975 2025 NRN
15 150 15 674261 7472 240 NRN
20 20 300 472 7589 4200 NRN
20 30 320 760 7484 5940 NRN
20 20 370 408 7588 4220 NRN
20 30 300 472 7484 4200 NRN
20 80 250 21057 6922 49580 NRN
20 50 350 417 7578 4220 NRN
30 30 500 44063 22402 116550 NRN
30 30 600 24682 23577 56400 NRN
30 30 750 1722 25450 48060 NRN
30 50 500 41511 22403 111840 NRN
30 100 600 22654 23580 52560 NRN
30 300 750 1684 25510 41220 NRN
40 40 750 69967 54498 229320 NRN
40 40 950 17714 56006 537760 NRN
40 40 1300 2542 61272 43160 NRN
40 100 750 33348 51448 219360 NRN
40 300 950 11154 56182 220240 NRN
40 400 950 11124 56224 220240 NRN
50 50 1400 59494 119420 600200 NRN
50 100 1600 29404 120771 462900 NRN
50 250 2000 25673 120862 427900 NRN
50 400 1600 16255 120912 302150 NRN
50 400 2000 16255 120912 302150 NRN
50 500 2000 12864 120979 260000 NRN

for Sudoku is given using ACO in the study of
Huw Lloyd [16]. Another solution which is the
first nature-based algorithm for the NP-Complete
Nurikabe problem is presented by Amos et al. [35].
This algorithm was developed based on ACO. For
future work, it would be interesting to solve the

Futoshiki problem using Ant Colony Optimiza-
tion (ACO) and an Artificial Bee Colony (ABC)
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algorithm [36]. The performance of these ap-
proaches could then be compared with existing
solutions, such as the improved constraint pro-
gramming method developed by Kostyukova and
Tchemisova [37].
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 The increasing competition and rapid technological advancements in today's 

business world have raised customer expectations. People now expect quick 

delivery, low prices, and high-quality products. As a result, companies must adapt 

to this competitive environment to survive. Rework, which is a significant cost in 

production, increases expenses, reduces production efficiency, and can lead to 

customer attrition. Research shows various efforts across different sectors to 

reduce rework, although there is still a gap in the textile sector's fabric dyeing 

units. Common problems in these units include non-retentive colors, customer 

dissatisfaction with shades, and repeated dyeing due to environmental factors or 

dye vat issues. This study uses logistic regression and artificial neural networks 

models from machine learning to predict which fabrics will need rework, using 

data from a textile company in Bursa. The analysis indicates that artificial neural 

networks models perform better. 
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1. Introduction 

In the textile industry, optimizing fabric dyeing 

processes is a pivotal challenge. Rework processes 

within fabric dyeing units are among the most critical 

factors contributing to cost escalation, low-quality 

production, and customer dissatisfaction.  

“Rework” can be defined as the need for additional 

processing or corrective measures due to various 

quality issues. Rework represents a form of waste, 

driving research into the concept of Zero Defect 

Manufacturing [1,2]. This concept aims to eliminate 

defects before they necessitate rework.  However, 

achieving this goal requires proactive measures to 

anticipate and prevent potential quality issues before 

they escalate into rework processes.  

Machine learning techniques offer promising 

approaches to identifying patterns in historical data and 

predicting defects in manufacturing processes. 

Although there is growing interest in using machine 

learning for quality assurance and defect detection in 

manufacturing, a significant gap remains in research on 

applying these techniques specifically for "rework 

prediction" in the textile industry. 

Correspondingly, this research aims to address this gap 

by evaluating the effectiveness of logistic regression 

and artificial neural networks (ANNs) in predicting 

rework instances in fabric dyeing processes.  

In line with the study's objectives and the research 

landscape, the following contributions are emphasized:  

• This study addresses a critical research gap in the 

textile industry by exploring the application of 

machine learning for predicting errors in fabric 

dyeing processes. While machine learning has been 

extensively applied  in various industries, its use in 

the textile sector for rework prediction remains 

relatively underexplored. 

• This study focuses on applying machine learning, 

specifically logistic regression and ANNs, to 

develop models that predict rework in fabric dyeing 

units within the textile industry. By leveraging data-

driven methods, our goal is to enhance the early 

detection of potential quality issues and reduce the 

need for rework before it escalates a bigger 

problem. 

The aim is to proactively predict and mitigate potential 

quality issues, thereby optimizing production processes 

and minimizing instances of rework. This study not 

only contributes to the expanding field of predictive 

http://www.ams.org/msc/msc2010.html
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analytics and manufacturing optimization but also 

seeks to advance the application of machine learning 

within the textile sector. 

 

2. Literature review 

A review of the literature on early quality prediction 

and rework reveals numerous studies across various 

industries. However, the application of these 

techniques specifically within the textile sector appears 

to be less common. 

A systematic effort was undertaken to conduct a 

comprehensive literature review. Prominent databases 

such as Science Direct, Web of Science, and Google 

Scholar were utilized to identify relevant materials. 

Two specific search strings were employed to reflect 

the core focus of the investigation. The first search 

string, "quality" AND "defect detection" AND 

"prediction" AND "manufacturing," aimed to cover the 

scholarly work on predictive methods for quality 

assurance and defect detection in manufacturing 

contexts. The second search string, "rework" AND 

"defect" AND "machine learning," was designed to 

explore research on the application of machine learning 

approaches to predict defects and prevent rework 

processes. By systematically using these search strings 

and examining the results from the selected databases, 

the literature review aimed to extract and synthesize 

relevant insights from the existing body of scholarly 

work. 

A case study [1] was conducted within an automotive 

company, employing an Early Quality Prediction 

system grounded in a data-driven approach. In this 

study, the focus was on applying Convolutional Neural 

Network (CNN) techniques to time-series data to 

proactively predict and prevent defects. This approach 

aimed to minimize rework costs and optimize product 

quality through predictive insights. A data-driven 

mathematical model has been developed [3] for a 

dynamic manufacturing process with multiple rework 

lines, focusing on calculating production rates and 

machine efficiency for each machine. This model is 

designed to address scenarios involving preventive 

maintenance activities for each machine, with machine 

efficiencies computed based on real performance data 

for analysis. Taking into consideration the dynamic 

states of the production system, including rework 

productions, a mathematical model has been developed 

[4] to calculate efficiency of the process. With this 

model, rework strategies are predicted to ensure the 

production of products with the desired quality. In the 

context of assembly lines, rework stations are typically 

set up at the end of assembly lines for reprocessing 

faulty products. These rework stations operate within 

standard production processes when error rates are low. 

In cases where rework stations operate in dynamic 

conditions, a nonlinear mixed-integer programming 

model [5] has been proposed to enhance station 

efficiency. This model aims to increase the efficiency 

of rework stations in dynamic situations, thus 

improving the overall performance of the assembly 

line. In the automotive industry, various Machine 

Learning methods have been employed to predict errors 

in assembly lines. The results obtained from different 

methods have been compared [6]. To facilitate this 

comparison, specific metrics were established, and 

these metrics were contrasted among the six algorithms 

employed. 

To provide a comprehensive overview of the current 

state of research on early quality prediction and rework 

processes, a detailed literature summary table (Table-1) 

has been compiled. This table highlights the key 

methodologies, applications, and findings from various 

studies, illustrating the broader landscape of machine 

learning applications in different sectors. 

A review of the literature on the application of artificial 

neural networks in the textile sector reveals that they 

have been employed in various studies to predict yarn 

parameters, optimize weaving processes, enhance 

finishing stages, and assess fabric comfort parameters 

[7]. Artificial Neural Networks (ANN) has also been 

employed to detect fabric defects in weaving [8]. To 

predict the characteristics of woven fabric (width, 

weight, weft and warp tensile values), an advanced 

feedforward recurrent artificial neural network (ANN) 

model [9] was employed and compared with a linear 

regression model. Artificial Neural Network (ANN) 

methods have been employed [10] to predict weft errors 

that emerge during fabric production in a textile 

company. ANN methods have been employed [11] to 

predict the impact of chemical finishing processes on 

the CIELab value of the fabric color. 

This study aims to develop alert systems for the 

identification of products with a high probability of 

rework and the implementation of specific actions for 

their mitigation. Early Quality Prediction systems 

employ deep learning methods as well as various 

techniques for this purpose. However, within the textile 

industry, specifically in a textile company with a fabric 

dyeing production process, there is a lack of research 

on using Machine Learning for the prediction of errors. 

This particular gap forms the distinct aspect of this 

study. 

The remainder of this paper is organized as follows: 

Section 3 presents the problem statement, detailing the 

specific challenges addressed in this study. Section 4 

provides the methodology. Section 5 discusses the 

results. Section 6 explores managerial insights and 

practical implementations, offering actionable 

recommendations based on the study's outcomes. 

Finally, Section 7 concludes the paper with a summary 

of key findings and an outlook on future research 

directions. 
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Table 1. Summary table of the literature. 

Ref. Methods used Application area Key findings 

[1] Deep learning, Time series 
data 

Manufacturing Successful use of deep learning techniques for early quality 
prediction. 

[2] Various machine learning 

methods 

Zero defect 

manufacturing 

Comprehensive review of current methods to achieve zero defect 

manufacturing. 
[3] Data-driven modeling and 

analysis 

Multi-stage 

manufacturing 

systems 

Used data-driven modeling to analyze quality rework cycles. 

[4] Product traceability and 

rework analysis 

Manufacturing 

systems 

Analyzed quality performance considering product traceability 

and rework. 

[5] Mixed-integer 
programming 

Assembly lines Developed a model for positioning rework stations to improve 
efficiency. 

[6] Machine learning Assembly 

environment 

Applied machine learning for error detection in low-automation 

assembly environments. 
[7] Artificial neural networks Textile industry Reviewed applications of artificial neural networks in the textile 

industry. 

[8] Artificial neural networks Weaving technology Comprehensive review of ANN applications in weaving 
technology. 

[9] Artificial neural networks Woven fabric Used advanced feedforward recurrent neural networks to predict 

woven fabric properties. 
[10] Artificial neural networks, 

Multiple linear regression 

Fabric defects Compared ANN and multiple linear regression models for 

predicting fabric defects. 

[11] Artificial neural networks Chemical finishing 
processes 

Predicted the impact of chemical finishing on fabric color using 
ANNs. 

[12] Robust mathematical model Epidemic modeling Developed a mathematical model to predict the course of the 

COVID-19 epidemic. 
[13] Machine learning Agri-food production 

forecasting 

Used robust and resilient machine learning methods to forecast 

agri-food production. 

[14] Machine learning, Deep 
learning 

Healthcare Applied machine learning techniques to improve early disease 
detection. 

[15] Support vector machines, 

Neural networks 

Manufacturing Compared the efficiency of SVM and ANN in predicting 

manufacturing defects. 
[16] Deep learning Electronics 

manufacturing 

Used deep learning to predict defects in electronics 

manufacturing. 

[17] Logistic regression, 
Decision trees 

Automotive Developed predictive models to reduce rework in automotive 
manufacturing. 

[18] Ensemble learning Aerospace Applied ensemble learning techniques for quality prediction in 

aerospace components. 

[19] Neural networks, Fuzzy 

logic 

Food processing Combined neural networks and fuzzy logic for defect prediction 

in food processing. 

[20] Gradient boosting machines Pharmaceutical Used gradient boosting machines to predict quality issues in 
pharmaceutical manufacturing. 

[21] Intelligent quality control 

system 

Surface roughness Enhanced surface quality control. 

[22] Artificial intelligence 

techniques 

Production cycle Rework control optimization. 

[23] Machine learning for 
quality prediction 

Injection molding 
process 

Prediction of defects in injection molding. 

[24] Real-time quality prediction Serial-parallel 

manufacturing 
processes 

Real-time quality identification and prediction. 

[25] Integration of multisource 
information 

Manufacturing 
processes 

Enhanced quality prediction using multisource information. 

[26] Soft computing techniques Machining process Intelligent quality prediction in machining. 

[27] BP neural network 
algorithm 

Supply chain quality 
prediction 

Optimized method for supply chain quality prediction 

3. Problem statement 

Fabric dyeing involves several key steps: preparing the 

fabric, mixing the dyes, dyeing the fabric, washing and 

rinsing, and drying. First, the fabric is cleaned and 

treated to ensure it absorbs the dye evenly. Next, the 

dyes are mixed to achieve the desired color. The fabric 

is then immersed in the dye mixture, ensuring it is 

thoroughly soaked. After dyeing, the fabric is washed 

and rinsed to remove any excess dye, and finally, it is 

dried. 

Fabric dyeing involves several methods, each suited to 

different types of fabrics and production scales. 

Common methods include batch dyeing, where fabric 

is dyed in a single batch, and continuous dyeing, which 

is efficient for large quantities as fabric moves 

continuously through the dyeing process. Pad-dyeing 

uses rollers to ensure even dye absorption, while jet 

dyeing employs high-pressure jets for delicate fabrics. 

Beam dyeing immerses fabric wound on a beam into 

the dye bath, and tie-dyeing creates unique patterns by 

tying fabric before dyeing. Solution dyeing integrates 

dye into the polymer solution for synthetic fibers, and 

dip dyeing achieves gradient effects by submerging 
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fabric to different levels. Each method offers distinct 

advantages depending on the desired outcome and 

fabric type. 

Rework processes are often needed in fabric dyeing due 

to various issues such as uneven dye distribution, 

incorrect color shades, or dye spots. These problems 

can arise from improper preparation, inaccurate dye 

mixing, or inconsistencies in the dyeing process. 

Reworking involves correcting these defects to meet 

the required quality standards, ensuring the final 

product is uniform and meets customer expectations. 

The research was conducted within a textile company 

located in Bursa with a Fabric Dyeing Department. It 

was found that dyed fabrics frequently required re-

dyeing or additional finishing processes due to various 

quality issues. These corrective processes are referred 

to as "Rework" within the operation. To address this 

issue, historical fabric dyeing job order data from the 

MRP software, which the company uses, was utilized. 

A dataset comprising 4,855 entries from the past year 

was collected for this purpose. The goal is to predict 

and minimize these rework instances to enhance 

efficiency and quality in the fabric dyeing process. 

 

4. Methodology 

As a result of the literature review, the decision of 

whether a fabric should undergo dyeing was framed as 

a “Classification” problem. To address this, an 

algorithm was developed using Logistic Regression 

and Artificial Neural Networks to determine whether 

rework is needed or not. Among the Artificial Neural 

Networks algorithms, the Multilayer Perceptron (MLP) 

algorithm was selected, specifically the MLPClassifier 

from the sklearn.neural_network library in Python. The 

parameters chosen during the construction of the 

Artificial Neural Networks model directly impact its 

accuracy. The steps involved in the study are illustrated 

in Figure 1. 

 

Logistic regression 

Regression is a statistical method used to determine the 

relationship between two variables, where one is 

dependent (y) and the other is independent (x). In this 

relationship, y is expressed as a function of x. Given the 

x attribute values, the continuous variable y is 

calculated. Regression is a supervised learning 

technique. Regression analysis helps identify the cause-

and-effect relationship between variables. 

Logistic regression is a statistical method used to 

predict binary outcomes. It predicts the probability of a 

result that can have only two values. The prediction is 

based on the use of one or several predictors (numerical 

and categorical). Linear regression is not suitable for 

values that can be expressed in a binary system such as 

yes/no or presence/absence because it can predict 

values outside the range of 0 and 1. Logistic regression 

produces a logistic curve that is limited to values 

between 0 and 1. 

The logistic regression model aims to minimize the cost 

function by updating the parameters and learning the 

parameters that provide the best classification results 

[28]. In logistic regression analysis, the ratio of the 

probability of an event occurring to the probability of it 

not occurring is called the odds ratio, and the 

probability of not occurring is calculated as follows: 

1 − 𝑃𝑖 = 1 − 1/(1 + 𝑒 −𝑍𝑖) = (1 + 𝑒 −𝑍𝑖 – 1)/(1 + 𝑒 −𝑍𝑖)  

= 𝑒 −𝑍𝑖 /(1 + 𝑒 −𝑍𝑖) 

The odds ratio is obtained by dividing the probability 

of occurrence by the probability of non-occurrence. 

The explicit expression of the odds ratio is: 

𝑃𝑖 /(1 − 𝑃𝑖 )= 1/( 1 + 𝑒 −𝑍𝑖)*(( 1 + 𝑒 −𝑍𝑖 )/(𝑒 −𝑍𝑖 )= 𝑒 𝑍𝑖  

By taking the natural logarithm of both sides of the 

logistic function, which becomes usable in linear 

regression analysis, a linear structure is obtained: 

𝑔(𝑥) = ln ( 𝑃𝑖 /(1 – 𝑃𝑖) ) = ln 𝑒 𝑍𝑖 = 𝑍𝑖 = 𝑏1 + 𝑏2𝑋𝑖 

𝑃𝑖 /(1 − 𝑃𝑖 )= 1/( 1 + 𝑒 −𝑍𝑖)*(( 1 + 𝑒 −𝑍𝑖 )/(𝑒 −𝑍𝑖 )= 𝑒 𝑍𝑖  

 

 

Figure 1. An overview of the methodology.
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By taking the natural logarithm of both sides of the 

logistic function, which becomes usable in linear 

regression analysis, a linear structure is obtained: 

𝑔(𝑥) = ln ( 𝑃𝑖 /(1 – 𝑃𝑖) ) = ln 𝑒 𝑍𝑖 = 𝑍𝑖 = 𝑏1 + 𝑏2𝑋𝑖 

Artificial Neural Networks (ANNs)  

ANNs are computer systems designed to automatically 

perform tasks such as generating and discovering new 

knowledge through learning. ANNs can be used for 

tasks like prediction, classification, data association, 

data interpretation, and data filtering. ANNs are 

nonlinear information and data processing systems. 

They consist of processing units called neurons and the 

connections between these neurons.  

The three main components of ANNs are neurons, the 

connections between these neurons, and functions. 

ANNs are made up of layers; the input layer is where 

data enters the network, and hidden layers process the 

data received in the input layer. There can be multiple 

hidden layers. The output layer is where the processed 

data is expressed as output. When a structure has 

multiple hidden layers, deep neural networks are used 

[29]. Figure 2 shows the working principle of the ANN 

model. 

 

Figure 2. A typical ANN modeling workflow. 

An MLP model has three layers: an input layer, hidden 

layers, and an output layer. Each layer can have one or 

more neurons, and all neurons in one layer can 

influence all neurons in the next layer. This relationship 

can be expressed as: 

yk = f ( ∑iwki⋅xi ) 

Where: 

    yk is the output value of neuron k 

    wki is the weight value between input xi and output 

neuron k 

    xi is the input value i 

In ANN, various transfer functions such as linear, log-

sigmoid, and tan-sigmoid can be used to convert input 

values to output values. In our study, we selected the 

ReLU (Rectified Linear Unit) and logistic transfer 

functions to transform the weighted input values into 

output values. 

ReLU activation function 

f(x) = max(0,x) 

This function returns 0 if x is less than 0, otherwise, it 

returns x. 

Logistic activation function 

f(x) = 1 / 1+ 𝑒 -x 

Here, e is the base of the natural logarithm, and x is the 

input value. This function converts the input value into 

an output between 0 and 1, allowing the output to be 

interpreted as a probability. 

In this implementation, the behaviors of the parameters 

listed below have been examined, and based on the 

performance of the proposed model, suitable values for 

these parameters have been selected. Some of these 

parameters were considered together, leading to the 

execution of 61 different experiments. The findings of 

these experiments are detailed in the Results section (in 

Table 3). 

The parameters studied  

Batch size and iteration count (max_iter), Learning rate 

(learning_rate), Weight initialization (random_state), 

Neuron activation function and solver, Neuron count in 

the hidden layer. 

When constructing the artificial neural networks 

model, there is no fixed formula for determining the 

number of hidden layers, neuron count, or activation 

function. Instead, a trial-and-error approach using test 

data is employed to determine the values that yield the 

best results for the model. 

Test models have been created using the Relu and 

Logistic activation functions. Additionally, models 

have been built using the Adam and lbfgs optimizers. It 

is important to avoid setting a high learning rate, as it 

may lead to overfitting in the model. Therefore, through 

necessary testing, a learning rate of 0.001 has been 

selected for the model. 

Generally, lbfgs tends to give optimal results on smaller 

datasets, while Adam is more suitable for larger 

datasets [30]. 
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ReLU is a commonly used activation function, 

especially in deep neural networks. When used with 

lbfgs, ReLU often performs well because its derivative 

is non-zero, which can speed up training and reduce the 

vanishing gradient problem [31]. 

The logistic activation function is commonly used for 

binary classification problems. Using lbfgs with the 

logistic activation function is a good choice for small 

or medium-sized datasets. However, for deep neural 

networks or large datasets, activation functions like 

ReLU might be preferred due to their better 

performance [32, 33]. 

One of the important factors affecting the success of 

artificial neural networks is the selection of the number 

of neurons in each layer. There is no precise 

mathematical formula to determine this number, and it 

is often found through trial and error. Various factors 

should be considered when determining the number of 

neurons in a layer. Increasing or decreasing the number 

of neurons in an artificial neural network can affect the 

model's performance, error rate, and generalization 

ability. For instance, using too many neurons can lead 

to overfitting, where the model fits the training data too 

closely and fails to generalize well to real-world data 

[34]. Conversely, using too few neurons may cause the 

model to underfit, failing to capture the complexity of 

the dataset, which can decrease performance and 

increase computational costs [35]. The number of 

hidden layers and the number of neurons per layer have 

been determined through trial and error. 

The Long Short Term Memory (LSTM) method, a type 

of deep learning technique, has been employed for real-

time defect detection and texture classification on 

fabrics. This method aims to identify defects on fabrics 

using digital images. 

Through a comprehensive review of literature and 

expert opinions, a set of 13 candidate features has been 

identified. The "IsTamir" outcome data serves as the 

target variable. Among the candidate attributes, a 

feature selection process has been conducted.  

The Forward Selection method was employed for 

feature selection. This approach was chosen due to its 

remarkable success in classification tasks. The model 

commences with the most crucial variable concerning 

the dependent variable. Initially, the model 

incorporates solely one variable. Subsequent variables 

are incrementally added to the model. If the inclusion 

of a variable enhances the model's performance, it is 

retained within the model. Employing this process, all 

variables are examined, ultimately shaping the final 

model. List of the features are presented in Table 1. 

Normalization is a technique commonly applied as part 

of data preprocessing in machine learning. Its purpose 

is to transform the values of numerical columns in a 

dataset onto a common scale without distorting the 

inherent differences in value ranges. Not every dataset 

requires normalization for machine learning purposes. 

The normalization process can be used to reduce data 

dimensionality, perform operations at appropriately 

scaled intervals with normalized values, and attain 

more meaningful and interpretable results.  

In literature, various forms of data normalization exist. 

These include but are not limited to methods like 

minimum-maximum (min-max) scaling, decimal 

scaling, z-score normalization, and sigmoid 

normalization [36]. 

Table 2. Identified features. 

Rework (Response variable) 

Fabric quality name (Categorical) 

Raw fabric pattern name (Categorical) 

Color code (Categorical) 

Finished fabric formation type code (Categorical) 

Planned length (Numerical) 

Raw fabric code (Categorical) 

Master recipe name (Categorical) 

Process name (Categorical) 

Machine name (Categorical) 

Operation flow code (Categorical) 

 

Scaling is used to address the magnitude differences 

between various features in a dataset. When features 

have different scales, some may exert a stronger 

influence than others. This imbalance in feature scales 

can distort their equal contribution and potentially 

hinder algorithm performance.  

The scaling process is implemented to compress feature 

values within a specific range. In the case of Logistic 

Regression and Artificial Neural Networks models, 

scaling has been deemed necessary. The 

StandardScaler scaling method from the Python 

sklearn.preprocessing library has been utilized to scale 

the features. 

There are two crucial steps in prediction: first is the 

preparation of the data for prediction, and second is the 

comparison of different predictive models. The criteria 

for comparing models include; accuracy, speed, 

robustness, scalability, and interpretability.  

Fundamental performance indicators employed in 

assessing the performance of Artificial Neural 

Networks and machine learning methods include R2, 

MSE, RMSE, and MAE [37]. 

To compare the models, Accuracy and F1 Score metrics 

were used. 

    Accuracy: The ratio of correctly predicted instances 

to the total instances. 

    Accuracy = (TP + TN) / (TP + TN + FP + FN) 

     TP:True Positive 

     TN:True Negative 

      FP:False Positive 

      FN:False Negative 

    Precision: Indicates how many of the instances 

predicted as positive are actually positive. It measures 

the model's ability to correctly classify the positive 

class. 

    Precision = TP / (TP + FP) 
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    Recall: Indicates how many of the actual positive 

instances are correctly classified. It is the ratio of 

correctly predicted positive instances to all actual 

positive instances. 

    Recall = TP / (TP + FN) 

    F1 Score: The harmonic mean of Precision and 

Recall. 

    F1 Score=2*((Precision*Recall) / (Precision+ Recall)) 

Visualization of Class Distribution: To visualize the 

distribution of the dataset (Figure 3) in Python, the code 

block was used: 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Visualize class distribution 

plt.bar(np.unique(y), np.bincount(y)) 

plt.xlabel('Class') 

plt.ylabel('Number of Samples') 

plt.title('Class Distribution') 

plt.show() 

 

Figure 3. Class distribution. 

Given that the dataset is imbalanced, the F1 Score is a 

more appropriate performance metric to use, as it 

provides a better measure of the model's performance 

on datasets with uneven class distributions. 

 

5. Results 

In this study, Python programming is used to 

implement machine learning algorithms. The process 

begins with handling missing and outlier data. 

Confirmation from the LEO MRP program ensures that 

no missing data is anticipated for the relevant attributes. 

The get_dummy function is used for categorical data 

transformation. The get_dummies function takes each 

category of a categorical variable as a separate column 

and assigns a value of 1 to the rows corresponding to 

that category, and 0 to other rows. This way, each 

category becomes a distinct feature that can be utilized 

by machine learning models. 

Logistic regression implementation 

The logistic regression model was implemented using 

Python, with the following steps: 

Data Loading and Preprocessing: The data was loaded 

from a CSV file and categorical variables were 

converted into dummy variables. The dependent 

variable (IsTamir) was encoded using label encoding. 

Feature Engineering: The independent variables were 

selected and the dataset was split into training and 

testing sets. The data was scaled using StandardScaler. 

Model Training and Prediction: A logistic regression 

model was trained and used to make predictions on the 

test set. 

Evaluation Metrics: Accuracy and F1 Score metrics 

were used to evaluate the model's performance. 

Additionally, a confusion matrix and root mean squared 

error (RMSE) were computed. 

The complete Python code is given in Appendix.  

The accuracy of the logistic regression model is 

92.64%. This means that the model correctly predicts 

the class of 92.64% of the samples in the test dataset. 

While accuracy is a commonly used metric, it may not 

be sufficient for evaluating the performance of models 

on imbalanced datasets. 

The F1 score, which considers both precision and 

recall, is 0.4779. The F1 score is a better metric for 

imbalanced datasets because it takes into account false 

positives and false negatives. A higher F1 score 

indicates better overall performance of the model. 

The confusion matrix provides insight into the model's 

performance across different classes. It reveals that the 

model correctly predicted 1431 samples as true 

positives and 54 samples as true negatives. However, it 

misclassified 36 samples as false positives and 82 

samples as false negatives. 

The RMSE value is 0.2713, reflecting the average 

difference between the actual and predicted values. 

Lower RMSE values indicate better model 

performance. However, in the context of  classification, 

RMSE might not be the most informative metric. 

While the accuracy of the logistic regression model is 

relatively high, the F1 score and confusion matrix 

reveal that the model's performance may be impacted 

by the imbalanced nature of the dataset. It's important 

to consider these results in the context of the dataset 

characteristics and the specific goals of the 

classification task. 

ANNs implementation 

The Python code (in Appendix) implements an 

Artificial Neural Network (ANN) model, starting from 

data preprocessing steps and extending to training the 

model and evaluating its performance. 

The values obtained from the results based on the 

parameters selected during the creation of the Artificial 

Neural Networks models are presented in Table 3 (in 

appendix).  

Table 3 presents the evaluation results of 61 different 

models based on various configurations, including the 

activation function, solver, number of hidden layers, 

and number of neurons. 

Upon examining the results, it's evident that there is a 

wide range of performance across different 

configurations. Some models achieve high accuracy 

and F1 Score values, indicating robust classification 
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performance, while others exhibit lower values, 

suggesting potential areas for improvement. 

These results provide valuable insights into the 

effectiveness of different configurations in training 

artificial neural network models for the given task. 

Further analysis and experimentation may help identify 

optimal configurations for maximizing classification 

performance. 

Comparison of Logistic Regression and Artificial 

Neural Network Results 

Logistic Regression and Artificial Neural Networks 

methods were analyzed in Python. The results were 

compared using the Accuracy metric. Accuracy values 

for multiple Artificial Neural Network models were 

calculated and are presented in Table 3. The accuracy 

and F1 Score obtained from the Logistic Regression 

model were compared with those from the Artificial 

Neural Network model with the highest accuracy. 

For Logistic Regression, the Accuracy is calculated at 

0.90, while for the Artificial Neural Networks (Model 

1), the Accuracy is found to be 0.92. This indicates that 

the Artificial Neural Networks model achieves higher 

accuracy compared to the Logistic Regression model. 

Similarly, the F1 Score performance metric was 

evaluated. For Logistic Regression, the F1 Score is 

0.48, while for the Artificial Neural Networks (Model 

1), it is 0.47. Although there is only a slight difference 

in the F1 Score between the two methods, the Artificial 

Neural Networks model has a small advantage over 

Logistic Regression. 

In conclusion, the Artificial Neural Networks (Model 

1) method achieves higher accuracy compared to 

Logistic Regression, while the F1 Score values are 

similar. These results suggest that, for this specific 

classification problem, the Artificial Neural Networks 

method may be more effective. 

 

6. Managerial insights and practical implications 

The findings of this study can inform strategic planning 

initiatives aimed at reducing rework costs in fabric 

dyeing processes. By leveraging predictive analytics, 

textile companies can proactively identify potential 

rework needs at the planning stage, enabling 

preemptive measures to optimize production processes 

and reduce rework expenses. 

Implementing AI-based algorithms for predicting 

rework needs allows textile companies to optimize 

operational efficiency by streamlining production 

processes and minimizing downtime associated with 

rework activities. This, in turn, enhances overall 

productivity and cost-effectiveness. 

Insights derived from predictive models can facilitate 

informed resource allocation and risk management 

strategies. By identifying high-risk production batches 

or processes prone to rework, companies can allocate 

resources more efficiently and implement targeted 

interventions to mitigate risks and minimize rework 

occurrences. 

Table 3. Different configurations and obtained results. 

Model 

No 

Activation 

function 

Solver Number of 

hidden layers 

Number 

of neurons 

Accuracy F1 Score 

1 Relu Adam 2 3,2 0.92 0.39 

2 Relu Adam 2 3,3 0.92 0.24 

3 Relu Adam 2 3,6 0.91 0.45 

4 Relu Adam 2 6,6 0.91 0.38 

5 Relu Adam 1 6 0.91 0.36 

6 Relu Adam 2 6,5 0.91 0.33 

7 Relu Adam 2 3,4 0.91 0.26 

8 Relu Adam 2 4,7 0.91 0.25 

9 Relu Adam 2 3,5 0.91 0.07 

10 Logistic Adam 2 7,7 0.9 0.47 

11 Logistic Adam 2 6,6 0.9 0.45 

12 Logistic Adam 2 8,8 0.9 0.45 

13 Logistic lbfgs 1 2 0.9 0.45 

14 Logistic Adam 2 5,5 0.9 0.44 

15 Logistic lbfgs 1 7 0.9 0.44 

16 Relu lbfgs 1 4 0.9 0.44 

17 Relu Adam 1 3 0.9 0.43 

18 Logistic Adam 2 7,8 0.9 0.43 

19 Relu lbfgs 2 4,4 0.9 0.42 

20 Relu Adam 4 4 0.9 0.4 

21 Relu Adam 2 4,6 0.9 0.37 

22 Logistic lbfgs 2 5,6 0.9 0.37 

23 Relu Adam 2 4,4 0.9 0.34 
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Table 3. Different configurations and obtained results. (continued) 

Model 

No 

Activation 

function 

Solver Number of 

hidden layers 

Number 

of neurons 

Accuracy F1 Score 

24 Relu Adam 2 5,6 0.9 0.34 

25 Logistic lbfgs 2 4,5 0.9 0.33 

26 Relu Adam 2 4,3 0.9 0.3 

27 Logistic lbfgs 1 5 0.89 0.47 

28 Logistic Adam 3 8,8,8 0.89 0.46 

29 Logistic Adam 2 4,4 0.89 0.44 

30 Logistic Adam 1 6 0.89 0.44 

31 Logistic Adam 1 9 0.89 0.44 

32 Relu Adam 2 2,3 0.89 0.43 

33 Logistic Adam 2 8,9 0.89 0.43 

34 Logistic Adam 2 7,5 0.89 0.42 

35 Logistic lbfgs 2 5,5 0.89 0.39 

36 Logistic Adam 2 8,7 0.88 0.44 

37 Logistic lbfgs 1 9 0.87 0.42 

38 Logistic Adam 2 6,7 0.87 0.41 

39 Logistic lbfgs 2 7,7 0.87 0.37 

40 Logistic lbfgs 2 6,7 0.86 0.34 

41 Logistic lbfgs 2 2,2 0.86 0.31 

42 Logistic lbfgs 1 6 0.85 0.43 

43 Logistic lbfgs 1 11 0.85 0.42 

44 Logistic lbfgs 1 10 0.85 0.41 

45 Logistic lbfgs 1 8 0.85 0.4 

46 Relu Adam 2 6,7 0.85 0.39 

47 Relu Adam 2 6,7 0.85 0.39 

48 Relu lbfgs 2 4,3 0.85 0.39 

49 Logistic Adam 1 1 0.85 0.37 

50 Relu Adam 2 3,7 0.85 0.25 

51 Logistic lbfgs 1 12 0.84 0.4 

52 Relu Adam 2 5,5 0.84 0.38 

53 Logistic lbfgs 1 4 0.84 0.36 

54 Relu lbfgs 1 3 0.83 0.4 

55 Relu lbfgs 2 3,3 0.82 0.37 

56 Relu lbfgs 1 5 0.82 0.37 

57 Relu lbfgs 2 3,3 0.82 0.37 

58 Relu lbfgs 1 2 0.8 0.38 

59 Logistic lbfgs 1 3 0.79 0.33 

60 Relu lbfgs 2 6,6 0.77 0.35 

61 Relu Adam 2 7,7 0.73 0.25 

7. Conclusions and outlook 

The primary objective of this study was to develop an 

algorithm capable of predicting rework needs at the 

planning stage for textile companies with fabric dyeing 

processes, with the goal of minimizing rework costs 

due to faulty productions. Machine Learning methods, 

including Logistic Regression and Artificial Neural 

Networks, were employed to tackle this issue as a 

classification problem. Both Logistic Regression and 

Artificial Neural Networks achieved successful 

outcomes. 

Future studies could develop a more effective method 

for textile companies to predict rework needs. For 

instance, an algorithm could be designed to create 

alternative production routes before engaging in re-

dyeing or repair processes. Additionally, developing a 

model that suggests the use of different chemical 

compositions could significantly reduce rework costs. 

In conclusion, this study takes a pivotal step towards 

solving a significant issue in the textile sector by 

providing a potential solution for predicting the need 

for reprocessing in fabric dyeing processes using AI-

based algorithms. Future efforts could further enhance 

this algorithm, ultimately optimizing production 

processes for textile companies in terms of efficiency 

and cost-effectiveness.  
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Appendices 

 

1. Logistic Regression in Python Code 

import pandas as pd 

import numpy as np 

 

# Data loading 

veriler = pd.read_csv('RW_Data_1.csv') 

print(veriler) 

 

# Converting categorical variables to dummy variables 

df_KumasKaliteAdi = pd.get_dummies(veriler["KumasKaliteAdi"], prefix="Kalite", 

drop_first=True) 

df_KumasDesen = pd.get_dummies(veriler["HamKumasDesenAdi"], prefix="KumasDesen", 

drop_first=True) 

df_UretimPartiNo = pd.get_dummies(veriler["UretimPartiNo"], prefix="PartiNo", 

drop_first=True) 

df_RenkKodu = pd.get_dummies(veriler["RenkKodu"], prefix="RenkKodu", 

drop_first=True) 

df_LotNo = pd.get_dummies(veriler["LotNo"], prefix="LotNo", drop_first=True) 

df_MamulOlusumTipKodu = pd.get_dummies(veriler["MamulOlusumTipKodu"], 

prefix="MamulOlusumTipKodu", drop_first=True) 

df_HamUrunKodu = pd.get_dummies(veriler["HamUrunKodu"], prefix="HamUrunKodu", 

drop_first=True) 
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df_MasterReceteAdi = pd.get_dummies(veriler["MasterReceteAdi"], 

prefix="MasterReceteAdi", drop_first=True) 

df_ProsesAdi = pd.get_dummies(veriler["ProsesAdi"], prefix="ProsesAdi", 

drop_first=True) 

df_IslemAkisKodu = pd.get_dummies(veriler["IslemAkisKodu"], prefix="IslemAkisKodu", 

drop_first=True) 

df_MakinaAdi = pd.get_dummies(veriler["MakinaAdi"], prefix="MakinaAdi", 

drop_first=True) 

 

# Creating a DataFrame for PlanMt 

PlanMt = veriler.iloc[:, 8:9].values 

mt = pd.DataFrame(data=PlanMt, index=range(4855), columns=['PlanMt']) 

 

# Encoding the dependent variable 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() 

IsTamir = le.fit_transform(veriler.iloc[:, 0]) 

tamir = pd.DataFrame(data=IsTamir, index=range(4855), columns=['IsTamir']) 

 

# Merging DataFrames 

sonuc = pd.concat([df_KumasKaliteAdi, df_KumasDesen, df_UretimPartiNo, df_RenkKodu, 

df_LotNo, df_MamulOlusumTipKodu, df_HamUrunKodu, df_MasterReceteAdi, df_ProsesAdi, 

df_IslemAkisKodu, df_MakinaAdi, mt, tamir], axis=1) 

print(sonuc) 

 

# Splitting into independent and dependent variables 

x = sonuc.iloc[:, 0:-1].values  # independent variables 

y = sonuc.iloc[:, -1]           # dependent variable 

 

# Splitting the data into training and testing sets 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, 

random_state=0) 

 

# Scaling the data 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(x_train) 

X_test = sc.transform(x_test) 

 

# Logistic regression 

from sklearn.linear_model import LogisticRegression 

logr = LogisticRegression(random_state=0, max_iter=1000) 

logr.fit(X_train, y_train)  # training the model 

 

# Predictions 

y_pred = logr.predict(X_test) 

print(y_pred) 

print(y_test) 

 

# Evaluation 

from sklearn.metrics import confusion_matrix, mean_squared_error, accuracy_score, 

f1_score 

 

# Confusion matrix 

cm = confusion_matrix(y_test, y_pred) 

print(cm) 

 

# Root mean squared error 

RMSE = np.sqrt(mean_squared_error(y_test, y_pred)) 

print("RMSE:", RMSE) 

 

# Accuracy 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

# F1 Score 

f1 = f1_score(y_test, y_pred) 
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print("F1 Score:", f1) 

 

# Visualization of class distribution 

import matplotlib.pyplot as plt 

plt.bar(np.unique(y), np.bincount(y)) 

plt.xlabel('Class') 

plt.ylabel('Number of Samples') 

plt.title('Class Distribution') 

plt.show() 

 

2. ANN in Python Code 

# -*- coding: utf-8 -*- 

""" 

import pandas as pd 

import numpy as np 

#The CSV file should be located in the same directory as the Python code. 

veriler=pd.read_csv('RW_Data_1.csv') 

print(veriler) 

 

df_KumasKaliteAdi=pd.get_dummies(veriler["KumasKaliteAdi"],prefix="Kalite",drop_fir

st=True) 

#print(df_KumasKaliteAdi) 

 

df_KumasDesen=pd.get_dummies(veriler["HamKumasDesenAdi"],prefix="KumasDesen",drop_f

irst=True) 

#print(df_KumasDesen) 

 

df_UretimPartiNo=pd.get_dummies(veriler["UretimPartiNo"],prefix="PartiNo",drop_firs

t=True) 

#print(df_UretimPartiNo) 

 

df_RenkKodu=pd.get_dummies(veriler["RenkKodu"],prefix="RenkKodu",drop_first=True) 

#print(df_RenkKodu) 

 

df_LotNo=pd.get_dummies(veriler["LotNo"],prefix="LotNo",drop_first=True) 

#print(df_LotNo) 

 

df_MamulOlusumTipKodu=pd.get_dummies(veriler["MamulOlusumTipKodu"],prefix="MamulOlu

sumTipKodu",drop_first=True) 

#print(df_MamulOlusumTipKodu) 

       

df_HamUrunKodu=pd.get_dummies(veriler["HamUrunKodu"],prefix="HamUrunKodu",drop_firs

t=True) 

#print(df_HamUrunKodu) 

 

df_MasterReceteAdi=pd.get_dummies(veriler["MasterReceteAdi"],prefix="MasterReceteAd

i",drop_first=True) 

#print(df_MasterReceteAdi) 

 

df_ProsesAdi=pd.get_dummies(veriler["ProsesAdi"],prefix="ProsesAdi",drop_first=True

) 

#print(df_ProsesAdi) 

 

df_IslemAkisKodu=pd.get_dummies(veriler["IslemAkisKodu"],prefix="IslemAkisKodu",dro

p_first=True) 

#print(df_IslemAkisKodu) 

 

df_MakinaAdi=pd.get_dummies(veriler["MakinaAdi"],prefix="MakinaAdi",drop_first=True

) 

#print(df_MakinaAdi) 

 

PlanMt=veriler.iloc[:,8:9].values 

mt=pd.DataFrame(data=PlanMt,index=range(4855),columns=['PlanMt']) 

 

IsTamir=veriler.iloc[:,0:1].values 

tamir=pd.DataFrame(data=IsTamir,index=range(4855),columns=['IsTamir']) 
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from sklearn import preprocessing 

 

# DataFrame merging is used to create a new DataFrame by combining multiple 

DataFrames. 

sonuc=pd.concat([df_KumasKaliteAdi,df_KumasDesen,df_UretimPartiNo,df_RenkKodu,df_Lo

tNo, df_MamulOlusumTipKodu,df_HamUrunKodu,df_MasterReceteAdi,df_ProsesAdi, 

df_IslemAkisKodu, df_MakinaAdi,mt,tamir],axis=1) 

#print(sonuc) 

x=sonuc.iloc[:,0:-1].values #independent variables 

y=sonuc.iloc[:,-1] #dependent variables 

#print(x) 

#print(y) 

 

# splitting the data into training and testing sets 

from sklearn.model_selection import train_test_split 

 

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=0) 

 

# scaling the data 

from sklearn.preprocessing import StandardScaler 

sc=StandardScaler() 

X_train=sc.fit_transform(x_train) #eğitim uyguluyor 

X_test=sc.transform(x_test) 

 

#Let's create our artificial neural network model and configure our hidden layer. 

from sklearn.neural_network import MLPClassifier 

#iki katman ve her katman 6 nörondan oluşacak şekilde model kurulmuştur 

mlpcl = MLPClassifier(hidden_layer_sizes=(3,3),activation='relu', solver='lbfgs', 

max_iter=1000,random_state=42,learning_rate='constant', learning_rate_init=0.001) 

 

#model = MLPClassifier(hidden_layer_sizes=(64, 64), activation='relu', 

solver='adam', max_iter=1000, random_state=42) 

mlpcl.fit(X_train, y_train.values.ravel()) 

 

# Let's make predictions on our test data. 

predictions = mlpcl.predict(X_test) 

print(predictions) 

 

# Let's evaluate the performance of our predictions - our algorithm. 

from sklearn.metrics import classification_report, confusion_matrix 

print(confusion_matrix(y_test,predictions)) 

print(classification_report(y_test,predictions)) 

 

from sklearn.metrics import accuracy_score 

# Calculate accuracy using your predictions and the actual labels. 

accuracy = accuracy_score(y_test, predictions) 

 

# print accuracy 

print("Accuracy:", accuracy) 

 

from sklearn.metrics import f1_score 

# calculate accuracy 

f1 = f1_score(y_test, predictions, pos_label='T') 

print("F1 Score:", f1) 
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1. Introduction

Nonlinear differential equations are powerful
mathematical tools used to model real-world
problems arising in several fields of study [1, 2].
The analysis of their solutions is of great impor-
tance, as they are for comparison with the col-
lected data [3]. It is worth noting that, most of
the time, obtaining their exact solutions is some-
times impossible. Researchers have therefore de-
veloped different approaches to help guarantee the
existence and uniqueness of these solutions [4–7].
We note that several researchers have provided
different conditions in the case of uniqueness in
the last decades. For existence, many iterative
approaches have been suggested, for example, Pi-
card, Toneli, and others. For uniqueness, Witte
provided several conditions that can be tested to
conclude that a given nonlinear ordinary differ-
ential equation with a classical derivative has a

unique solution. Several other researchers, like
Caratheordory, Nagumo, and others, have also
provided some important conditions [8, 9]. While
several works have been published for ordinary
differential equations with integer-order deriva-
tives, much attention has not been devoted to
classical and fractional nonlinear ordinary differ-
ential equations in fractal calculus [10, 11]. Frac-
tional calculus and fractal calculus are intercon-
nected fields, primarily through their shared focus
on non-integer dimensions and scales. Fractional
calculus extends the concept of differentiation
and integration to non-integer orders, allowing
for more flexible mathematical modeling of com-
plex systems. A key connection is that fractional
calculus provides the mathematical tools needed
to describe the dynamics of processes on fractal
structures. For example, the study by Metzler
and Klafter [12] titled ”The random walk’s guide

*Corresponding Author
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to anomalous diffusion: a fractional dynamics ap-
proach” discusses how fractional calculus can be
applied to model diffusion processes on fractal me-
dia . Whereas these equations are suitable for the
depiction of several complex real-world problems
that cannot be modeled using classical ordinary
differential equations. In this paper, we shall con-
sider four classes of nonlinear ordinary differential
equations, including those with classical differen-
tiation in fractal calculus, those with power law,
exponential decay, and generalized Mittag-Leffler
kernels in fractal calculus. For each case, we will
find conditions of uniqueness based on the frame-
work of Witte [9].

2. Preliminaries

We shall provide some definitions that will be
used in this paper.

df(t)
dtβ

= lim
t1→t

f(t1) − f(t)
tβ
1 − tβ

, β > 0, (1)

which the fractal derivative of the function f with
respect to a fractal measure t with scaling indice
β [11]. We note that if f is differentiable then,

df(t)
dtβ

= f ′(t)
βtβ−1 . (2)

Fractal-fractional derivatives of the function f
with power law, exponential decay and Mittag-
Leffler kernel are given below respectively [10].

F F P
t0 Dα,β

t f(t) = d
dtβ

1
Γ(1−α)

t∫
t0

f(τ)(t − τ)−αdτ,

(3)

F F E
t0 Dα,β

t f(t) = d
dtβ

1
(1−α)

t∫
t0

f(τ) exp
(

−α
1−α(t − τ)

)
dτ,

(4)

F F M
t0 Dα,β

t f(t) = d
dtβ

1
(1−α)

t∫
t0

f(τ)Eα

(
−α
1−α(t − τ)α

)
dτ,

(5)

where (α, β) ∈ (0, 1].
Their respective integrals are given as below:

F F P
t0 Jα,β

t f(t) = β

Γ (α)

t∫
t0

(t − τ)α−1τβ−1f(τ)dτ,

(6)

F F E
t0 Jα,β

t f(t) = (1 − α)βtβ−1f(t) + αβ

t∫
t0

τβ−1f(τ)dτ,

(7)
F F M
t0 Dα,β

t f(t) = (1 − α)βtβ−1f(t) (8)

+ αβ

Γ (α)

t∫
t0

(t − τ)α−1τβ−1f(τ)dτ.

We note that, when β = 1, we recover all the
fractional differential and integral operators.

3. The Witte’s uniqueness conditions
for classical fractal ordinary
differential equations

In this section, we are interested in the following
general fractal differential equation.

{ F
t0Dα

t y(t) = f(t, y(t)), t > t0.
y(t0) = y0,

(9)

The aim is to establish uniqueness conditions
based on the Witte’s uniqueness.

Theorem 1. Let assume that f(t, y) is contin-
uous in S+ = {(t, y) | t0 < t ≤ a, |y| < ∞} and
satisfies
i) ∀(t, y), (t, y) ∈ S+

|f(t, y) − f(t, y)| ≤ h(t) |y − y| , (10)

ii)|f(t, y)| ≤ φ(t)h(t) exp

 t∫
a

h(τ)dτ

 in S+,

where h(t) > 0 is continuous in [t0, a] and φ(t) is
continuous in [t0, a] and φ(t0) = 0.

Then the considered equation has almost one so-
lution.

Proof. To proof the above, we shall first provide
the proof of the following Lemma. □

Lemma 1. Let Ω(t) be a nonnegative continuous
function on [t0, a] and let
i) h(t) > 0 be continuous functions in [t0, a],
ii) There exists a function H(t) in [t0, a] such
that H ′(t) = h(t) for almost all t ∈ [t0, a] and
lim

t→t+
0

H(t) exists, it can be finite,

iii) Ω(t) ≤
t∫

t0

h(τ)Ω(τ)dτ, t ∈ [t0, a],

iv) Ω(t) = o (exp (tαH (t))) as t → t+
0 . Then

Ω(t) = 0.
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Proof. Let the mentioned conditions hold, then

Ψ(t) = α

t∫
t0

τα−1h(τ)Ω(τ)dτ. (11)

Thank to the hypothesis of the Lemma Ψ(t) exists
and is continuous on [t0, a]. Then

F
t0Dα

t Ψ(t) = 1
αtα−1

d

dt

α

t∫
t0

τα−1h(τ)Ω(τ)dτ

 ,

(12)

= 1
αtα−1

[
αtα−1h(t)Ω(t)

]
,

= h(t)Ω(t) ≤ h(t)Ψ(t).
We define

F (t) = exp (−tαH(t)) Ψ(t). (13)
F
t0Dα

t F (t) (14)

= 1
αtα−1

d

dt

t∫
t0

F (τ)dτ = 1
αtα−1 F ′(t),

= 1
αtα−1

×

 Ψ′(t) exp (−tαH(t))

−Ψ(t)
(

−αtα−1H(t)
−tαh(t)

)
exp(−tαH(t))

 ,

= 1
αtα−1 exp(−tαH(t))

×

 Ψ′(t)

−Ψ(t)
[

αtα−1H(t)
−tαh(t)

]  ,

≤ 1
αtα−1 exp(−tαH(t)) h(t)Ψ(t)αtα−1

−Ψ(t)
[

αtα−1H(t)
−tαh(t)

]  ,

≤ Ψ(t) exp(−tαH(t))
αtα−1

[
αtα−1h(t)

−αtα−1H(t) − tαh(t)

]
,

≤ Ψ(t) exp(−tαH(t))
αtα−1

[
tαh(t)

−αtα−1H(t) − tαh(t)

]
,

≤ −H(t)Ψ(t) exp(−tαH(t)),
≤ −H(t)F (t) ≤ 0.

We can say that ∀t ∈ [t0, a], Ψ(t) exp(−tαH(t))
is decreasing. We now choose ε > 0 with t small
enough

Ψ(t) exp(−tαH(t)) (15)

= exp(−tαH(t))
t∫

t0

ατα−1h (τ) Ω(τ)dτ,

≤ ε exp(−tαH(t))α
t∫

t0

τα−1h (τ) exp(ταH(τ))dτ,

≤ ε exp(−tαH(t))α
t∫

t0

ταh (τ) exp(ταH(τ))dτ,

≤ ε exp(−tαH(t))α
t∫

t0

(
ταh (τ)

+ατα−1H (τ)

)
× exp(ταH(τ))dτ,

= εα exp(−tαH(t)) exp(tαH(t)),
= εα.

lim
t→t+

0

exp(−tαH(t))Ψ(t) = 0, (16)

thus
exp(−tαH(t))Ψ(t) ≤ 0 for t > 0, (17)

this also implies that

α

t∫
t0

τα−1h(τ)Ω(τ)dτ ≤ 0. (18)

Therefore we should have
Ω(t) = 0. (19)

□

The new uniqueness criteria will be presented be-
low. This is more general that the previous con-
dition of the theorem.

Theorem 2. Let f(t, y) be continuous in S+ in
addition to the hypothesis in theorem 1, we have

|f(t, y) − f(t, y)| = o (exp(tαH(t))) , (20)
as t → t+

0 uniformly with respect to y, y ∈ [−λ, λ],
λ > 0 arbitrary with h(t) and H(t) the same like
in Lemma 1. Then the considered equation has
almost one solution in [t0, a].

Proof. Let y(t) and y(t) be two different solu-
tions of one equation

y(t) = y(t0) + α

t∫
t0

τα−1f(τ, y(τ))dτ,

(21)

|y(t) − y(t)| ≤ α

t∫
t0

τα−1 |f(τ, y(τ)) − f(τ, y(τ))| dτ,

≤ α

t∫
t0

τα−1h(τ) |y − y| dτ,
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≤ α

t∫
t0

(
τα−1H(τ) + ταh(τ)

)
exp (ταH(τ)) dτ,

≤ ε exp (tαH(t)) .

From the Lemma, the result is obtained. □

Corollary 1. Let f satisfies the following con-
ditions; ∀(t, y), (t, y) ∈ S+, β ∈ (1, 2] and α ∈
(0, 1] :
i) (f(t, y) − f(t, y)) (y − y)β−1 ≤ β

α th(t) (y − y)β ,

ii) f(t, y) − f(t, y) = o (exp(tαH(t))) ,

as t → t+
0 uniformly with respect to y, y ∈

[−δ, δ] , δ > 0 arbitrary. Then the considered
equation has almost one solution.

Proof. Let y and y be different solutions in S+.

Let put Φ(t) = (y(t) − y(t))β then we have that,

F
t0Dα

t Φ(t) = 1
αtα−1

d

dt
[Φ(t)] ,

= 1
αtα−1

(
β (y(t) − y(t))

)′
(y(t) − y(t))β−1 ,

= β
(

F
t0Dα

t y(t) −F
t0 Dα

t y(t)
)

(y(t) − y(t))β−1 ,

= β (f (t, y(t)) − f(t, y(t))) (y(t) − y(t))β−1 .

(22)

By the hypothesis (i), we have that

F
t0Dα

t Φ(t) ≤ βh(t) (y(t) − y(t))β , (23)

= β

α
th(t)Φ(t).

Therefore
F
t0Dα

t Φ(t) ≤ β

α
h(t)Φ(t)t. (24)

Note that
F
t0Dα

t

(
Φ(t) exp

(
−βtαH(t)

))

= 1
αtα−1


Φ′(t) exp

(
−βtαH(t)

)
+Φ(t)

[
−βtαh(t)

−βαtα−1H(t)

]
exp

(
−βtαH(t)

)
 ,

= exp
(
−βtαH(t)

)
F
t0Dα

t Φ(t)

−Φ(t)
(

β
α th(t)

+βH(t)

)  ,

≤ exp
(
−βtαh(t)

) [ F
t0Dα

t Φ(t)
−β t

αh(t)Φ(t)

]
,

≤ 0.

(25)

Since
F
t0Dα

t Φ(t) − β
t

α
h(t)Φ(t) ≤ 0, (26)

F
t0Dα

t

(
exp

(
−βtαH(t)

)
Φ(t)

)
≤ 0. (27)

The conclusion is that the function
exp

(
−βtα

)
Φ(t) is non increasing for almost

∀t ∈ [t0, a] . On the other hand we have that

exp
(
−βtαH(t)

)
Φ(t) (28)

= exp
(
−βtαH(t)

)
(y(t) − y(t))β ,

= exp
(
−βtαH(t)

)

×

α

t∫
t0

τα−1 (f (τ, y) − f (τ, y)) dτ

β

.

However by hypothesis (ii), we can find ε > 0
small enough such that

exp
(
−βtαH(t)

)
Φ(t) (29)

≤ exp
(
−βtαH(t)

)
αβ

×

 t∫
t0

εβ

(
ατα−1H(τ)
+ταh (τ)

)
exp

(
ταβH(τ)

)
dτ

β

,

≤ exp
(
−βtαH(t)

)
αβεβ

×

 t∫
t0

exp
(
ταβH(τ)

)′
dτ

 ,

≤ exp
(
−βtαH(t)

)
αβεβ exp

(
tαβH(t)

)
,

= αβεβ = (αε)β ,

and then

lim
t→t+

0

exp
(
−βtαH(t)

)
Φ(t) = 0. (30)

Therefore Φ(t) = 0 so we get

y(t) = y(t), (31)

which completes the proof. □

We shall now evaluation the above condition
in the case of the fractal fractional with power
law.This will be acheived in the next section

4. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with
exponential kernel

We shall consider in this section, the following
fractal-fractional differential equation
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{
F F E
t0 Dα,β

t y(t) = f(t, y(t)), if t > t0,
y(t0) = y0, if t = t0.

(32)

that under the witte’s condition α, β ∈ (0, 1].
The aim of this section is to show that under the
Witte’s condition equation has a unique solution
if such solution exists in [t0, a] . We will start our
investigation on with the following lemma.

Lemma 2. Let f(t, y(t)), h(t) and H(t) satisfy
the properties presented before

i) Φ(t) ≤ (1 − α)βtβ−1h(t)Φ(t) +

αβ

t∫
t0

τβ−1h (τ) Φ(τ)dτ,

ii) Φ(t) = o (exp (H(t))) as t → t+
0 , then Φ(t) = 0

in [t0, a] .

Proof. Let set
Ω(t) = (1 − α)βh(t)tβ−1Φ(t) (33)

+ αβ

t∫
t0

τβ−1h (τ) Φ(τ)dτ.

From the hypothesis, we have that Ω(t) exists and
is continuous in [t0, a] . We recall that

F F E
t0 Dα,β

t

(
F F E
t0 Jα

t u(t)
)

= u(t). (34)

Thus applying F F E
t0 Dα,β

t on both sides yields

F F E
t0 Dα,β

t Ω(t) = h(t)Φ(t) ≤ h(t)Ω(t). (35)

Now, we shall find the sign of the
F F E
t0 Dα,β

t [Ω(t) exp (−H(t))] (36)

= 1
βtβ−1

CF R
t0 Dα

t [Ω(t) exp(−H(t))] ,

= 1
βtβ−1

CF
t0 Dα

t [Ω(t) exp(−H(t))] .

Since Ω(t0) = 0, therefore, we have that
CF R
t0 Dα

t Ω(t) =CF
t0 Dα

t Ω(t). (37)

Therefore
F F E
t0 Dα,β

t [Ω(t) exp (−H(t))]

= 1
βtβ−1


1

1−α

t∫
t0

exp
(

−α
1−α(t − τ)

)
×
[

Ω′ (τ) exp(−H(τ))
−h (τ) Ω (τ) exp(−H(τ))

]
 dτ,

= 1
βtβ−1

 1
1−α

t∫
t0

exp
(

−α
1−α(t − τ)

)
× [Ω′ (τ) − h (τ) Ω (τ)] exp(−H(τ))

 dτ,

≤ 0.

(38)
In reference [9] it was shown that under the con-
dition prescribed here

Ω′ (t) − h (t) Ω (t) ≤ 0, (39)

therefore

F F E
t0 Dα,β

t [exp (−H(t)) Ω(t)] ≤ 0. (40)

Since by the hypothesis the integral is positive
therefore

F F E
t0 Dα,β

t [exp (−H(t)) Ω(t)] ≤ 0, (41)

almost every where in [t0, a] .

exp (−H(t)) Ω(t)

= exp (−H(t))


(1 − α) βh (t) Φ (t) tβ−1

+βα

t∫
t0

τβ−1h (τ) Φ(τ)dτ

 .

For a sufficient small t, we choose ε > 0 such that
in the view of (iv), we get

Ω(t) exp (−H(t)) ≤ exp (−H(t))

×


(1 − α) βh (t) tβ−1 exp (H(t)) ε′

+βαε′
t∫

t0

τβ−1h (τ) exp (H(τ)) dτ

 ,

≤ exp (−H(t))

×
[

(1 − α) βh (t) (t0)β−1 exp (H(t)) ε′

+ (t0)β−1
βαε′ exp (H(t))

]
,

≤ (1 − α) βh (t) (t0)β−1
ε′ + (t0)β−1

βαε′.

Using the continuity of h (t) in [t0, a] . ∃t1 ∈ [t0, a]
such that ∀t ∈ [t0, a]

h (t1) ≥ h (t) , (42)
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therefore
exp (−H(t)) Ω(t) ≤ (t0)β−1

β
(
h (t1) ε′ (1 − α) + αε′) ,

≤ µε′ = µ

µ
ε = ε.

(43)

where
ε′ = ε

µ
= ε

(t0)β−1
β (h (t1) (1 − α) + αβ)

. (44)

Therefore

Φ(t) = 0. (45)
□

Theorem 3. Let f(t, y) be continuous in S+ in
addition to Theorem 2 and Lemma 2 we have

∀ε′ > 0,

ε′ = ε

(1 − α) βh (t) (t0)β−1 + (t0)β−1
βα

. (46)

Then the initial value problem (32) has almost one
solution.

Proof. Let y(t) and y(t) be two different solu-
tions of our equation, then
|Φ(t)| = |y(t) − y(t)| ≤ (1 − α)βtβ−1 |f(t, y(t)) − f(t, y(t))|

+ αβ

t∫
t0

τβ−1 |f(τ, y(τ)) − f(τ, y(τ))| dτ,

≤ (1 − α)βtβ−1h (t) Φ (t)

+ αβ

t∫
t0

τβ−1h (τ) Φ(τ)dτ,

≤ (1 − α) βh (t) (t0)β−1
ε′ exp (H(t))

+ (t0)β−1
βαε′ exp (H(t)) ,

≤
(

(1 − α) βh (t) (t0)β−1

+ (t0)β−1
βα

)
ε′ exp (H(t)) ,

≤ µε′ exp (H(t)) = ε exp (H(t)) .

(47)

□

Theorem 4. Let f(t, y) satisfies all the condition
described in Theorem 3.

Proof. Let y(t) and y(t) be two different solution
of equation (32). We set as before

Ψ(t) = (y − y)β . (48)

We have that Ψ(t0) = 0, thus
F F E
t0 Dα,β

t Ψ(t) (49)

= 1
βtβ−1

CF R
t0 Dα

t Ψ(t) = 1
βtβ−1

CF
t0 Dα

t Ψ(t),

= 1
βtβ−1

1
1 − α

t∫
t0

Ψ′(τ) exp
( −α

1 − α
(t − τ)

)
dτ,

= 1
βtβ−1

1
1 − α

t∫
t0

[
β (y − y)′ (y − y)β−1

]

× exp
( −α

1 − α
(t − τ)

)
dτ,

≤ βδ
[

F F E
t0 Dα,β

t y −F F E
t0 Dα,β

t y
]

,

≤ βδ |f(t, y(t)) − f(t, y(t))| ,

≤ βδh(t)Ψ(t),
here

δ =


max

t∈[t0,a]
|y − y|β−1 , if y′ − y′ > 0,

min
t∈[t0,a]

|y − y|β−1 , if y′ − y′ < 0.

In the view of the first hypothesis. Thus
F F E
t0 Dα,β

t Ψ(t) ≤ ∆Ψ(t), (50)

almost every where in [t0, a] .

F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
(51)

= 1
(1 − α)βtβ−1

d

dt

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

× exp
(
−βH(τ)

)
Ψ(τ)dτ,

= 1
(1 − α)βtβ−1

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

×
(
Ψ(τ) exp

(
−βH(τ)

))′
dτ

− 1
βtβ−1

1
1 − α

Ψ(t0) exp
(
−βH(t0)

)
exp

( −α

1 − α
t

)
.

But

Ψ(t0) = 0, (52)

therefore
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F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
(53)

= 1
(1 − α)βtβ−1

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

×
(
exp

(
−βH(τ)

)
Ψ(τ)

)′
dτ,

= 1
(1 − α)βtβ−1

t∫
t0

exp
(

− α

1 − α
(t − τ)

)

×

 Ψ′(τ) exp
(
−βH(τ)

)
−βH(τ) exp

(
−βH(τ)

)
Ψ(τ)

 dτ.

In reference [9], it was shown that

Ψ′(t) exp
(
−βH(t)

)
−βH(t) exp

(
−βH(t)

)
Ψ(t) < 0.

(54)
Therefore

F F E
t0 Dα,β

t

[
Ψ(t) exp

(
−βH(t)

)]
≤ 0.

F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
(55)

= 1
βtβ−1

CF R
t0 Dα

t

[
exp

(
−βH(t)

)
Ψ(t)

]
,

= 1
βtβ−1

CF
t0 Dα

t

[
exp

(
−βH(t)

)
Ψ(t)

]
,

= 1
βtβ−1

1
1 − α

t∫
t0

exp
( −α

1 − α
(t − τ)

)

×

 −Ψ′(τ)β exp
(
−βH(τ)

)
−βh(τ) exp

(
−βH(τ)

)
Ψ(τ)

 dτ,

= 1
βtβ−1

1
1 − α

t∫
t0

exp
( −α

1 − α
(t − τ)

)

×
[[

Ψ′(τ) + h(τ)Ψ(τ)
]
exp

(
−βH(τ)

)]
dτ,

= 1
βtβ

1
1 − α

t∫
t0

exp
( −α

1 − α
(t − τ)

)

×
[[

Ψ′(τ) − h(τ)Ψ(τ)
]
exp

(
−βH(τ)

)]
dτ,

≤ 0.

Therefore, we have

F F E
t0 Dα,β

t

[
exp

(
−βH(t)

)
Ψ(t)

]
< 0. (56)

Following the routine presented earlier we shall
have for ε′

exp
(
−βH(t)

)
Ψ(t)

= exp
(
−βH(t)

)
(y(t) − y(t))β ,

= exp
(
−βH(t)

)
(1 − α)βtβ−1 (f(t, y(t)) − f(t, y(t)))

+αβ

t∫
t0

τβ−1 (f(τ, y(τ)) − f(τ, y(τ))) dτ


β

,

≤ exp
(
−βH(t)

)
(1 − α)βtβ−1ε′ exp (H(t)) h(t)

+αβ

t∫
t0

h(τ)τβ−1ε′ exp (H(τ)) dτ


β

,

≤ exp
(
−βH(t)

)
(1 − α)β (t0)β−1

ε′ exp (H(t)) h(t)

+ (t0)β−1
αβε′

t∫
t0

h(τ) exp (H(τ)) dτ


β

,

≤ exp
(
−βH(t)

)( (1 − α)β (t0)β−1
ε′ exp (H(t)) h(t)

+ (t0)β−1
αβε′ exp (H(t))

)β

,

≤ exp
(
−βH(t)

)( (1 − α)β (t0)β−1
ε′ exp (H(t)) h(t1)

+ (t0)β−1
αβε′ exp (H(t))

)β

,

≤ exp
(
−βH(t)

)
exp (βH(t))

(
ε′)β ((1 − α)β (t0)β−1 + (t0)β−1

αβ
)β

,

≤
(
ε′)β µβ, µ = ((1 − α)β + αβ) (t0)β−1

.

(57)
We choose

ε′ = ε

µ
, (58)

such that

exp
(
−βH(t)

)
Ψ(t) ≤ ε2. (59)

Therefore

lim
t→0+

exp
(
−βH(t)

)
Ψ(t) = 0. (60)

So we conclude that

Ψ(t) = 0 (61)
⇒ y(t) = y(t),

which concludes the proof. □

5. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with
power-law kernel

In this section, we shall consider the following dif-
ferential equation

{
F F P
t0 Dα,β

t y(t) = f(t, y(t)), if t > t0,
y(t0) = y0, if t = t0.

(62)

We aim to show that if the solution
of the above equation exists in S+ =
{(t, y) | t0 < t ≤ a, |y| < ∞}, α ∈ (0, 1], β ∈
(0, 1] then it is unique.
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Lemma 3. Let Φ(t) be a non negative continuous
in (t0, a] such that Φ(t0) = 0. Let

i) h(t) > 0 be continuous function in (t0, a],

ii) We can find a function H(t) in (t0, a] such
that H ′(t) = h(t) for almost all t ∈ (t0, a] and
lim

t→t+
0

H(t) exists,

iii) Φ(t) ≤ β
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

∀t ∈ (t0, a] and

iv) Φ(t) = o (exp(H(t))) as t → t+
0 . Then

Φ(t) = 0, (63)
in (t0, a].

Proof. Let

Ω(t) = β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ. (64)

The existence and the continuty of the func-
tion Ω(t) is assumed since the hypothesis of the
Lemma. Therefore we have that

F F P
t0 Dα,β

t Ω(t) = h(t)Φ(t) ≤ h(t)Φ(t). (65)

We note that

F F P
t0 Dα,β

t Ω(t)

= β

Γ (α)
F F P
t0 Dα,β

t

 t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ

 ,

= β

Γ (α) βtβ−1
d

dt

1
Γ (1 − α)

×

 t∫
t0

τβ−1 (t − τ)−α

 τ∫
t0

lβ−1 (τ − l)α−1 h(l)Φ(l)dl

 dτ

 ,

= β

βtβ−1
RL
t0 Dα

t

[
RL
t0 Jα

t

(
tβ−1h(t)Φ(t)

)]
,

= βtβ−1h(t)Φ(t)
βtβ−1 ,

= h(t)Φ(t).
(66)

We recall that Ω(t0) = 0, then

RL
t0 Dα

t Ω(t) =C
t0 Dα

t Ω(t). (67)

F F P
t0 Dα,β

t [exp(−H(t))Ω(t)]

= 1
βtβ−1

RL
t0 Dα

t [exp(−H(t))Ω(t)] ,

= 1
βtβ−1

C
t0Dα

t [exp(−H(t))Ω(t)] ,

= 1
βtβ

1
Γ (1 − α)

t∫
t0

(t − τ)−α
[

Ω′(τ) exp(−H(τ))
−h(τ)Ω(τ) exp(−H(τ))

]
dτ,

= 1
βtβ

1
Γ (1 − α)

t∫
t0

(t − τ)−α exp(−H(τ))
[
Ω′(τ) − h(τ)Ω(τ)

]
dτ,

(68)
We have due to reference [9] that

Ω′(τ) − h(τ)Ω(τ) ≤ 0. (69)
Therefore

F F P
t0 Dα,β

t [exp(−H(t))Ω(t)] ≤ 0. (70)
We can now have for a small t

exp(−H(t))Ω(t)

= exp(−H(t)) β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ exp(−H(t))β
Γ (α)

t∫
t0

τβ (t − τ)α h(τ)Φ(τ)dτ,

≤ exp(−H(t))βaβ+α

Γ (α)

t∫
t0

h(τ)Φ(τ)dτ.

(71)
By hypothesis (iv), we have

exp(−H(t))Ω(t) ≤ exp(−H(τ))βaβ+α

Γ (α) ε exp
(

H(τ) × Γ (α)
βaβ+α

)
,

≤ ε.

(72)

lim
t→0+

exp(−H(t))Ω(t) = 0. (73)

This leads to

exp(−H(t))Ω(t) ≤ 0, ∀t > t0, (74)
which implies

β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ ≤ 0, (75)

which is a contradiction therefore

Φ(t) = 0. (76)
□
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Theorem 5. Let f be continuous in
S+ = {(t, y) | t0 < t ≤ a, |y| < ∞} such that
∀(t, y), (t, y) ∈ S+

i)|f(t, y) − f(t, y)| ≤ h(t) |y − y| ,

ii)f(t, y) − f(t, y) = o (exp(H(t))) ,

as t → t+
0 uniformly with respect to y, y ∈ [−δ, δ],

δ > 0 arbitrary, where h(t) = H ′(t) are the same
as in above. Then the considered equation has al-
most one solution.

Proof. Let y(t) and y(t) be two different solu-
tions, we have that

|y(t) − y(t)| ≤ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
∣∣∣∣ f (τ, y(τ))

−f (τ, y(τ))

∣∣∣∣ dτ,

≤ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h (τ) |y − y| dτ,

≤ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α h (τ) |y − y| dτ.

(77)
In the view of (ii), we have

|y(t) − y(t)| ≤ ε
βΓ (α)

βaβ+αΓ (α)

t∫
t0

aβ+αh (τ) exp(H(τ))dτ,

≤ ε exp(H(t)).
(78)

The result of the previous lemma leads to

y(t) = y(t). (79)

□

Theorem 6. Let f be continuous in S+ =
{(t, y) | t0 < t ≤ a, |y| < ∞} such that β ∈ (1, 2],
α, β ∈ (0, 1] ,∀(t, y), (t, y) ∈ S+, we have

i) (f(t, y) − f(t, y)) (y − y) ≤ h(t) (y − y)β ,

ii) f(t, y) − f(t, y) = o (h(t) exp (H(t))) ,

uniformly with respect to y, y ∈ [−δ, δ] , δ > 0
arbitrary then

y(t) = y(t). (80)

Proof. Let y and y be two solutions, we put
Φ(t) = (y(t) − y(t))β . We have that at t = t0,
Φ(t0) = 0 initial condition then we will have that

C
t0Dα

t Φ(t) = RL
t0 Dα

t Φ(t). (81)

However,

F F P
t0 Dα,β

t Φ(t)

= 1
βtβ−1

RL
t0 Dα

t Φ(t) = 1
βtβ−1

C
t0Dα

t Φ(t),

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α Φ′(τ)dτ,

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α
[
β (y − y)′ (y − y)β−1

]
dτ,

= 1
βtβ−1


1

Γ(1−α)

t∫
t0

β (y)′ (y − y)β−1 (t − τ)−α dτ

− 1
Γ(1−α)

t∫
t0

βy′ (y − y)β−1 (t − τ)−α dτ


,

≤ βΛ
(

F F P
t0 Dα,β

t y′ −F F P
t0 Dα,β

t y
)

,

≤ βΛ |f(t, y(t)) − f(t, y(t))| ,

≤ βΛh(t) (y(t) − y(t))β .

(82)
here

Λ =


max

t∈[t0,a]
|y − y|β−1 , if y′ − y′ > 0,

min
t∈[t0,a]

|y − y|β−1 , if y′ − y′ < 0.

By the hypothesis (i), thus

F F P
t0 Dα,β

t Φ(t) ≤ βΛh(t)Φ(t), (83)
≤ βΛh(t)Φ(t).

F F P
t0 Dα,β

t Φ(t) − βΛh(t)Φ(t) ≤ 0. (84)
F F P
t0 Dα,β

t

[
exp(−βH(t))Φ(t)

]
= 1

βtβ−1
RL
t0 Dα

t

[
exp(−βH(t))Φ(t)

]
,

= 1
βtβ−1

C
t0Dα

t

[
exp(−βH(t))Φ(t)

]
,

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α
(
exp(−βH(τ))Φ(τ)

)′
dτ,

= 1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α

[
−βh(τ)Φ(τ)

−β (y − y)′ (y − y)β−1 H(τ)

]
dτ,

= −1
βtβ−1

1
Γ (1 − α)

t∫
t0

(t − τ)−α

[
βh(τ)Φ(τ)

+β (y − y)′ (y − y)β−1 H(τ)

]
dτ,

≤ 0,

(85)
for almost all t ∈ [0, a]. This shows that
exp(−βH(t))Φ(t) is non increasing for a small t.

exp(−βH(t))Φ(t) = exp(−βH(t)) (y − y)β ,

= exp(−βH(t))

×

 β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1
∣∣∣∣ f (τ, y(τ))

−f (τ, y(τ))

∣∣∣∣ dτ


β

.

(86)
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In the view of the second hypothesis, we will have
that
exp(−βH(t))Φ(t)

≤
(

β

Γ (α)
Γ (α) aβ+α

βaβ+α

)β

εβ exp(βH(t)) exp(−βH(t)),

= εβ.

(87)
Therefore

exp(−βH(t))Φ(t) ≤ εβ, (88)
lim

t→0+
exp(−βH(t))Φ(t) = 0.

Therefore
Φ(t) = 0, (89)

=⇒ y(t) = y(t) in [t0, a].
□

6. The Witte’s uniqueness conditions
for Fractal-Fractional ordinary
differential equations with the
Mittag Leffler kernel

In this section, we will consider the following
fractal-fractional differential equation

{
F F M
t0 Dα,β

t y(t) = f(t, y(t)), if t > t0,
y(t0) = y0, if t = t0.

(90)

Assuming the existence of the solution y(t), we
shall show that y(t) is unique.
Lemma 4. Let Φ(t) be a nonnegative continuous
in [t0, a] and
i) Let h(t) > 0 be a continuous function in (t0, a]
such that 1 − zh(t1) > 0,

ii) Φ(t) ≤ (1 − α)tβ−1βh(t)Φ(t) +

αβ
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

iii) and β
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)dτ, exists Then

Φ(t) = 0. (91)
in [t0, a].

Proof. Let Φ(t) and h(t) satisfy the condition of
the theorem, then, we set

Ω(t) = (1 − α)tβ−1βh(t)Φ(t) + αβ
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ.

(92)
We have from the fundamental theorem of fractal-
fractional calculus that

F F M
t0 Dα,β

t

(
F F M
t0 Jα,β

t f(t)
)

= f(t). (93)

Therefore
F F M
t0 Dα,β

t Ω(t) =F F M
t0 Dα,β

t

(
F F M
t0 Jα,β

t (h(t)Φ(t))
)

= h(t)Φ(t),
(94)

which produces

F F M
t0 Dα,β

t Ω(t) ≤ h(t)Ω(t). (95)
Then, we obtain Ω(t) as

Ω(t) ≤ (1 − α)βtβ−1h(t)Ω(t)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ,

≤ (1 − α)β (t0)β−1
h(t1)Ω(t)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ,

Ω(t) ≤ αβ

Γ (α) (1 − zh(t1))

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ.

(96)
We put

∆ = αβ

Γ (α) (1 − zh(t1)) . (97)

By the Gronwall inequality

Ω(t) ≤ o exp

∆
t∫

t0

τβ−1 (t − τ)α−1 h(τ)dτ

 ,

(98)

= o exp
(

α

(1 − zh(t1))
F F M
t0 Jα,β

t h(t)
)

,

= 0.

z = (1−α)β (t0)β−1, which is contraction. There-
fore

Ω(t) = 0 ⇒ Φ(t) = 0, (99)
in [t0, a]. □

Lemma 5. Let Φ(t), h(t) and H(t) be the same
like before and Φ(t0) = 0.

i) Φ(t) = o
(
exp

(
tβH(t)

))
as t → t+

0 then

Φ(t) = 0, ∀t ∈ [t0, a]. (100)

Proof. Let Φ(t) and h(t) satisfy the condition
above, then

Ω(t) = (1 − α)βtβ−1h(t)Φ(t)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,
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exists

F F M
t0 Dα,β

t Ω(t) ≤ h(t)Ω(t). (101)

F F M
t0 Dα,β

t (Ω(t) exp (−H(t)))

= 1
(1 − α)βtβ−1

d

dt

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
Ω(τ) exp (−H(τ)) dτ.

(102)

Since Φ (t0) = 0, we will have Ω (t0) therefore,

F F M
t0 Dα,β

t (Ω(t) exp (−H(t)))

= 1
(1 − α)βtβ−1

d

dt

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
Ω(τ) exp (−H(τ)) dτ,

= t1−β

(1 − α)β

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)[
Ω′(τ) exp (−H(τ))

−h(τ)Ω(τ) exp (−H(τ))

]
dτ,

= t1−β

(1 − α)β

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
exp (−H(τ))

[
Ω′(τ)

−h(τ)Ω(τ)

]
dτ,

(103)

whereas from [9], we have that

Ω(τ) − h(τ)Ω(τ) ≤ 0. (104)

Therefore since Eα

(
− α

1−α (t − τ)α
)

> 0, we con-
cluded that

F F M
t0 Dα,β

t (Ω(t) exp (−H(t))) < 0. (105)
exp

(
−tβH(t)

)
Ω(t)

= exp
(
−tβH(t)

)
(1 − α)βtβ−1h(t)Φ(t)

+ αβ
Γ(α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ

 ,

= exp
(
−tβH(t)

)
(1 − α)βtβ−1h(t)Φ(t)

+
αβ exp

(
−tβH(t)

)
Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ exp
(
−tβH(t)

)
(1 − α)βtβh(t)Φ(t)

+
αβ exp

(
−tβH(t)

)
Γ (α)

t∫
t0

τβ (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ exp
(
−tβH(t)

)
(1 − α)βtβh(t)Φ(t)

+
exp

(
−tβH(t)

)
αβε

Γ (α)

t∫
t0

(t − τ)α−1
[

βτβ−1H(τ)
+τβh(τ)

]

× exp
(
−τβH(τ)

)
dτ.

(106)

In the view (i)

≤ exp
(
−tβH(t)

)
(1 − α)ε′βtβh(t) exp

(
tβH(t)

)
+ αβε′aα

Γ (α) exp
(
tβH(t)

)
exp

(
−tβH(t)

)
,

≤ ε′
(

(1 − α)βaαh (t1)
+αβaα

Γ(α)

)
,

≤ ε(
(1 − α)βaαh (t1) + αβaα

Γ(α)

) ( (1 − α)βaαh (t1)
+αβaα

Γ(α)

)
,

≤ ε.

(107)
Therefore

lim
t→t+

0

exp
(
−tβH(t)

)
Ω(t) = 0. (108)

Thus

exp
(
−tβH(t)

)
Ω(t) ≤ 0 for t > t0, (109)

which implies

(1 − α)βtβ−1h(t)Φ(t) (110)

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Φ(τ)dτ,

≤ 0.

contradiction, thus
Φ(t) = 0. (111)

□

Theorem 7. Let f(t, y(t)) be as presented before
and exp

(
tβH(t)

)
as t → t+

0 uniformly with re-
spect to y, y ∈ [−δ, δ], δ > 0 arbitrary h(t) and
H(t) are the same as previously. Then equation
(92) has a unique solution.

Proof. Let y(t) and y(t) be solutions of equation
(92).
|y(t) − y(t)| ≤ (1 − α)βtβ−1 |f (t, y(t)) − f (t, y(t))|

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 |f (τ, y(τ)) − f (τ, y(τ))| dτ,

≤ (1 − α)βtβ−1 |f (t, y(t)) − f (t, y(t))|

+ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h (τ) |y − y| dτ,

≤ (1 − α)βtβ−1 |f (t, y(t)) − f (t, y(t))|

+ β

Γ (α)

t∫
t0

τβ−1 (t − τ)α h (τ) |y − y| dτ.

(112)



Witte’s conditions for uniqueness of solutions to a class of Fractal-Fractional . . . 333

In the view of (i), we get

|y(t) − y(t)| ≤ (1 − α)βtβ−1h(t) |y(t) − y(t)|

+ αβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ) |y(τ) − y(τ)| dτ,

≤ (1 − α)βtβ−1h(t) |y(t) − y(t)|

+ αβ

Γ (α)

t∫
t0

τβ (t − τ)α h(τ) |y(τ) − y(τ)| dτ,

≤ (1 − α)βε′h(t)tβ exp
(
tβH(t)

)
+ αβε′

Γ (α)

t∫
t0

aατβh(τ) exp
(
τβH(τ)

)
dτ.

(113)
|y(t) − y(t)| ≤ (1 − α)βε′h(t)aβ exp

(
tβH(t)

)
+ αβε′aα

Γ (α)

t∫
t0

(
τβh(τ) + βτβ−1H(τ)

)
exp

(
τβH(τ)

)
dτ,

≤
(

(1 − α)βε′h(t)aβ + αβε′aα

Γ (α)

)
exp

(
tβH(t)

)
,

≤
(

(1 − α)βε′h(t1)aβ + αβε′aα

Γ (α)

)
exp

(
tβH(t)

)
,

≤
ε
(
(1 − α)βh(t1)aβ + αβaα

Γ(α)

)
(
(1 − α)βh(t1)aβ + αβaα

Γ(α)

) exp
(
tβH(t)

)
,

≤ ε exp
(
tβH(t)

)
.

(114)

From the above Lemma

y(t) − y(t) = 0. (115)
□

Corollary 2. Let the condition in above theorem
hold, then

i) (f(t, y) − f(t, y)) (y − y) ≤ h(t) (y − y)β,
∀(t, y), (t, y) ∈ S+, β ∈ (1, 2].

ii) h (t1) = max
t∈(t0,a)

h(t),

1 − β(1 − α)β (t0)β−1 Λ > 0,

iii) F F M
t0 Jα,β

t h(t) exists.

Proof. Let y(t) and y(t) be two solutions of equa-
tion (92) then, let set Ω (t0) = 0 then we get

F F M
t0 Dα,β

t Ω(t) = 1
βtβ−1

ABC
t0 Dα

t Ω(t),

= 1
βtβ−1 (1 − α)

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
Ω′

dτ,

= 1
βtβ−1 (1 − α)

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)

×
[
β (y − y)β (y − y)′

]
dτ.

(116)

Let m = min
t∈[t0,t]

|y − y|β−1, M =

max
t∈[t0,t]

|y(t) − y(t)| . We define

Λ =
{

m, if y′ − y′ < 0,
M, if y′ − y′ > 0.

(117)

Therefore

F F M
t0 Dα,β

t Ω(t) ≤ βΛ
βtβ−1 (1 − α)

t∫
t0

Eα

(
− α

1 − α
(t − τ)α

)
(y − y)′ dτ,

≤ βΛ
(

F F M
t0 Dα,β

t y(t) −F F M
t0 Dα,β

t y(t)
)

,

≤ βΛ (f(t, y) − f(t, y)) ,

≤ βΛh(t) (y − y)β .

(118)

RL
t0 Dα

t Ω(t) = βΛβtβ−1, (119)
≤ βΛh(t)Ω(t),

ABR
t0 Dα

t Ω(t) ≤ βtβ−1Λh(t)Ω(t)β.

Ω(t) ≤ β(1 − α)βtβ−1Λh(t)Ω(t) (120)

+ αββ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 Λh(τ)Ω(τ)dτ,

≤ β(1 − α)β (t0)β−1 Λh(t1)Ω(t)

+ Λαββ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ.

If we take as

A = Λβ

1 − β(1 − α)β (t0)β−1 Λ
, (121)

Ω(t) ≤ Aαβ

Γ (α)

t∫
t0

τβ−1 (t − τ)α−1 h(τ)Ω(τ)dτ.

(122)

By the Gronwall inequality we set
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Ω(t) ≤ o exp
(
AF F P

t0 Jα,β
t h(t)

)
, (123)

Ω(t) ≤ 0.

Therefore we have Ω(t) ≤ 0 which is a contraction
therefore

Ω(t) = 0 ⇒ y(t) = y(t), ∀t ∈ [t0, a] . (124)
□

7. Conclusion

Witte provided a set of conditions under which
a given nonlinear ordinary differential equation
admits unique solutions. This was established
when the differential operator was in integer or-
der. Based on the framework of Witte, we have
presented a detailed analysis of the uniqueness
of nonlinear ordinary differential equations with
fractal-fractional derivatives.
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The phenomenon of rotation serves multiple purposes in cosmic and geophys-
ical phenomena. It offers insights into the formation of galaxies and the cir-
culation patterns of oceans. Moreover, rotational diffusion elucidates the ori-
entation of nanoparticles within fluid mediums. Investigating the dynamics of
fluid peristalsis under the influence of rotational forces holds significant rele-
vance in addressing challenges associated with the transportation of conductive
physiological fluids such as blood, polymeric materials, and saline water. This
study focused on studying the impact of rotation on the peristaltic transport of
non-Newtonian pseudoplastic fluids through a wavy channel. The complexity
of flow equations, including the continuity and motion equations, is mathe-
matically formulated and transformed into dimensionless nonlinear ordinary
differential equations depending on the assumption of low Reynolds number
and long wavelength approximation. Perturbation technique is employed to
solve the problem for the stream function and the resulted system is imple-
mented and plotted using MATHEMATICA software along with the boundary
conditions. Graphical discussion is involved to utilize the impact of the emerg-
ing parameters in the flow characteristic, encompassing the velocity profile,
pressure gradient, pressure rise, and trapping phenomenon. The research re-
vealed that rotation significantly influences the fluid flow within the channel,
diminishing the regressive and inhibitory impact of the fluid parameter, con-
sequently enhancing the fluid flow within the channel.

Keywords:
Peristaltic transport
Pseudoplastic fluid
Rotation force
Wavy channel
AMS Classification 2010:
76D05; 76D07; 76N10

1. Introduction

Extensive research has been conducted on peri-
staltic motion in recent years due to the fact that
it involves the study of wave-like motion in physi-
ological fluids resulting from interaction with sur-
rounding boundaries. Such phenomena are evi-
dent during the process of food ingestion through
the esophagus, the propagation of lymphocytes
within the lymphatic system, the circulation of
blood through vessels, the movement of urine to-
ward the bladder, and numerous other instances
that collectively contribute to our understanding
of peristalsis. Moreover, peristaltic transport has

wide applications in medical engineering, science,
and modern industry, such as aggressive chemi-
cals, high solid slurries, noxious fluids (nuclear in-
dustries), heart-lung machines, blood pump ma-
chines, and dialysis machines [1–4]. The initial
effort to elucidate this phenomenon was attrib-
uted to [5]. Subsequent to this progress, numer-
ous studies, delving into the exploration of peri-
staltic flow of various fluid types under diverse
influencing factors, were illustrated by many re-
searchers. [6] discussed the impact of long wave-
lengths and the low Reynolds number assumption
on peristaltic pumping. [7] determined the impact
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of the elastic wall of a hollow cylinder’s channel of
Jeffrey’s fluid by peristaltic flow. [8] studied the
heat transfer analysis of magnetohydrodynamic
(MHD) peristaltic transport of Jeffrey fluid in an
inclined tapered asymmetric channel. For more
information, see [9–13].

Non-Newtonian fluids, including molten plas-
tics, artificial fibers, polymeric materials, food-
stuffs, blood, slurries, and synovial liquids, ex-
hibit shear-stress-strain relationships that diverge
significantly from the traditional viscous model,
finding numerous applications in manufacturing
and commerce [14–17]. Significant literature ex-
ists on the study of peristaltic motion in the pres-
ence of non-Newtonian fluids. Many of these
types of fluids exhibit characteristics of shear-
thinning yield stress materials [18], such as pseu-
doplastic fluid which is found in blood plasma,
latex paint, polymer solutions, and similar solu-
tions of high molecular weight substances. At low
shear rates, these fluids experience the formation
of shear stress that results in the reordering of the
molecules to reduce the overall stress. [9] analyzed
the impact of Soret and Dufour on the peristaltic
flow of magnetohydrodynamic (MHD) pseudo-
plastic nanofluid in a tapered asymmetric chan-
nel. The impact of pseudoplasticity and dilatancy
of fluid on the peristaltic flow of non-Newtonian
fluid in a non-uniform asymmetric channel was
investigated [19]. In 2014, [20] studied the impact
of wall properties and slip conditions on the peri-
staltic flow of pseudoplastic fluid in a curved chan-
nel. An effect of magnetohydrodynamic (MHD)
and thermal radiation on the peristaltic flow of a
pseudoplastic nanofluid through a porous medium
asymmetric canal with convection boundary con-
ditions was depicted by [21].

A rotational phenomenon plays a pivotal role in
various cosmic and geophysical phenomena. It
aids in comprehending the emergence of galax-
ies and the circulation of oceans. Nanoparti-
cles’ orientation in fluids is attributed to rota-
tional diffusion. Moreover, rotation is notewor-
thy in specific flow scenarios within physiological
fluids like saline water and blood. This synergy
of rotation facilitates the movement of biological
fluids within the intestines, ureters, and arteri-
oles. Several studies focused on the rotational
system’s impact on the peristaltic flow of various
fluids. [22] analyzed the flow of non-Newtonian
fluid with a porous medium under the effect of
rotation and magnetic force. [23] was concerned
with the peristaltic flow of a Jeffrey fluid in an
asymmetric rotating channel. [24] illustrated the

influence of magnetic force, rotation, and nonlin-
ear heat radiation on the peristaltic transport of
hybrid bio-nanofluids through a symmetric chan-
nel. [25] investigated the peristaltic flow of Bing-
ham plastic fluid under the effect of rotation and
induced magnetic field. For more information, see
Refs. [26–30].
Lately, there has been a lack of attention given to
studying peristaltic flows under conditions where
both the fluid and the channel experience solid
body rotation, i.e., the entire system, compris-
ing both the fluid and the channel, is situated
within a rotating frame characterized by a consis-
tent angular velocity. The aforementioned studies
have primarily focused on peristaltic flows involv-
ing different non-Newtonian fluids, addressing ro-
tational effects. Nevertheless, there remains a gap
in the previous literature concerning the impact of
the rotation frame on the peristaltic transport of
pseudoplastic fluids. In this study, We extended
the inquiry delineated in [19] by elucidating the
physical alterations observed in our fluid during
the flow, which experiences a reduction in viscos-
ity as the shear rate increases during rotation. As
a consequence, its velocity increases, which finds
application in various contexts such as in blood
apheresis machine and water treatment. In this
article, physical modeling governing the equation
of peristaltic flow of pseudoplastic under the effect
of rotation is described and reduced to the differ-
ential equation by using long wavelength and low
Reynolds number assumptions. The closed-form
analytic solution for the stream function and fluid
velocity is provided. Subsequently, a graphical
analysis is conducted using codes from the Math-
ematica package to illustrate the impact of key
parameters on flow characteristics.

2. Mathematical model of the problem

Assuming the incompressible peristaltic motion of
a non-Newtonian, electrically conducting, pseu-
doplastic fluid through a two-dimensional asym-
metric a wavy channel of width 2 d in which the
channel rotates about the horizontal with uni-
form angular velocity Ω see Fig. 1. The induced
sinusoidal propagation waves of wavelength λ are
advancing with a constant speed c in the X - axis,
and the Y -axis is normal to it.
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Figure 1. Geometry of problem

The mathematical equations for the channel walls
are provided as follows [25]:

Ȳ = h̄1(X̄, t̄) = d+ b1 Sin
(2π
λ

(X̄ − ct̄)
)
, (1)

Ȳ = h̄2(X̄, t̄) = −d− b2 Sin
(2π
λ

(X̄ − ct̄) + ϕ

)
.

(2)

where h̄1 and h̄2 are the lower and upper walls
respectively, b1 and b2 denote the waves’ ampli-
tudes, t̄ stands for time, ϕ ∈ [0, π] and represents
the phase difference. When ϕ = 0, it indicates
waves out of phase for a symmetric channel, and
when ϕ = π the waves are in phase. Additionally,
the values of d, b1, b2 and ϕ satisfy the inequity.

b1
2 + b2

2 + b1b2 Cosϕ ≤ (d)2, (3)
The governing equations for an incompressible
fluid in the fixed frame are formulated as follows:
The continuity equation is:

∇.V⃗ = 0, (4)
The motion equation is:

ρ

(
∂V⃗

∂t̄
+ (V⃗ · ∇)V⃗

)
+ ρ[Ω × (Ω × V⃗ ) + 2Ω × V⃗ ]

= −∇P̄ + ∇ · S̄, (5)
Associated with the no- slip boundary condition
bellows:

U⃗ = 0 at h̄1 and h̄2. (6)
In which V⃗ = (Ū , V̄ ) is the fluid velocity vector
in X̄ and Ȳ coordinates respectively, ρ, P̄ are the
fluid density and the pressure, ∇⃗ =

(
∂

∂X̄
, ∂

∂Ȳ

)
is

the gradient vector, ρ(Ω × (Ω × V⃗ )) denotes the
centrifugal force while the term ρ(2Ω × V⃗ ) refers
to the Coriolis force, S is the Cauchy stress tensor

for pseudoplastic fluid which defined as [9,19]:

S̄ + λ∗
1

(
∂S̄

∂t̄
− ∇

⇀
V ·S̄ − S̄ · (∇V⃗ )T

)
+ 1

2 (λ∗
1−

µ∗
1)
(
Ǎ1S̄ + S̄Ǎ1

)
= µǍ1, (7)

Ǎ1 = ∇V⃗ + (∇V⃗ )T . (8)
where µ is the fluid viscosity, λ∗

1, µ
∗

1 are the relax-
ation times, Ă1 is the first Rivlin- Ericksen tensor.
Consider the wave frame (x̄, ȳ) traveling with
speed c away from the laboratory frame. The
transformation of coordinates and flow properties
between fixed and wave frame is given by:
x̄ = X̄ − ct̄, ȳ = Ȳ , ū = Ū − c, v̄ = V̄ , p̄(x̄) =
p̄(X̄, t̄). (9)

Now, defining the dimensionless parameters and
variables in the following manner.

x = x̄

λ
, y = ȳ

d
, u = ū

c
, v = v̄

c
, h1 = H̄1(X)

d
,

h2 = H̄2(X)
d

, d = d2
d1
, δ = d

λ
, a = b1

d
, b = b2

d
,

λ1 = cλ∗
1
d
, p = d2p̄

λµc
,Re = ρcd

µ
, sij = d

µc
S̄ij ,

µ1 = cµ∗
1
d
,Ω = b1

2Ω̄
µ

, Ta = ΩdRe
c

. (10)

where Re and δ are the Reynolds number and
the dimensionless number of waves respectively.
Introducing the dimensionless stream function
ψ(x, y), in which,

u = ∂ψ

∂y
, v = −δ ∂ψ

∂x
. (11)

The continuity equation is identically achieved.
By substituting Eq. (9) and Eq. (10) into Eqs.
(2 - 7), we get:

Re δ
(

(u+ 1)∂u
∂x

+ v
∂u

∂y

)
− 2 Ta(u+ 1) =

− ∂p

∂x
+ δ

∂sxx

∂x
+ ∂sxy

∂y
, (12)

Re δ2
(

(u+ 1)∂v
∂x

+ v
∂v

∂y

)
− 2 Ta δv = −∂p

∂y
+

δ
∂syy

∂y
+ δ2∂syx

∂x
− 1
κ
δ2v,

(13)
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sxx + λ1

(
δ

(
u
∂sxx

∂x
+ v

∂sxx

∂y

)
− 2δsxx

∂u

∂x
−

2sxy
∂u

∂y

)
+ 1

2 (λ1 − µ1)
(

2sxy

(
∂u

∂y
+

δ2 ∂v

∂x

)
+ 4δsxx

∂u

∂x

)
= 2δ ∂u

∂y
, (14)

sxy + λ1(δ
(
u
∂sxy

∂x
+ v

∂sxy

∂y

)
− δ2sxx

∂v

∂x
−

syy
∂u

∂y

)
+ 1

2 (λ1 − µ1) (sxx + syy)
(
∂u

∂y
+ δ2 ∂v

∂x

)
=

∂u

∂y
+ δ2 ∂v

∂x2 , (15)

syy + λ1

(
δ

(
u
∂syy

∂x
+ v

∂syy

∂y

)
− 2δsxx

∂v

∂y
+

2δ2sxy
∂v

∂x

)
+ 1

2 (λ1 − µ1)
(

2sxy

(
∂u

∂y
+

δ2∂v

∂y

)
+ 4δsyy

∂v

∂y

)
= 2δ ∂v

∂y
. (16)

Employing Eq. (11) and assuming a low Reynolds
number and a large wavelength approximation (
δ ≪ 1), Eqs. (12 - 16) are reduced as follows:

∂p

∂x
= ψyy(

1 + ξ (ψyy)2
) + 2Ta

(
∂ψ

∂y
+ 1

)
, (17)

∂p

∂y
= 0. (18)

Through Eq. (18), we conclude that pressure is
not a function of y, i.e., P ̸= P (y). Neglecting
pressure from Eq. (17), we get:

ψyyyy + 3ξ (ψyy)2 ψyyyy + 6ξ (ψyyy)2 ψyy+
2 Taψyy = 0, (19)

sxx = (λ1 + µ1) (ψyy)2(
1 + ξ (ψyy)2

)2 , (20)

sxy = ψyy(
1 + ξ (ψyy)2

) , (21)

syy = − (λ1 − µ1) (ψyy)2(
1 + ξ (ψyy)2

)2 . (22)

Linked to the subsequent dimensionless boundary
condition.

ψ = −F

2 , ψy = 0 at y = h1(x), (23)

ψ = F

2 , ψy = 0 at y = h2(x). (24)

where h1(x) = 1 + a Sin(2πx) and h2(x) = 1+
bSin(2πx+ Φ).
where ξ =

(
λ2

1 − µ2
1
)

is the Pseudoplastic fluid pa-
rameter.
The parameter F refers to the dimensionless mean
flows and it is given by:

F =
∫ h2

h1
u(x, y)dy =

∫ h2

h1

∂ψ

∂y
dy = ψ (h2) − ψ (h1) ,

(25)

Additionally, the connection between F and the
nondimensional mean flows in the moving frame,
θ, can be derived as:

F = θ + aSin(2πx+ Φ) + bSin(2πx). (26)

The pressure rise per unit wavelength is:

∆p =
∫ 1

0

dp

dx
dx. (27)

3. Solution of the problem

Eq. (19) poses a complex nonlinear differential
challenge, rendering an exact solution unattain-
able. In the field of fluid science, various tech-
niques [31–37] are available to find the desired so-
lution. Therefore, we turn to perturbation tech-
nique to calculate series solutions when dealing
with a small parameter. Consequently, we ap-
plied perturbation to stream function ψ and di-
mensionless mean flow F , considering them up to
the first order with respect to the Pseudoplastic
fluid parameter ξ as:

ψ = ψ0 + ξψ1 +O
(
ξ2
)
, (28)

F = F0 + ξF1 +O
(
ξ2
)
. (29)

3.1. Zeroth order system

ψ0yyyy + 2Taψ0yy = 0, (30)
With the boundary conditions.

ψ0 = −F0
2 , ψ0y = 0, at y = h1(x), (31)

ψ0 = F0
2 , ψ0y = 0 at y = h2(x). (32)

where
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F0 = θ + a Sin(2πx+ Φ) + bSin(2πx). (33)

3.2. First order system

ψ1yyyy + 3 (ψ0yy)2 ψ0yyyy+
6 (ψ0yyy)2 ψ0yy + 2Taψ1yy = 0, (34)

With the following boundary conditions.

ψ1 = −F1
2 , ψ1y = 0, at y = h1(x), (35)

ψ1 = F1
2 , ψ1y = 0, at y = h2(x). (36)

Solving the two resulting systems by writing suit-
able codes in Mathematica software, the explicit
expression of stream functions ψ0 and ψ1 ob-
tained.

ψ0(x, y) =
e−

√
Ay
(
e2

√
Ayc1 + c2

)
A

+ c3 + yc4,

(37)

ψ1(x, y) = c7 + yc8 + 1
8Ae

−3
√

Ay
(
−c2

3+

30c1c2
2e2

√
Ay + 30c1

2c2e
4
√

Ay − c1
3e6

√
Ay+

8e4
√

Ayc5 + 8e2
√

Ayc6 − 6c1c2e
2
√

Ay (−c2+

c1e
2
√

Ay
)

log
(
e2

√
Ay
))
. (38)

where A = −2Ta, and the coefficients
c1, c2, c3, c4, c5, c6, c7 and c8 consist of complex ex-
pressions that will not be detailed here.

4. Results analysis and discussion

In this section, we examine the outcomes of dif-
ferent physical parameters by utilizing the visual
representations provided. The analysis includes
the variation in the velocity profile, the gradient of
pressure, the pressure rise and the trapping phe-
nomenon as a result of the increase in the values of
the rotation parameter Ta, the pseudoplastic fluid
parameter ξ, the non- dimensional mean flows θ,
the phase difference parameter Φ, the lower wall
amplitude parameter a, and upper wall amplitude
parameter b.

4.1. Velocity profile

Figs. 2(a)-(d) illustrate a consistent pattern
where the maximum velocity is consistently near
the center of the channel, and all velocity profiles
exhibit a parabolic shape. Figs. 2(a) and 2(b)
depict a decrease in velocity profile at the central

part of the channel whereas an increasing effect
is noticed toward the boundaries, as well as in-
flection points appearing via ascending values of
Ta and ξ. This outcome arises from the physical
phenomenon wherein viscosity decreases as shear
rate escalates during rotational motion. As a con-
sequence, its velocity increases. It’s worth noting
from Fig. 2(c) that as θ enlarges, the fluid ve-
locity reduces. However, an opposite reaction on
velocity profile is observed from Fig. 2(d), that
means as the phase difference between waves in-
creases (Φ), the axial velocity increases across the
entire range of the y-axis.

Figure 2. Velocity profile for
ascending values of (a) rotation
parameter (b) Pseudoplastic pa-
rameter (c) non- dimensional
mean flows parameter (d) phase
difference parameter and fixed
b = 0.3, a = 0.6, x = 0.5, t = 0.2.
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4.2. Gradient of pressure

Figs. 3(a)-(d) record the fluctuations in the axial
pressure gradient (dp/dx), exhibiting sinusoidal
behavior across the entire x-axis range when it
is analyzed under the impact of increasing values
of the lower wall wave amplitude a, the rotation
parameter Ta, non- dimensional mean flows θ ,
and the Pseudoplastic fluid parameter ξ. It is no-
ticed from Fig. 3(a) The observed elevation in
the magnitude of the pressure gradient towards
the central region of the channel compared to its
boundaries is attributed to the augmentation of a,
leading to an expansion in the dimensions of the
channel wall. While from Figs. 3(b) and 3(c), we
conclude that the rate of change for (dp/dx) with
respect to Ta and θ means the flow can smoothly
pass without requiring a significant pressure gra-
dient. Fig. 3(d) illustrated that as ξ increases,
a reversal in the situation is depicted, as this pa-
rameter inversely correlates with the velocity of
the fluid. Consequently, a notable pressure gra-
dient is necessitated to ensure fluid flow remains
smooth.

Figure 3. Pressure gradient pro-
file for ascending values of (a) low
wall amplitude parameter (b) ro-
tation parameter (c) non- dimen-
sional mean flows parameter (d)
Pseudoplastic parameter and fixed
b = 0.3, a = 0.6, x = 0.5, t = 0.2.

4.3. Pressure rise profile

Figs. 4(a)-(d) elucidate the behavior of nondi-
mensional pressure rise ∆p versus the dimension-
less mean flow rate θ through plotting ∆p profile
with various values of the rotation parameter Ta,
the phase difference parameter Φ, the lower wall
amplitude a, and the upper wall amplitude b. It
is clear from Fig. 4(a) that the pumping rate ∆p
is enlarged in the whole region as the value of
Ta is increased. Whereas the impact of enhanc-
ing Φ and a on pumping rate anticipated in Figs.
4(b) and 4(c). The plots recorded a decay in peri-
staltic pumping region with (θ > 0,∆p > 0) while
an increment impact is noticed in the retrograde
pumping area (θ < 0,∆p > 0) and no flow area
(θ < 0,∆p < 0). The opposite scene is depicted
with an increasing b, that means the peristaltic
pumping region is enhanced while the retrograde
pumping and no flow areas are dampened, see Fig.
4(d).
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Figure 4. Pressure rise profile for as-
cending values of (a) rotation param-
eter (b) phase difference parameter
(c) lower wall amplitude parameter
(d) upper wall amplitude parameter
(d) and fixed {ξ = 0.3, θ = 0.6, x =
0.5, t = 0.2}.

4.4. Trapping phenomenon

Streamlines depict the paths followed by fluid
particles within a flow. The creation of an en-
closed, circulating mass of fluid due to the closed
streamlines is referred to as trapping phenome-
non. Figs. 5-8 are sketched to elucidate the in-
fluence of the rotation parameter Ta, the non-
dimensional mean flow parameter θ, the Pseudo-
plastic fluid parameter ξ, and the phase difference
parameter Φ on the absolute value of stream func-
tion |ψ|. Moreover, we noticed from the graphs
that the trapped bolus is composed and focused
near the channel’s walls. Figs. 5 and 6 illustrate
that as the Ta and θ values increase, the trapped
bolus size increases. This outcome correlates with
the observation that an increase in these param-
eters leads to a rise in the flow rate, thereby
resulting in the generation of more streamlines
and boluses. Figs. 7 and 8 reveal a decrease
in the size and number of the trapped bolus as
the magnitude of ξ and Φ are enlarged. This re-
sult aligns well with findings from previous studies
conducted by [9] and [19].

Figure 5. Stream lines for ascending
values of rotation parameter {Ta =
0.1, Ta = 0.3}.

Figure 6. Stream lines for ascend-
ing values of rotation parameter {θ =
0.2, θ = 0.5}.

Figure 7. Stream lines for ascending
values of pseudoplastic fluid parame-
ter {ξ = 0.1, ξ = 0.3}.

Figure 8. Stream lines for ascend-
ing values phase difference parameter
{Φ = π/6,Φ = π/4}.

5. Conclusions

The influence of rotation on peristaltic motion
for non-Newtonian pseudoplastic fluid in a wavy
channel has yielded significant insights. By mod-
eling and transforming the basic governing equa-
tions and employing perturbation method, we
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have obtained analytical expressions for key pa-
rameters such as stream function, velocity, pres-
sure gradient, and pressure rise. The study has
led to several noteworthy findings:

1. The velocity profile exhibits a parabolic
shape, with a decrease in velocity profile
attributed to an increase in the pseudo-
plastic fluid parameter ξ. This decrease
is due to the shear-thickening effect or re-
duction in fluid viscosity as the rate of de-
formation increases, thereby opposing the
flow.

2. The velocity profile exhibits a reduction
in the central region with increasing ro-
tation parameter Ta and phase difference
Φ, while it increases towards the bound-
aries. This phenomenon arises from the
enhancement of kinematic forces induced
by rotation, and wave phase difference
particularly at the boundaries, thereby ac-
celerating fluid flow.

3. Because of the direct effect of Ta param-
eter on the fluid velocity, a smooth flow
can occur without requiring a significant
pressure gradient with increasing Ta and
mean flow rate θ, while an opposite trend
is observed as ξ increases, necessitating a
substantial pressure gradient.

4. The peristaltic pumping region contracts
with an increase in the lower wall ampli-
tude a, while it strengthens with an in-
crease in the upper wall amplitude b.

5. The size of the trapped bolus increases
with increasing values of Ta and θ, while
its volume and number decrease with the
magnitude of ξ and Φ.

6. These findings offer valuable insights into
the behavior of peristaltic motion in com-
plex fluid systems, with potential applica-
tions in various fields such as biomedical
engineering, microfluidics, and industrial
processes. Understanding these phenom-
ena can aid in the design and optimiza-
tion of systems involving fluid transport,
leading to improved efficiency and perfor-
mance.
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1. Introduction

The phenomenon of control means ”making a sys-
tem capable of acting as desired”. It dates back to
Ancient Egypt. The first known control tools are
water clocks, Although it is not known when and
by whom water clocks were first invented, the first
example was found in tomb of Pharaoh Amen-
hotep I, in 1500s BC. These mechanisms, known
to have been designed by Vitrivius and Ktesibos
in 325 BC and called clepsydra (water thief) were
used by the Greeks to adjust speaking times in
assemblies and courts.

Control, in the modern sense, begins with Watt’s
steam engine, in 1789. Until the 1870s, hundreds
of regulators (governors) were patented worldwide
using Watt’s principles. From then until today,
major seminal works in the field of control were
carried out by many famous scientists from var-
ious areas such that; Maxwell, Vyshnegradski,
Routh, Lyapunov, Hurwitz, Sickels, McFarlane,

Farcot, Minorsky, Nyquist, Bode, Bellman, Pon-
tryagyn, Kalman etc [1]. For more detail about
historical development of control theory see [2].

One of the most powerful techniques of modern
control is H∞ control. H∞ control is a very use-
ful tool for large-scale multivariable problems to
numerically measure the performance, sensitivity
and durability of closed loop (feedback) system
controllers. Its primary aim is to reduce mod-
eling inaccuracies and account for unquantified
disturbances, such as environmental factors, in-
ner uncertainties, and noise, by transforming an
optimization problem into a sensitivity problem
involving the H∞-norm. Here, H∞ refers to ”the
space encompassing all bounded analytic matrix-
valued functions within the open right-half com-
plex plane.” This concept was initially introduced
by Zames in 1981 [3] and has since found appli-
cations across numerous works utilizing various
control theory techniques [4–9]. For more com-
prehensive information, please refer to [10].
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Boyd, Balakrishnan and Kamamba (1988) pre-
sented the Bisection algorithms, which is an im-
portant tool in control theory [11, 12]. In this
field, the energy associated with each state of the
system is characterized by Hankel singular values,
whereas eigenvalues indicate the stability of a sys-
tem. Making a link between the stability of the
system and the energy of its states is the basic
idea underlying the bisection method. This en-
tails connecting the imaginary eigenvalues of the
associated Hamiltonian matrix, designated as Mγ

in Eq.(12), with the singular values of the transfer
matrix evaluated along the imaginary axis. The
technique is applied in numerous works [13,14].
In high-level control problems which contain large
number of variables and parameters, researches
confront many difficulties and complexity. To
cope with these adverse conditions, researchers
try to create some alternative methods to con-
vert these high-level problems into far smaller di-
mensional models which can be solved more eas-
ily, without losing structural characteristic of the
original problems. These kinds of methods are
called model order reductions [15–18]. One of the
methods is balanced truncation approach. Bal-
anced truncation approach means, to find appro-
priate balanced realization and truncate this real-
ization preserving the structural characteristic of
the original problems.
Let µ > 0 be a parameter, a dynamical system
which contains some state component derivatives
with µ coefficients is called a singular perturba-
tion model. Singular perturbation models are rep-
resented by following set of equations,

ẋ1 = A11x1 + A12x2 + B1u (1)
µẋ2 = A21x1 + A22x2 + B2u (2)

y = C1x1 + C2x2 + Du (3)

here x1, x2 are called slow and fast variables, re-
spectively, Eq.(1), Eq.(2) are called slow (power-
ful) and fast(weak) subsystems, respectively and
µ is called perturbation parameter.
Analysis of these system types is done by sin-
gular perturbation theory. Singular perturbation
theory means to investigate behavior of solutions
of the system Eq.(2) for an interval 0 ≤ t ≤ T
(or 0 ≤ t < +∞ ). The basic idea of singular
perturbation method is to protect the slow(low-
frequency) part ( Eq.(1)) while neglecting the
fast(high-frequency) ( Eq.(1)). When considered
from this point of view the method can be as-
sociated with a dominant mode state. In other
words, it is process of examining solutions of the

given system for µ = 0 [18,19]. µ-parameter may
correspond to different concepts depending on the
structure of the system. For example, it repre-
sents machine reactance or transients in voltage
regulators in power systems, actuators in indus-
trial control, enzymes in biochemical models and
fast neutrons in nuclear reactor models.
The extended-balanced singular perturbation
method represents a hybrid approach that com-
bines the principles of both balanced truncation
and singular perturbation methods. It begins by
reducing the model order through the applica-
tion of balanced truncation. Subsequently, the
norm of the transfer function for the reduced
model is determined using the singular perturba-
tion method.
This paper organized into six sections. A num-
ber of basic definitions and notations which will
be used next chapters are given in Section 2.
In Section 3, general information about bisection
method is told and algorithm of the method is
given. In Section 4, extended-balanced singu-
lar perturbation method is told and its algorithm
summarize as a table with the error bounds. A
numerical example is solved by both methods and
tolerances are computed in Section 5. Finally, in
Section 6, the results are compared and discussed.

2. Preliminaries

Let’s examine the linear dynamic system;

ẋ = Ax + Bu

y = Cx + Du (4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈
Rp×m. Transfer matrix (or function) of the sys-
tem Eq. (4) is defined as;

G(s) = C(sI − A)−1B + D (5)

Let λj(M), σj(M) denote the jth eigenvalue
and jth singular value of a matrix M respec-
tively, where σj(M) =

√
λj (MMT ).A is stable if

Re (λj(A)) < 0 for all j. If A is stable H∞-norm
of the transfer matrix G(s) is given as follows;

∥G∥∞ = sup
Re s>0

σmax(G(s)) = sup
ω∈R

σmax(G(iω))

(6)
where supω∈R denotes least upper bound for all
real frequencies ω.

Let J2n×2n =
[

0n In

−In 0n

]
be a skew-symmetric

matrix where 0n, In are n-dimensional zero and
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identity matrices, respectively. H2n×2n is called
a Hamiltonian matrix, if HJ is symmetric, such
that (HJ)T = HJ . The definition confirms that
the distinctive block structure form of Hamilton-
ian matrices is as follows;

H =
[

H11 H12
H21 −HT

11

]
, where H12 and H21 are

symmetric. For the system Eq.(4) the matrices
WC(t) and WO(t) are called controllable and ob-
servable Grammians, respectively, defined as fol-
lows;

WC(t) =
∫ t

0
eAτ BBT eAT τ dτ

WO(t) =
∫ t

0
eAT τ CT CeAτ dτ (7)

which satisfy the Lyapunov equations as follows;

AT WO + WOA + CT C = 0
AWC + WCAT + BBT = 0 (8)

and singular values of WC(t)WO(t) are called Han-
kel singular values of the system Eq.(4) which
describes the energy of each state of the system
Eq.(4) and are denoted as σHj for j = 1, 2, . . .

Any positive definite matrix M can be expressed
in the form of

M = LLT (9)

where L is a lower triangular matrix. The expres-
sion Eq.(9) and the matrix L are called Cholesky
factorization and Cholesky factor of M , respec-
tively. Let M ∈ Rm×n and rank(M) = r =
min(m, n), the expression

M = UΣV T (10)

is called singular value decomposition of the ma-
trix M . Here U and V are orthogonal matrices
of type of m × m and n × n, respectively, that
is, UT U = Im, V T V = In and Σ is a half-diagonal
matrix which contains singular values (σ1, . . . , σr)
of the matrix M . Singular value decomposition
can be formulated clearly as follows for a matrix
M ,

M = UΣV T = [ u1 | u2 | · · · | um ]︸ ︷︷ ︸
u(m×m)

×



σ1 0 . . . 0 0 . . . 0

0 . . . 0 0 0 . . . 0
... 0 σr

. . . . . . . . . ...
...

... . . . 0 . . . . . . ...
0 0 . . . . . . 0 . . . 0


︸ ︷︷ ︸

Σ(m×n)


vT

1
vT

2
...

vT
n


︸ ︷︷ ︸
V T (n×n)

.

(11)

3. Bisection method

Let γ > 0 related Hamiltonian matrix Mγ for sys-
tem Eq. (4) is given as follows;

Mγ =
[

A 0
0 −AT

]
+

[
B 0
0 −CT

]
×[

−D γI
γI −DT

] −1 [
C 0
0 BT

]
=

[
A − BR−1DT C −γBR−1BT

γCT S−1C −AT + CT DR−1BT

]
(12)

where R = DT D − γ2I and S = DDT − γ2I.
For special case

D = 0, Mγ =
[

A 1
γ BBT

− 1
γ CT C −AT

]
.

Prior to initiating the bisection algorithm, it is es-
sential to establish clear lower (γlb) and upper (γb)
bounds. While one option is to set γlb = 0 and
γub to a sufficiently large value before proceed-
ing with the bisection protocol, this approach can
be time-consuming and inefficient. To streamline
this process and determine suitable bounds, we
can leverage Hankel singular values, as derived
by Enns [20] and Glover [21], which are outlined
below:

γlb = max
{

σmax(D),
√

Tr (WCWO) /n

}
γub = σmax(D) + 2

√
nTr (WCWO) (13)

or alternative formulas;

γlb = max {σmax(D), σH1}

γub = σmax(D) + 2
n∑

j=1
σHi (14)

here, σHi s represents the Hankel singular values,
while WO and WC stand for the observability and
controllability Grammians of the system Eq.(4)
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Assuming A is stable and ε > 0 is the error mar-
gin for system Eq.(4), the bisection algorithm is
outlined as follows:
Step 1. Determine the lower and upper bounds
for the bisection algorithm, where

γlb = max {σmax(D), σH1}

γub = σmax(D) + 2
n∑

j=1
σHi

Step 2. Set γ = (γlb + γub) /2
If γub − γlb < ε

2 , end.
Step 3. Calculate Mγ .
Step 4. Check eigenvalues of Mγ . If there exists
a purely imaginary eigenvalue set γlb = γ. Else
set γub = γ.

4. Extended balanced singular
perturbation method

The extended balanced singular perturbation
method, as introduced in the Introduction, com-
bines the principles of both balanced truncation
and singular perturbation methods, as described
below.
Suppose we have an asymptotically stable, min-
imal realization of the system Eq.(4) as defined
in equation Eq.(5). The algorithm for the bal-
anced truncation approach is implemented using
the following MATLAB commands:
Step 1. Find controllable and observable Gram-
mians WC and WO of the given system through
the Lyapunov equtions with the MATLAB com-
mands

Wc=gram(sys,’c’)
Wo=gram(sys, ’o’).

Step 2. Find the Cholesky factors LC and LO of
WC and WO, respectively, such that

WC = LCLT
C

WO = LOLT
O

with the MATLAB commands
Lc = chol(Wc,′ lower′)
Lo = chol(Wo,′ lower′).

Step 3. Find the singular value decomposition
of LT

OLC such that
LT

OLC = UΣV T

with the MATLAB command
[U, S, V ] = svd(Lo ’ *Lc).

Step 4. Make the transformation T = LCV Σ−1/2

and obtain coefficient matrices of balanced system
by similarity transformation as follows,

Ã = T −1AT, B̃ = T −1B, C̃ = CT, D̃ = D

where G̃(s) =
[

Ã | B̃

−C̄ | D̃

]
and find control-

lable and observable Grammians of the balanced
system W̃C and W̃0 respectively which are given
as below,

W̃C = T −1WCT −T

W̃O = T T WOT

here W̃C = W̃O = Σ = diag (σ1, σ1, . . . , σn).

Let G̃(s) =

 Ã | B̃
− − −
C̃ | D̃

 be the balanced sys-

tem obtained by balanced truncation approach,
the algorithm of singular perturbation method is
given as follows;
Step 1. Separate the balanced system G̃(s) = Ã | B̃

− − −
C̃ | D̃

 ⇔
[

Σ1 0
0 Σ2

]
into two subsys-

tem as slow(powerful ) and fast(weak). Choose
A11 as coefficient matrix of the slow part where
A11, Σ1 ∈ Rr×r, for r ≪ n. Rearrange the matri-
ces Ã, B̃, C̃, D̃ in block matrix form as seen below,

Ã =
[

A11 A12
A21 A22

]
, B̃ =

[
B1
B2

]
C̃ =

[
C1 C2

]
, D̃ = D

add perturbation parameter µ and rewrite G̃(s)
as the followings,

[
ẋ1

µẋ2

]
=

[
A11 A12
A21 A22

] [
x1
x2

]
+

[
B1
B2

]
u

y =
[

C1 C2
] [

x1
x2

]
+ Du.

Step 2. Eliminate the fast(weak) part µ = 0 and
find the system as;

ẋ1 = A11x1 + A12x2 + B1u

0 = A21x1 + A22x2 + B2u

y = C1x1 + C2x2 + Du

and weak variable as,
x2 = −A22

−1A21x1 − A22
−1B2u.

Step 3. Substitute x2 to the other equations to
get the final version of the system which denoted
by Gf (s) as is below

Gf (s) =

 Af | Bf

− − −
Cf | Df

 =
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Table 1. Algorithm of extended balanced singular perturbation method step by step.

Balanced Truncation Approach Singular Perturbation Method
Step 1. Find Grammians of the original sys-

tem (WC , WO)
Separate the balanced system G̃(s)
into two parts as; strong and weak

Step 2. Find Cholesky factors of Grammi-
ans (LC , LO)

Eliminate the weak part taking µ =
0 and find weak variable x2

Step 3. Find singular value decomposition
of LT

OLC = UΣV T
Substitute x2 in other equations, get
the final version of the system Gf (s)

Step 4. Make the transformation T =
LCV Σ−1/2 and find the balanced
system G̃(s)

Obtain the H∞-norm of ∥Gf (s)∥∞

Error Analysis Compute actual and theoretical infinity error bounds and apply the er-
ror tolerance criterion which says actual bound must be less than or
equal to theoretical bound

 A11 − A12A22
−1A21 | B1 − A12A22

−1B2
− − − − − − − − − − − − − − − − −
C1 − C2A−1

22 A21 | D − C2A22
−1B2


Step 4. Obtain the H∞-norm of ∥Gf (s)∥∞ in
MATLAB.
The algorithm of extended balanced singular per-
turbation method is summarized in Table 1 as
follows.
To analyze the error tolerance first we define mod-
elling error transfer function as follows;

Er = [G(s) − Gf (s)] (15)

then, we have a criterion about sufficiency of error
tolerance which is based on comparison of two er-
ror bounds called actual infinity error bound and
theoretical infinity error bound defined in [22,23]
given as below;

• Actual infinity error bound: ∥Er∥∞ =
∥[G(s) − Gf (s)]∥∞

• Theoretical infinity error bound:
2

∑n
i=r+1 σi

• The criterion:

∥Er∥∞ ≤ 2
n∑

i=r+1
σi

5. Application to a numerical example

Example 1. The system two-input, twelve-state,
two-output model of an automobile gas turbine
[24].

For more detail and examples see [25]. Consider
the system Eq.(4) with the coefficient matrices
given as follows:
When employing the bisection method for this
problem, we obtain the values presented in Ta-
ble 2. The first and the last columns in the ta-
ble pertain to number of iteration that denoted
as Itr briefly and verifying the presence of purely

imaginary eigenvalues that denoted as Eig briefly,
respectively.

Table 2. Related values of Example 2.

Itr γlb γub γ Eig
1 3.0368 36.4417 19.7397 no
2 3.0368 19.7397 11.3881 yes
3 11.3881 19.7397 15.5637 no
4 11.3881 15.5637 13.4759 yes
5 13.4759 15.5637 14.5198 no
6 13.4759 14.5198 13.9979 no
7 13.4759 13.9979 13.7369 yes
8 13.7369 13.9979 13.8674 no
9 13.7369 13.8674 13.8022 no
10 13.7369 13.8022 13.7695 no
11 13.7369 13.7695 13.7532 no
12 13.7369 13.7532 13.7450 no
13 13.7369 13.7450 13.7410 no
14 13.7369 13.7410 13.7389 no
15 13.7369 13.7389 13.7379 yes
16 13.7379 13.7389 13.7384 yes
17 13.7384 13.7389 13.7387 yes
18 13.7387 13.7389 13.7388 no
19 13.7387 13.7388 13.7388 yes
20 13.7388 13.7388 13.7388

After 20 iterations γub and γlb are so close, the
all next iterations will be automatically assigned
the same value by MATLAB and error margin
ε is also will be satisfied. Thus, H∞ norm of
transfer function of the given problem found as
∥G(s)∥∞ ≈ 13.7388. Now, if we apply balanced
truncation approach algorithm step by step finally
we get

G̃ (s) =

 Ã | B̃
− − − − −−

C̃ | D̃

 where;

and Hankel singular values of the original system
as,

σ (G) = (7.1833 1.4904 0.9279 0.5876 0.4633
0.2368 0.1613 0.0936 0.0006 0 0 0) .
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A =



0 1 0 0 0 0 0 0 0 0 0 0
−0.202 −1.15 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 −2.36 −13.6 −12.8 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1.62 −9.4 −9.15 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −188 −111.6 −116.4 −20.8


B =

[
0 1.0439 0 0 −1.794 0 0 1.0439 0 0 0 −1.794
0 4.1486 0 0 2.6775 0 0 4.1486 0 0 0 2.6775

]T

C =
[

0.264 0.806 −1.42 −15 0 0 0 0 0 0 0 0
0 0 0 0 0 4.9 2.12 1.95 9.35 25.8 7.14 0

]
D = 0

Ã =



-0.1647 0.0185 0.1116 -0.0528 -0.4698 0.2334 0.0559 -0.0336 0.0179 -0.0049 -0.0001 0

-0.0071 -0.8293 -0.2913 0.3813 0.2261 -0.0513 -0.7095 -1.6433 0.0079 -0.0065 0.0008 -0.0003

-0.0605 0.6599 -0.1368 0.1909 1.9093 -0.6958 0.0074 0.3709 -0.0453 0.0129 0.0001 0

-0.0676 -0.2951 -0.1328 -0.1111 0.0156 0.2976 0.3495 0.4641 0.0339 -0.0075 -0.0005 0.0001

-0.4673 -0.3296 -1.3820 -1.3904 -5.8806 3.7574 1.4509 -1.1650 0.4207 -0.1141 -0.0018 0.0004

0.2332 0.0786 0.4107 0.5352 3.7468 -2.6771 -2.2760 1.6069 -0.3983 0.1083 0.0016 -0.0004

-0.0103 0.7485 -0.3240 0.0251 -0.4105 1.6010 -1.2640 -2.6186 -0.0926 0.0100 0.0033 -0.0010

0.0416 1.6502 -0.7122 0.3698 1.9050 -1.8933 -4.2162 -11.6604 0.3158 -0.1526 0.0113 -0.0035

-0.0144 -0.0545 0.0096 -0.0499 -0.3612 0.3313 0.1843 0.9343 -6.2677 3.6203 0.0367 -0.0080

-0.0032 -0.0197 0.0056 -0.0128 -0.0838 0.0753 0.0693 0.3210 -3.5719 -13.7547 -0.0809 0.0128

-0.0002 0 -0.0002 -0.0005 -0.0042 0.0040 -0.0004 0.0010 -0.0948 -0.5578 -0.2477 0.1440

0 -0.0001 0.0001 0.0001 0.0011 -0.0011 0.0005 0.0011 0.0177 0.0725 0.1343 -0.9059


B̃ =

[
-0.4823 1.4882 -0.5001 0.0220 -0.5164 0.2995 -0.6184 -1.3307 0.0274 0.0129 -0.0003 0.0002

-1.4609 -0.5073 -0.0613 -0.3607 -2.2765 1.0855 0.1595 0.6417 -0.0796 -0.0200 -0.0008 0.0002

]T

C̃ =
[

-0.5368 1.4993 0.0399 -0.3178 -0.8139 0.3740 0.6374 1.3230 0.0181 -0.0010 -0.0008 0.0002

-1.4417 -0.4735 0.5023 -0.1721 -2.1879 1.0621 0.0399 -0.6574 0.0823 -0.0238 -0.0001 0

]
D̃ = 0

It is seen clearly in the Figure 1 the first three
Hankel singular values are much greater than the
others so we choose r = 6 and apply extended bal-
anced singular perturbation method. First sep-
arate the balanced system G̃(s) into two parts
as slow(powerful) and fast(weak) and rewrite the
system for perturbation parameter µ = 0 as is
given below;

ẋ1 = A11x1 + A12x2 + B1u

0 = A21x1 + A22x2 + B2

y = C1x1 + C2x2 + Du

where;

A11 =



−0.1647 0.0185 0.1116 −0.0528 −0.4698 0.2334
−0.0071 −0.8293 −0.2913 0.3813 0.2261 −0.0513
−0.0605 0.6599 −0.1368 0.1909 1.9093 −0.6958
−0.0676 −0.2951 −0.1328 −0.1111 0.0156 0.2976
−0.4673 −0.3296 −1.3820 −1.3904 −5.8806 3.7574

0.2332 0.0786 0.4107 0.5352 3.7468 −2.6771



A12 =



0.0559 −0.0336 0.0179 −0.0049 −0.0001 0
−0.7095 −1.6433 0.0079 −0.0065 0.0008 −0.0003

0.0074 0.3709 −0.0453 0.0129 0.0001 0
0.3495 0.4641 0.0339 −0.0075 −0.0005 0.0001
1.4509 −1.1650 0.4207 −0.1141 −0.0018 0.0004

−2.2760 1.6069 −0.3983 0.1083 0.0016 −0.0004



A21 =



−0.0103 0.7485 −0.3240 0.0251 −0.4105 1.6010
0.0416 1.6502 −0.7122 0.3698 1.9050 −1.8933

−0.0144 −0.0545 0.0096 −0.0499 −0.3612 0.3313
−0.0032 −0.0197 0.0056 −0.0128 −0.0838 0.0753
−0.0002 0 −0.0002 −0.0005 −0.0042 0.0040

0 −0.0001 0.0001 0.0001 0.0011 −0.0011


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Figure 1. Hankel singular values of the original system.

A22 =



−1.2640 −2.6186 −0.0926 0.0100 0.0033 −0.0010
−4.2162 −11.6604 0.3158 −0.1526 0.0113 −0.0035

0.1843 0.9343 −6.2677 3.6203 0.0367 −0.0080
0.0693 0.3210 −3.5719 −13.7547 −0.0809 0.0128

−0.0004 0.0010 −0.0948 −0.5578 −0.2477 0.1440
0.0005 0.0011 0.0177 0.0725 0.1343 −0.9059



B1 =



−0.4823 −1.4609
1.4882 −0.5073

−0.5001 −0.0613
0.0220 −0.3607

−0.5164 −2.2765
0.2995 1.0855


B2 =



−0.6184 0.1595
−1.3307 0.6417

0.0274 −0.0796
0.0129 −0.0200

−0.0003 −0.0008
0.0002 0.0002



C1 =
[

−0.5368 1.4993 0.0399 −0.3178 −0.8139 0.3740
−1.4417 −0.4735 0.5023 −0.1721 −2.1879 1.0621

]

C2 =
[

0.6374 1.3230 0.0181 −0.0010 −0.0008 0.0002
0.0399 −0.6574 0.0823 −0.0238 −0.0001 0

]
D = 0

and from the second equation find weak vari-
able as, x2 = −A22

−1A21x1 − A22
−1B2u.

Continue from Step3 make necessary algebraic
matrix operations and finally get, Gf (s) = Af | Bf

−− −− −−
Cf | Df

 where;

Af =



−0.1690 0.0951 0.0784 −0.0663 −0.6557 0.6759
−0.0058 −1.1996 −0.1312 0.3503 0.2631 −0.5240
−0.0513 0.5609 −0.0938 0.2259 2.3058 −1.5693
−0.0772 −0.0122 −0.2554 −0.1296 −0.3903 1.3889
−0.5873 1.7458 −2.2822 −1.7701 −11.0375 15.9797

0.4156 −3.1167 1.7961 1.1096 11.5963 −21.3316



Bf =



−0.5472 −1.4593
1.7922 −0.6034

−0.4144 −0.0472
−0.2146 −0.3261
−2.2766 −2.2466

3.0081 1.0291


Cf =



−0.5419 −1.4612
1.8765 −0.2345

−0.1233 0.3985
−0.3049 −0.2438
−1.0190 −3.0315

1.1786 2.9523



T

Df =
[

−0.3115 0.0807
−0.2056 −0.0223

]

Obtain the H∞-norm in MATLAB as
∥Gf (s)∥∞ = 13.7413 which is so close to the H∞−
norm of the original system ∥G(s)∥∞ = 13.7388.
Let’s now assess the error tolerance between the
original system and the reduced-order balanced
model using both actual and theoretical infinity
error bounds, as outlined below.

∥Er∥∞ = ∥[G(s) − Gf (s)]∥∞ = 0.3774

and for r = 6 and n = 12,

2
n∑

i=r+1
σi =2(0.1613 + 0.0936 + 0.0006

+ 0 + 0 + 0) = 0.5110
It is obvious that ∥Er∥∞ ≤ 2

∑n
i=r+1 σi thus we

can say that error tolerance is in a satisfied level.

6. Conclusion

In this research, we applied both the bisection
method and the extended-balanced singular per-
turbation method to analyze a linear dynamic sys-
tem with the parameter D set to 0 . Our goal was
to compute the H∞− norm of its transfer func-
tion. We conducted a numerical experiment us-
ing both methods and performed a detailed error
analysis. The outcomes of our investigation re-
vealed that the bisection method performed sat-
isfactorily, with error tolerances falling within an
acceptable range after a certain number of itera-
tions. Similarly, the extended-balanced singular
perturbation method demonstrated satisfactory
performance, as the error tolerances met the crite-
ria for investigating the accuracy of the reduced-
order models. According to the H∞-norms com-
puted by methods, we conclude that bisection
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method is a slightly accurate than extended-
balanced singular perturbation method. Utilizing
bisection and extended balanced singular pertur-
bation methods, the research not only provides
detailed algorithms and error analysis but also
demonstrates practical application through a nu-
merical example involving an automotive gas tur-
bine model, enhancing the precision and reliabil-
ity of H∞-norm computations in real-world sys-
tems.
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This paper presents a novel approach for tuning a fuzzy-based
proportional-integral-derivative (PID) controller to enhance the control
performance of a chemical process control system. The proposed approach
combines the advantages of fuzzy- PID and interpolation to achieve improved
control performance. Properly tuned PID controllers can help maintain
process stability, minimize deviations from setpoints, and ensure efficient
operation in industrial systems. Fuzzy logic allows for the incorporation
of expert knowledge and linguistic rules, enabling the controller to handle
uncertain and imprecise process information. Fuzzy PID controllers combine
fuzzy logic and conventional PID control to enhance control performance,
particularly in systems with complex or nonlinear dynamic such as chemical
plant. It dynamically adjusts the PID parameters—proportional gain (Kp),
integral gain (Ki), and derivative gain (Kd)—based on error e(t) and change
of error ∆e(t). Interpolation plays a crucial role in this context by filling
in the gaps or handling situations not explicitly covered by the fuzzy rules.
Comparative studies are conducted to evaluate the performance of the fuzzy
PID controller against conventional PID controllers and other advanced
control techniques. It is demonstrated that the synergy between fuzzy logic
and interpolation not only enhances control performance but also offers a more
intuitive and adaptable solution for addressing the complexities of modern
chemical process control systems.
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1. Introduction

Process control systems should be designed to
ensure the efficient and safe operation of chemical
processes in industries such as oil refining,
petrochemicals, pharmaceuticals, and food
processing. These systems monitor and regulate
process variables such as temperature, pressure,
flow rate, level and concentration with the aim of
achieving optimal process performance, product
quality, and resource utilization. The complexity
of chemical processes, often characterized by
nonlinear dynamics, time delays, and interactions

between various process variables, poses
significant challenges. The primary objective
of a chemical process control system is to
maintain these variables within desired operating
ranges, despite disturbances and uncertainties
in the process environment. Traditionally,
control systems in chemical processes have
relied on classical control techniques such as
Proportional-Integral-Derivative (PID) control.
PID controllers are widely used owing to their
inherent simplicity, ease of implementation,
and familiarity among control engineers. A
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PID controller calculates a control action based
on the error between the desired setpoint
and the actual process variable, taking into
account the proportional, integral, and derivative
components. However, traditional PID control
approaches have limitations when applied to
complex chemical processes. These limitations
include difficulty in handling nonlinearities,
interactions, and time-varying dynamics, as well
as challenges in tuning the controller parameters
for optimal performance. Consequently, there is
a need for advanced control strategies that can
address these limitations and enhance the control
performance of chemical process systems.

Several classical methods pertaining to PID
control have been proposed to achieve desired
controller performance. Ziegler and Nichols
in 1942 [1], first introduced the method of
PID tuning. The tuning method described
by them is a heuristic approach that provides
simple and practical technique for initial
tuning but had limitations in terms of control
performance and robustness. To overcome
the limitations of the Ziegler-Nichols (Z-N)
method, researchers focused on developing more
sophisticated techniques. Passivity-based control
strategy [2] offers a promising alternative for
controlling generalized passive systems, providing
stability, robustness, and adaptability to different
system dynamics. Cohen and Coon’s method [3]
focuses on achieving better control performance
by accounting for the time delay, which can
significantly impact the system’s response.
Despite of some limitations, Z-N is one of the
most widely used PID tuning method because of
its simplicity. A modified Ziegler-Nichols method
is proposed in [4] by refining the calculation of
ultimate gain, ultimate period and tuning rules.
An Internal Mode Control (IMC) based design
was proposed in [5].

This seminal work introduced the concept of
Internal Model Control (IMC) and provided
a comprehensive framework for designing PID
controllers based on this innovative control
strategy. However, the paper mainly focused
on linear systems, and the robustness analysis
was limited to linear uncertainties. Skogestad
and Postlethwait [6] proposed the modified
IMC method, which aimed to achieve the
desired closed-loop response by designing an
internal model that mimics the process dynamics.
The IMC method showed improved disturbance
rejection and robustness compared to the
Ziegler-Nichols method. A comprehensive

reference guide that focuses on providing
practical insights and guidelines for tuning
proportional-integral-derivative (PID) controllers
has been presented in [7]. Detailed review
of various PID controller tuning method has
been discussed in [8]. In order to reduce the
time and knowledge of tuning process, Åström
and Hägglund [9] proposed method that focuses
on the automatic tuning of simple regulators,
likely referring to control systems that use basic
feedback control techniques like proportional,
integral, and derivative (PID) control. The main
emphasis of the paper is on achieving desired
phase and amplitude margins for stability and
performance of control systems. Author went
further to explore more of autotuning method
and presented an experimental comparison of
various PID autotuners. The objective of this
study is likely to evaluate the performance and
effectiveness of different autotuning methods in
real-world scenarios [10].

In addition to aforementioned methods for
tuning PID controllers, there are numerous
other. Some of the popular tuning methods
are Model-based Tuning, ‘Trial and error’,
Optimization Techniques etc. However, in many
real-world scenarios, the system’s behavior may
be complex, uncertain, or difficult to model
accurately. In such cases, expert knowledge from
experienced operators or domain experts can be
valuable in improving the control performance.

Fuzzy logic has been used to incorporate the
expert knowledge for the PID controller tuning.
Uçak. K introduced the concept of fuzzy
and proposed a novel adaptive multi-input
multi-output (MIMO) fuzzy PID controller for
time delay systems, building upon prior work on
single-input single-output (SISO) system. The
study evaluates the controller’s performance in
stabilization, tracking, and disturbance rejection
against classical PID controllers. Results
demonstrate the effectiveness of the proposed
adaptation mechanism, suggesting its successful
application in delay systems [11]. An another
article showing the usefulness of integrated
fuzzy-PI/PID control has been authored by
Demirtas and Papanikolopoulos [12]. In this, AC
voltage controller capable of operating at different
power factors presents a power factor correction
(PFC) scheme using various controllers (PI, fuzzy
logic PI, and fractional order PI).
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Figure 1. PID control system.

A single-phase boost converter is modeled in
MATLAB/Simulink, and a filter is designed to
minimize THD. The proposed model demonstrate
the combination of fuzzy and PI controllers
achieves the best power factor control. Tzafestas
and Papanikopoulos [13] were among the first who
introduced concept of Fuzzy-tuned PID controller
design.

They suggested enhancing the performance of
a closed-loop system by making adjustments to
PID parameters. This was accomplished through
a fuzzy matrix, encapsulating the operator’s
experiential insights within a concise rule base.
In [14], [15] researchers introduced an auto-tuning
algorithm for PID controller using Fuzzy logic.
This algorithm aimed to dynamically adjust PID
parameters in real-time, utilizing the generated
error signal from the closed-loop system as
input. An observer and error based adaptive
proportional-integral-derivative (PID) controller
has been introduced for type-2 fuzzy based system
[16].

Numerous other scholars have also adopted a
similar type of approach, introducing error to
implement expert insights within the PID tuning
process. The fuzzy tuned PID controller has some
advantages over other tuning methods. Fuzzy
logic-based tuning methods provide an effective
means of adjusting the gains of a PID controller
while minimizing overshoot, settling time, and
steady-state error, particularly in nonlinear and
complex systems. Contrary to other tuning
methods, the fuzzy logic approach does not need
an exact mathematical model of the system and
can handle non-literariness and uncertainties in
the process. The paper introduces a novel
approach to controller tuning by combining
both fuzzy logic and computational techniques
to optimize the PID controller parameters.
Fuzzy logic for rule-based decision-making, and
interpolation techniques are combined in this

work. This represents a unique approach, which
has not been encountered in research arena.

A PID controller is a type of feedback control
system commonly used in engineering and
industrial processes (Figure 1). It continuously
measures the difference between a desired
set-point and the current value of a controlled
variable, and adjusts an output signal to bring
the two values closer together. The first term
of PID provides an output proportional to the
error signal, the integral term sums up the past
errors to correct for any steady-state errors, and
the derivative term predicts the future error based
on the current rate of change. By merging all
three parameters, a PID controller can achieve
stable and accurate control of a wide range
of systems, from simple temperature control to
complex manufacturing processes.

In recent years, various tuning methods based
upon fuzzy logic have been proposed for
optimizing the performance of fuzzy logic
controllers. Traditional approaches, such as
heuristic tuning and optimization algorithms,
often rely on iterative procedures and expert
knowledge to define the fuzzy ranges. These
methods, while effective, can be time-consuming
and may not generalize well to different problem
domains. In contrast, the proposed method
leverages interpolation to set the fuzzy ranges,
providing a unique and efficient alternative to
conventional tuning techniques. This approach
simplifies the tuning process by reducing the
dependency on expert intervention. Moreover,
it ensures controller parameters remain within
specified bounds, a crucial consideration for safety
and practicality in real-world applications. A
third-order reactor plant has been taken into
consideration as the system. Aim of this work is
to maintain the concentration of effluent in each
at a certain desired level. Simulation has been
done using MATLAB software to get the desired
response of the system subjected to step input.
The results were observed and compared with few
existing relevant literature.

1.1. Tuning of PID controller

PID controller tuning refers to the process
of adjusting the parameters of the controller
(proportional gain, integral time constant, and
derivative time constant) to achieve the desired
performance of the control system. The process
of tuning involves adjusting the parameters based
on the response of the system to different inputs,
and is done through many methods.
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Figure 2. General Structure of
Fuzzy Logic Control System

The importance of tuning a PID controller is
rooted in its crucial role in ensuring the effective
and efficient functioning of a control system. If
the controller is not tuned correctly, the system
may be unstable or oscillate, leading to inefficient
operation or even damage to the system. On the
other hand, a well-tuned PID controller can help
maintain stable control of the process variable,
reduce overshoot, improve settling time, and
improve the overall performance of the system.

1.2. Fuzzy-tuned PID controller

Fuzzy logic is mathematical tool to deal with
uncertainty in the system. In traditional binary
logic, propositions are either true or false, but in
fuzzy logic, propositions can be partially true or
partially false, and the degree of truth or falsity
is expressed using a range of values between 0
and 1. Primary benefit of fuzzy logic is its
knowledge, that is efficient to handle imperfect
and ambiguous data. Fuzzy logic is appropriate
for modeling complex systems that are difficult to
describe using traditional mathematical models.
It allows for the use of linguistic variables, which
can be more intuitive and easier to understand
than traditional mathematical models. A typical
Fuzzy logic control structure is depicted in Figure
2.

It takes crisp value as inputs variables. After
fuzzification, processing with Fuzzy Inference
Engine (FIE) and defuzzification, again desired
crisp output is obtained. Fuzzy knowledge base
together with decision form FIE in the control

structure. A fuzzy tuned PID controller is
a type of proportional-integral-derivative (PID)
controller that uses fuzzy logic to tune its
parameters. PID controllers are widely used in
control systems to maintain a desired set-point by
adjusting the output as per the difference between
the set-point and the measured process variable.
However, the performance of a PID controller is
highly dependent on its tuning parameters, which
can be difficult to determine for complex systems.
Fuzzy tuned PID controllers use fuzzy logic to
determine the optimal tuning parameters for the
PID controller based on the current state of the
system. This approach can be more effective
than traditional PID tuning methods because it
takes into account the complexity and uncertainty
of the system being controlled. Additionally,
fuzzy tuned PID controllers can adapt to changing
conditions in the system, making them more
robust and effective in real-world applications.

2. System description

A chemical process control system typically
involves monitoring and adjusting the variables
in a chemical reaction to optimize the output. In
such a control industry it is required commonly to
maintain the concentration of solute in a solvent.
In the proposed work, the n-numbers of cascaded
tanks are arranged in series, with the first tank
receiving the solvent and the solute as shown in
Figure 3. The output of the first tank is fed into
the second tank, where further mixing occurs.
The output of second tank is then fed into the
third tank, where further mixing occurs. This
process continues up to nth tank of the system
where final mixing occurs. The concentration of
solute in the solvent in final tank is measured and
the signal is sent to controller, which adjusts the
flow rate of the solute feed to the fist tank in order
to maintain the desired concentration.

2.1. Modeling of the system

In order to obtain simple mathematical model
of the aforementioned system, volume-flow rate
and corresponding volumes are assumed to be
constant. Writing mass-balance equation for first
two tank.
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Figure 3. Cascaded ’n’ number of tanks.

T1
dC1

dt
= C0 − C1, (1)

T2
dC2

dt
= C1 − C2, (2)

where, T1 = V1/q0 and T2 = V2/q0. In the
above equation V , C and q0 represents volume,
concentration and inlet flow rate of the both
the tanks in proper unit with subscript number
denoting the tank number. Transforming the
above equations in Laplace domain yields.

C1

C0
=

1

T1s+ 1
, (3)

C2

C1
=

1

T2s+ 1
. (4)

The effect of C0 on C2 can be computed as:

C2

C0
=

1

T1s+ 1
× 1

T2s+ 1
. (5)

For ’n’ number of tanks in series, the generalized
equation can be expressed as;

Cn

C0
=

1

(T1s+ 1)(T2s+ 1)........(Tns+ 1)
. (6)

Order of the system described by the equation (6)
will vary with the value of ’n’ or number of tanks.
for the proposed work a 3-tank process control
system has been considered, where, values of T1,
T2 and T3 is assumed to be 1,3 and 5 respectively.
Transfer function of the aforementioned system
can be written as:

G (s) =
1

(S + 1)
× 1

(S + 3)
× 1

(S + 5)
. (7)

Subsequently, rewritten as:

G (s) =
1

(S + 1) (0.33S + 1) (0.2S + 1)
. (8)

2.2. Design of fuzzy tuned PID controller

The solute concentration in the solvent is
measured continuously and the signal is
sent back through feedback to a fuzzy PID
(Proportional-Integral-Derivative) controller.
The fuzzy PID controller uses a set of rules
and linguistic variables to adjust the flow rate
of the solute feed to the first tank, in order to
maintain the desired solute concentration in the
solvent. The controller takes into account factors
the current concentration error the rate of change
of the error. The proposed structure of Fuzzy-PID
control has been shown in Figure 4.

Figure 4. Fuzzy-PID controller for a
chemical mixing plant

The design process involves tuning of PID
controller parameters with the help of Fuzzy
logic controller, which takes ’error(e)’ and ’rate
of change of error(ec)’ as inputs and provide
Kp, Ki and Kd as output. Hence, there are
total of five linguistic variables. For each
of these variables total of seven fuzzy values
(NL,NA,NT,ZE,PT,PA,PL) have been chosen.
The range of the ’e’ and ’ec’ are between -3 and
3, whereas, by formulating a kind of interpolation,
fuzzy values for Kp,Ki and Kd are kept between
0 and 1. Aim of performing interpolation is
to keep the values of the variable within some
range. In the following equations, interpolation
has been applied to keep the value of parameters
(Kp, Ki and Kd) between 0 to 1. As the
result, parameters are scaled to a common range,
enabling a consistent, normalized and controlled
analysis.
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The determination of these ranges involves the
following two steps:

• Identification of Extreme Values:
The maximum and minimum values of
all the three parameters of controller are
identified.

• Normalization Process Once the
minimum and maximum values are
identified, the values of controller
parameter are normalized to the range
[0, 1] using the following equations:

Kp =
Kp,0 −Kp,min

Kp,max −Kp,min
(9)

Ki =
Ki,0 −Ki,min

Ki,max −Ki,min
(10)

Kd =
Kd,0 −Kd,min

Kd,max −Kd,min
(11)

Kp,0, Ki,0 and Kd,0 are initially estimated values
of Kp, Ki and Kd respectively. Fuzzy rule base
for the three PID parameters are shown in Table
1, 2 and 3.

Table 1. Rule base for proportional
gain, Kp

e/ec NL NA NT ZE PT PA PL
NL PL PL PA PA PT ZE ZE
NA PL PL PA PT PT NT NT
NT PA PA PA PT ZE NT NT
ZE PA PA PT ZE NT NA NA
PT PT PT ZE NT NT NA NA
PA PT ZE NT NA NA NL NL
PL PT ZE NA NA NA NL NL

Table 2. Rule base for proportional
gain, Ki

e/ec NL NA NT ZE PT PA PL
NL NL NL NA NA NT ZE ZE
NA NL NL NA NT NT ZE ZE
NT NL NA NT NT ZE PT PT
ZE NA NA NT ZE PT PA PA
PT NA NT ZE PT PT PA PL
PA ZE ZE PT PT PA PL PL
PL ZE ZE PT PA PA PL PL

Table 3. Rule base for proportional
gain, Kd

e/ec NL NA NT ZE PT PA PL
NL PT NT NL NL NL NA PT
NA PT NT NL NA NA NT ZE
NT ZE NT NA NA NT NT ZE
ZE ZE NT NT NT NT NT ZE
PT ZE ZE ZE ZE ZE ZE ZE
PA PL NT PT PT PT PT PL
PL PL PA PA PA PT PT PL

Figure 5. Flow chart of the control action.

2.3. FIS computational model and control
action

Entire scheme of control action has been shown
in the form of flow chart in the Figure 5. A fuzzy
inference engine (FIE) employs fuzzy logic to
approximate human reasoning/experience. Two
input “error(e)” and “rate of change of error(ec))”
have been taken as input variables as well as Kp,
Ki and Kd as output. Triangular membership
function has been chosen for both input and
output variables. For the illustration purpose
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range of the membership function for ’e’ and ’Kp’
have been shown in the Figure 6.

(a) error(e)

(b) Kp

Figure 6. Membership function
plots with its range for (a)error(e)
and (b) proportionality constant
(Kp)

Fuzzy logic uses linguistic variables, which are
variable that take on values in a fuzzy set.
On the basis of these variables linguistic rules
(rule base) are made that plays a crucial role
in the interpretation of fuzzy logic systems
by defining the meaning of linguistic variables
and interpreting the output in a way that is
understandable to humans.

A number of such rules are made to provide
the direction to controller for appropriate action.
With seven assigned membership values to each
variable, a total of 49 rules base have been
proposed to completely describes the control
action. These rules for PID coefficients (Kp, Ki

and Kd) are summarized in the form

(a) Kp

(b) Ki

(c) Kd

Figure 7. Surface view of (a) Kp

(b)Ki and (c) Kd

of three tables. The variations of these with
respect to inputs (e and ec) are shown as the form
of surface view in Figure 7.

Table 4. Comparison in terms of few
performance indicators of different
methods.

Method Tr Ts %Mp ITAE
Salem 9 10 0.2 0.9405
Z-N 0.5 5 60 7.905
CA 0.8 1.6 2 50

Proposed 1.7 2 0.8 0.63



362 Devashish et.al. / IJOCTA, Vol.14, No.4, pp.355-364 (2024)

Figure 8. Response of system
without any disturbance.

Figure 9. Disturbance to the system

Figure 10. Response of system with
some disturbance.

Figure 11. Response of system
without using interpolation.

3. Results and discussions

The proposed Fuzzy-PID process control system
is designed to maintain the concentration
of solute in the tanks. With the step
input(concentration of solute), proposed system
is analyzed considering two cases, first assuming
no disturbance on the system, secondly taking
disturbances into the account at seventh second in
given test time. The function of the system is to
track this step input. Again, in chemical process
control systems, disturbances can occur due to
fluctuations in feed composition, temperature
variations, or unexpected reactions. These
disturbance are usually of impulsive nature . In
the proposed work, disturbance that is taken for
account, is of periodic impulsive nature, whose
amplitude and time period have been considered
of 2.8 unit and 10 seconds respectively, while pulse
width is 10 percent of time period as shown in Fig.
9 . The fuzzy logic system continuously monitors
the system’s performance under such disturbances
and adjusts the PID parameters accordingly.
The interpolation mechanism allows for smooth
adjustments, preventing abrupt changes that
could destabilize the system. A total of four
performance specification parameters have been
considered analyzing the working of the system.
A step input is applied to the proposed system
and compared with Ziegler-Nicolas(Z-N) method
[1], model-based design in [7] and computational
approach (CA). response of the proposed system
is shown in Figure 8. It can be observed that
PID-tuning by Z-N method has highest overshoot
and settle to steady state in approximately 5
second, when system is subjected to step input.
Model based approach proposed by Salem [14]
is quite sluggish as rise time of the response
is 9 seconds. Computational approach(CA)
[9] has somewhat satisfactory results in terms
of rise time, settling time and maximum
overshoot. However, CA has poor “disturbance
rejection” capacity having Integral time absolute
error(ITAE) nearly equal to 50, that result in
spike( shown by the arrow) when subjected to
disturbance of impulsive nature at 7th second
as shown in Figure 10. Proposed system
qualify in all the four performance specification
parameter and shows satisfactory performance
even at the onset of sudden disturbance. It has
fast response, low settling time, low overshoot and
good disturbance rejection capacity. Values of
performance parameters of different methods are
tabulated in Table 4. It is also worth mentioning
the importance of interpolation technique in
settling the system response specially under the
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effect of disturbance which is occurring at the
7th second of operation. Without interpolation,
disturbance try to hinder the tracking of desired
value in the proposed method as shown in Fig.
11. Effect can also be seen at the 2.5 sec, when
there is slight overshoot causing unsettling of
system-response. Thus interpolation mechanism
used in the self-tuning Fuzzy PID controller
is achieving smooth the PID parameters. By
interpolating between predefined range, the
controller can fine-tune its responses to varying
process conditions more effectively. Therefore,
synergetic approach introduced in this work
enhances the self-tuning Fuzzy PID controller
by combining the strengths of fuzzy logic and
traditional PID control. This combination
provides a dual benefit: fuzzy logic handles
the nonlinearity and uncertainty in the process,
while the PID control ensures precise regulation.
The Synergetic approach’s particularly useful
scenarios with high process variability, where it
maintains control performance and robustness.

4. Conclusions

In this study, a interpolation-enhanced
Fuzzy-PID controller has been designed to control
the concentration of a solute in a process control
system. The proposed synergistic approach has
been applied to a chemical process control system
consisting of three tanks, aimed at maintaining
a constant effluent concentration, has proven to
be successful. This method has demonstrated
the ability to attain the desired performance in
the closed-loop system by dynamically adjusting
the controller parameters, Kp, Ki and Kd.
Performance of Fuzzy-PID controller has been
assessed for third order chemical process system.
Aim of the controller function is to regulate the
level of concentration of solute in the solution in
three tanks. A comprehensive set of simulation
and case studies have been conducted to illustrate
the versatility and robustness of the fuzzy PID
controller across a range of chemical processes. It
has been observed that proposed system seems is
working satisfactorily even in the case of sudden
disturbance and it tries to maintain the level of
solute at pre-defined values in all the tanks. The
simulation results indicate that the suggested
approach outperforms the conventional PID
controller when it comes to handling disturbances
and accurately following set-points. The fuzzy
PID controller display improved performance in
the presence of uncertainties and disturbances.
The result was compared with few existing
literature, proposed system seems to be working
better among all. The Synergetic methods

developed in this work have potential applications
in various industrial domains where precise and
adaptable process control is critical.
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The dissemination of a disease within a homogeneous population can typi-
cally be modeled and managed in a uniform fashion. Conversely, in non-
homogeneous populations, it is essential to account for variations among sub-
populations to achieve more precise predictive modeling and efficacious inter-
vention strategies. In this study, we introduce and examine the comprehensive
behavior of a deterministic two-patch epidemic model alongside its stochastic
counterpart to assess disease dynamics between two heterogeneous populations
inhabiting distinct regions. First, utilizing a specific Lyapunov function, we
demonstrate that the disease-free equilibrium of the deterministic model is
globally asymptotically stable. For the stochastic model, we establish that it
is well-posed, meaning it possesses a unique positive solution with probability
one. Subsequently, we ascertain the conditions necessary to ensure the total
extinction of the disease across both regions. Furthermore, we explicitly de-
termine a threshold condition under which the disease persists in both areas.
Additionally, we discuss a scenario wherein the disease persists in one region
while simultaneously becoming extinct in the other. The article concludes with
a series of numerical simulations that corroborate the theoretical findings.
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1. Introduction

Infectious diseases are defined as illnesses caused
by pathogenic agents, transmitted from an in-
fected person, animal, or contaminated inanimate
object to a susceptible host [1]. They are the
main cause death worldwide killing more people
than all wars and natural disasters combined [2,3].
For instance, during the past three years, the
world has been under enormous threat from the
highly contagious coronavirus which first emerged
in China and has spread rapidly to cover almost
the entire globe leading to the death of more than
six million people, according to the statistics of
the World Health Organization [4]. In addition
to the human casualties from the coronavirus,

the economic and social disruption caused by this
pandemic is devastating. Millions of people at risk
of crossing the poverty line, thousands of compa-
nies face an existential threat and almost 50% of
the global workforce, comprising 3.3 billion indi-
viduals, faces the threat of unemployment [5].

To understand how infectious diseases spread, the
mathematical models are useful tools to describe
and simulate concrete situations for anticipating
their future behaviour. Most models for the trans-
mission of infectious diseases descend from the
classical SIR model of Kermack and McKendrick
established in 1927 [6]. Such model is called a
compartmental model where the population is di-
vided into compartments of susceptible, infected,
and recovered. A non-linear ordinary differential
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equations are used to model the dynamics be-
tween these compartments.

A major criticism for this model and the models
that followed (for example [7–15]), is that the to-
tal population is assumed to be entirely homoge-
nous and all individuals behave the same. There-
fore, the model may not represent complex mo-
bility and contact patterns for many real-world
diseases. To overcome this inconvenience, Calvo
et al. [16] have incorporated population hetero-
geneity to examine interactions between urban
and rural populations on the dynamics of disease
spreading by using a compartmental framework
of susceptible–infected–susceptible dynamics with
some level of immunity. The proposed model is
as follows:

dS1

dt
=µ1N1 + β1

I1
N1

S1 − µ1S1 + δ21S2 − δ12S1,

dI1
dt

=β1
I1
N1

S1 − (µ1 + γ1)I1 + ρ1
I1
N1

R1 + δ21I2 − δ12I1,

dR1

dt
=γ1I1 − ρ1

I1
N1

R1 − µ1R1 + δ21R2 − δ12R1,

dS2

dt
=µ2N2 + β2

I2
N2

S2 − µ2S2 + δ12S1 − δ21S2,

dI2
dt

=β2
I2
N2

S2 − (µ2 + γ2)I2 + ρ2
I2
N2

R2 + δ12I1 − δ21I2,

dR2

dt
=γ2I2 − ρ2

I2
N2

R2 − µ2R2 + δ12R1 − δ21R2.

(1)

The subscript 1 is used to denote the urban pa-
rameters and variables, and the subscript 2 for
the rural parameters and variables. For i ∈ {1, 2},
Si, Ii, Ri andNi denote the numbers of suscepti-
ble, infected, post-recovery susceptible individu-
als and the total population, respectively. The
parameter µi is the rate of birth and death. βi
is the infection transmission coefficient between
susceptible and infected individuals. The post-
recovery susceptible individuals are infected at
rate ρi, while infected individuals become post-
recovery susceptibles at rate γi. The motion be-
tween urban and rural populations is modeled by
the function δij(t) which denotes the fraction of
individuals who travel from patch i ∈ {1, 2} to
patch j ∈ {1, 2} (with i ̸= j) at time t. To study
the dynamics of system (1), the authors of [16]
compute steady states, showing the local stabil-
ity of the disease-free steady state, and identify
conditions for the existence of the endemic steady
states.

In the model above, infectious diseases can spread
through interactions between the urban and ru-
ral populations. Therefore, infected individuals in

urban area can infect rural population and the ru-
ral infected can transmit the disease to the urban
dwellers. In this paper, we assume that there is no
immunity. From this perspective, we propose an-
other version of model (1) by introducing four in-
fection transmission coefficients βi (i = 1, 2, 3, 4),
presented as follows:


dx1 = (A1 − β1x1y1 − β3x1y2 − µ1x1)dt,

dy1 = (β1x1y1 + β4x2y1 − µ1y1)dt,

dx2 = (A2 − β2x2y2 − β4x2y1 − µ2x2)dt,

dy2 = (β2x2y2 + β3x1y2 − µ2y2)dt.

(2)

For the variables xi and yi (i = 1, 2), we use the
subscript 1 to denote the urban variable and the
subscript 2 for the rural one. All the other pa-
rameters appearing in model (2) are assumed to
be constant positives. The symbols involved in
the model are described in Table 1.

On the other hand, the spread of diseases is char-
acterized by randomness due to the unpredictabil-
ity of the natural behavior [17]. A lot of scholars
have introduced the white noise into the deter-
ministic models to reveal the effect of the evi-
ronmental fluctuations on the spread of diseases.
For example, Cao et al. [18] considered a stochas-
tic SEI epidemic model with saturation incidence
and logistic growth. By constructing a suitable
Lyapunov function, they established sufficient
conditions for the existence and uniqueness of an
ergodic stationary distribution of the solutions to
the model. They also established sufficient con-
ditions for the extinction of the disease. In [19],
Pang et al. discussed the dynamics of a stochas-
tic SIQS epidemic model and investigated the
boundedness, extinction and the persistence of
the stochastic system. Khan et al. [20] proposed
a stochastic model to analyze the dynamics of
the novel coronavirus disease. They studied the
extinction and the persistence of the disease. For
more details on the impact of environmental fluc-
tuations on the spread of diseases and population
dynamics, we refer the readers to [21–39].

Based on the aforementioned facts, we substitute
βidt in model (2) by βidt+ σidBi(t), where Bi(t)
are mutually independent standard Brownian mo-
tions and σi > 0 are the intensities of their cor-
responding white noises, i = 1, 2, 3, 4. All these
Brownian Motions are defined on a filtered prob-
ability space

(
Ω,FΩ, (F{t})t≥0,P

)
endowed with a

filtration that meets the usual criteria. Thus, we
get a stochastic version of the deterministic model
(2), defined as follows:
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dx1(t) =(A1 − β1x1(t)y1(t)− β3x1(t)y2(t)− µ1x1(t))dt− σ1x1(t)y1(t)dB1(t)− σ3x1(t)y2(t)dB3(t),

dy1(t) =(β1x1(t)y1(t) + β4x2(t)y1(t)− µ1y1(t))dt+ σ1x1(t)y1(t)dB1(t) + σ4x2(t)y1(t)dB4(t),

dx2(t) =(A2 − β2x2(t)y2(t)− β4x2(t)y1(t)− µ2x2(t))dt− σ2x2(t)y2(t)dB2(t)− σ4x2(t)y1(t)dB4(t),

dy2(t) =(β2x2(t)y2(t) + β3x1(t)y2(t)− µ2y2(t))dt+ σ2x2(t)y2(t)dB2(t) + σ3x1(t)y2(t)dB3(t).

(3)

Here, we assume that the urban susceptibles con-
tamined by the rural infected individuals stay in
the rural infectd compartment and rural suscep-
tibles contamined by urban infected people stay
in the urban infected class.

For convenience, the abbreviation ”a.s.” means

”almost surely”, while ⟨f(t)⟩ = t−1
∫ t
0 f(r)dr is

the time average of a continuous function f. For
two numbers a and b, the symbols a∧ b and a∨ b
stand for the minimum and the maximum of a
and b, respectively.

The rest of the paper proceeds as follows. In the
next section, we study the stability of the equi-
librium state E = (A1

µ1
, 0, A2

µ2
, 0) for the determin-

istic model (2). Section 3 is devoted to verify
if the stochastic model (3) has a unique positive
solution with probability one. In section 4, the
conditions ensuring the exponential extinction of
the disease in both patches are established. Af-
terwards, we will carry out an analysis leading
to defining a threshold for the disease to persist
completely. There remains a case where the dis-
ease persists in one patch, and disappears in the
other, which is the main theme of the section 6.
The paper ends with the realization of numerical
simulations using the software Matlab 2015b.

2. Stability of the deterministic model

The aim of mathematical modeling of the spread
of epidemics is to know the conditions under
which the epidemic dies out. The determinis-
tic model (2) has one free-disease equilibrium

E = (A1
µ1

, 0, A2
µ2

, 0).

The following theorem gives sufficient conditions
for local and global asymptotic stability of the
free-disease equilibrium E.

Theorem 1. If
((

β1
A1
µ1

+ β4
A2
µ2

− µ1

)
∨
(
β3

A1
µ1

+

β2
A2
µ2

−µ2

))
< 0, then the equilibrium E is locally

asymptotically stable.

Proof. The Jacobian matrix related to model (2)
at the equilibrium E is

J(E) =


−µ1 −β1

A1
µ1

0 −β3
A1
µ1

0 β1
A1
µ1

− µ1 + β4
A2
µ2

0 0

0 −β4
A2
µ2

−µ2 −β2
A2
µ2

0 0 0 β2
A2
µ2

− µ2 + β3
A1
µ1

 .

According to the Hurwitz criterion, if
((

β1
A1
µ1

+

β4
A2
µ2

− µ1

)
∨
(
β3

A1
µ1

+ β2
A2
µ2

− µ2

))
< 0, then the

eigenvalues of matrix J(E) are all negatives.

Thus, the equilibrium state E is locally asymp-
totically stable. □

Theorem 2. If
((

(β1 + β4)
A1+A2
µ1∧µ2

− µ1

)
∨
(
(β2 +

β3)
A1+A2
µ1∧µ2

− µ2

))
< 0, then the equilibrium E is

globally asymptotically stable.

Proof. Consider the Lyapunov function V de-
fined by

V(x1(t), y1(t), x2(t), y2(t)) =
1

2
(y21 + y22).

The derivative of V along the trajectories of solu-
tion of model (2) is as follows

dV(x1(t), y1(t), x2(t), y2(t))
dt

= y1(t)(β1x1(t)y1(t) + β4x2(t)y1(t)− µ1y1(t))

+ y2(t)(β2x2(t)y2(t) + β3x1(t)y2(t)

− µ2y2(t))

= y21(t)(β1x1(t) + β4x2(t)− µ1)

+ y22(t)(β2x2(t) + β3x1(t)− µ2)

≤ y21(t)
(
(β1 + β4)

A1 +A2

µ1 ∧ µ2
− µ1

)
+ y22(t)

(
(β2 + β3)

A1 +A2

µ1 ∧ µ2
− µ2

)
.

Assuming that
((

(β1 + β4)
A1+A2
µ1∧µ2

− µ1

)
∨
(
(β2 +

β3)
A1+A2
µ1∧µ2

− µ2

))
< 0, we get

dV(x1(t), y1(t), x2(t), y2(t))
dt

< 0 for any t ≥ 0,

which means that E is globally asymptotically
stable. □
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Table 1. Description of symbols in model (2).

Parameter Meaning
xi The number of susceptible individuals to the disease, where i =

1, 2.
yi The number of infective members.
Ai A constant input of new members into the population i per unit

time.
µi Natural death rate of xi and yi.
β1 Transmission coefficient between x1 and y1.
β2 Transmission coefficient between x2 and y2.
β3 Transmission coefficient between x1 and y2.
β4 Transmission coefficient between x2 and y1.

3. Well-posedeness of the stochastic
model

Lemma 1. The set Γ =
{
(x1(t), y1(t), x2(t), y2(t)) ∈

R4
+ : N(t) = x1(t)+y1(t)+x2(t)+y2(t) ≤ A1+A2

µ1∧µ2

}
is positively invariant for the stochastic model (3).

Proof. From system (3), we have

dN(t) =
(
A1 +A2 − µ1(x1(t) + y1(t))

− µ2(x2(t) + y2(t))
)
dt (4)

≤(A1 +A2 − (µ1 ∧ µ2)N(t))dt.

Thus

N(t) ≤ A1 +A2

µ1 ∧ µ2
+
(
N(0)− A1 +A2

µ1 ∧ µ2

)
e−(µ1∧µ2)t.

If N(0) ≤ A1+A2
µ1∧µ2

, then N(t) ≤ A1+A2
µ1∧µ2

for all t >

0. □

Theorem 3. For any (x1(0), y1(0), x2(0), y2(0)) ∈
Γ, the stochastic system (3) is mathematically
well-posed in the sense that it has a unique solu-
tion (x1(t), y1(t), x2(t), y2(t)) ∈ Γ with probability
one.

Proof. The coefficients of system (3) are lo-
cally Lipschitz continuous, for any given initial
value (x1(0), y1(0), x2(0), y2(0)), then there is a
unique local solution (x1(t), y1(t), x2(t), y2(t)) on
t ∈ [0, τe), where τe is the explosion time.

Let k0 > 0 such that x1(0), y1(0), x2(0), y2(0) >
k0. For k ≤ k0, we consider the stopping times

τk = inf
{
t ∈ [0, τe) : x1(t) ≤ k or y1(t) ≤ k

or x2(t) ≤ k or y2(t) ≤ k
}
,

τ =lim
k→0

τk = inf
{
t ∈ [0, τe) : x1(t) ≤ 0 or y1(t) ≤ 0

or x2(t) ≤ 0 or y2(t) ≤ 0
}
.

Let

V (X(t)) = V ((x1(t), y1(t), x2(t), y2(t)))

= 4 ln
A1 +A2

µ1 ∧ µ2
− ln(x1(t)y1(t)x2(t)y2(t)).

Applying Itô formula on V , we obtain

dV =− dx1
x1

− dx2
x2

− dy1
y1

− dy2
y2

+
(1
2
σ2
1y

2
1 +

1

2
σ2
3y

2
2

+
1

2
σ2
2y

2
2 +

1

2
σ2
4y

2
1 +

1

2
σ2
1x

2
1 +

1

2
σ2
4x

2
2 +

1

2
σ2
2x

2
2 +

1

2
σ2
3x

2
1

)
dt

≤
[
− A1

x1
+ β1y1 + β3y2 + µ1 − β1x1 − β4x2 + µ1 −

A2

x2

+ β2y2 + β4y1 + µ2 − β2x2 − β3x1 + µ2 +
(
σ2
1 + σ2

2 + σ2
3

+ σ2
4

)(A1 +A2

µ1 ∧ µ2

)2]
dt+ σ1(y1 − x1)dB1 + σ2(y2 − x2)dB2

+ σ3(y2 − x1)dB3 + σ4(y1 − x2)dB4

≤
[
2µ1 + 2µ2 +

(
β1 + β2 + β3 + β4

)A1 +A2

µ1 ∧ µ2
+
(
σ2
1 + σ2

2

+ σ2
3 + σ2

4

)(A1 +A2

µ1 ∧ µ2

)2]
dt+ σ1(y1 − x1)dB1

+ σ2(y2 − x2)dB2 + σ3(y2 − x1)dB3 + σ4(y1 − x2)dB4.

Integrating the both sides of the inequality above
and then taking the expectation give

E[V (X(t))] ≤ λt+ V (X(0)), (5)

where

λ = 2µ1 + 2µ2 +
(
β1 + β2 + β3 + β4

)A1 +A2

µ1 ∧ µ2

+
(
σ2
1 + σ2

2 + σ2
3 + σ2

4

)(A1 +A2

µ1 ∧ µ2

)2
.

Using the stopping time τk, one has
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E[V (X(t ∧ τk))] =E[V (X(t ∧ τk)) I(τk≤t)]

+ E[V (X(t ∧ τk)) I(τk>t)]

≥E[V (X(τk)) I(τk≤t)],

where IA is the characteristic function of A.

Notice that there is some component of X(τk)
equals to k. Therefore

V (X(τk)) ≥ ln

(
A1 +A2

µ1 ∧ µ2

1

k

)
.

As a result, we have

E[V (X(t ∧ τk))] ≥ ln

(
A1 +A2

µ1 ∧ µ2

1

k

)
× P

(
τk ≤ t

)
.

Together with (5), we get

P
(
τk ≤ t

)
≤ λt+ V (X(0))

ln

(
A1+A2
µ1∧µ2

1
k

) .

If we let k → 0, we obtain for all t ≥ 0 :

P
(
τ ≤ t

)
= 0.

Hence

P
(
τ = ∞

)
= 1.

As τe ≥ τ , then τe = ∞ a.s.

Finally, the solution is global. □

4. Decline of the disease

Theorem 4. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If
β2
1

2σ2
1
+

β2
4

2σ2
4
< µ1, then lim

t→∞
y1(t) = 0 a.s.

(2) If
β2
2

2σ2
2
+

β2
3

2σ2
3
< µ2, then lim

t→∞
y2(t) = 0 a.s.

Proof. 1. Applying Itô formula to system (3),
we get

d ln y1(t) =
1

y1(t)
dy1(t)−

1

2

1

y21
(dy1(t))

2

=
(
β1x1(t) + β4x2(t)− µ1 −

σ2
1

2
x21(t)

− σ2
4

2
x22(t)

)
dt+ σ1x1(t)dB1(t)

+ σ4x2(t)dB2(t).

It follows that

1

t
ln

y1(t)

y1(0)
=β1⟨x1(t)⟩+ β4⟨x2(t)⟩ − µ1 −

σ2
1

2
⟨x21(t)⟩

− σ2
4

2
⟨x22(t)⟩+

M1(t)

t

≤β1⟨x1(t)⟩+ β4⟨x2(t)⟩ − µ1 −
σ2
1

2
⟨x1(t)⟩2

− σ2
4

2
⟨x2(t)⟩2 +

M1(t)

t

=− σ2
1

2
⟨x1(t)⟩2 + β1⟨x1(t)⟩ −

σ2
4

2
⟨x2(t)⟩2

+ β4⟨x2(t)⟩ − µ1 +
M1(t)

t

=− σ2
1

2

(
⟨x1(t)⟩2 − 2

β1
σ2
1

⟨x1(t)⟩
)

− σ2
4

2

(
⟨x2(t)⟩2 − 2

β4
σ2
4

⟨x2(t)⟩
)
− µ1

+
M1(t)

t

=− σ2
1

2

(
⟨x1(t)⟩ −

β1
σ2
1

)2
+

β2
1

2σ2
1

− σ2
4

2

(
⟨x2(t)⟩ −

β4
σ2
4

)2
+

β2
4

2σ2
4

− µ1

+
M1(t)

t
(6)

≤ β2
1

2σ2
1

+
β2
4

2σ2
4

− µ1 +
M1(t)

t
,

where

M1(t) = σ1

∫ t

0
x1(r)dB1(r) + σ4

∫ t

0
x2(r)dB2(r).

Bearing in mind the strong law of large numbers
for martingales, we obtain

lim sup
t→∞

ln y1(t)

t
≤ β2

1

2σ2
1

+
β2
4

2σ2
4

− µ1 a.s.

Since
β2
1

2σ2
1
+

β2
4

2σ2
4

< µ1, then lim sup
t→∞

ln y1(t)
t <

0 a.s.,

which implies

lim
t→∞

y1(t) = 0 a.s.

2. Similarly, we get : lim
t→∞

y2(t) = 0 a.s., under

the condition
β2
2

2σ2
2
+

β2
3

2σ2
3
< µ2.
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This completes the proof of Theorem 4.
□

Theorem 5. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If A1+A2
µ1

≤ β1

σ2
1
, A1+A2

µ2
≤ β4

σ2
4

and

β1
A1+A2

µ1
+ β4

A1+A2
µ2

− σ2
1
2

(
A1+A2

µ1

)2
−

σ2
4
2

(
A1+A2

µ2

)2
< µ1, then

lim
t→∞

y1(t) = 0 a.s.

(2) If A1+A2
µ1

≤ β3

σ2
3
, A1+A2

µ2
≤ β2

σ2
2

and

β3
A1+A2

µ1
+ β2

A1+A2
µ2

− σ2
3
2

(
A1+A2

µ1

)2
−

σ2
2
2

(
A1+A2

µ2

)2
< µ2, then

lim
t→∞

y2(t) = 0 a.s.

Before giving the proof of Theorem 5, we will
present the two following Lemmas.

Lemma 2. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3). We have

lim
t→∞

x1(t) + y1(t) + x2(t) + y2(t)

t
= 0 a.s.

Proof. Let N(t) = x1(t) + y1(t) + x2(t) + y2(t).

From system (3), one has

dN(t) = (A1 +A2 − µ1 (x1(t) + y1(t)))

− (µ2 (x2(t)− y2(t))) dt. (7)

Then

(
A1 +A2 − (µ1 ∨ µ2)N(t)

)
dt ≤ dN(t)

≤
(
A1 +A2 − (µ1 ∧ µ2)N(t)

)
dt. (8)

Thus

A1 +A2

µ1 ∨ µ2
+
(
N(0)− A1 +A2

µ1 ∨ µ2

)
e−(µ1∨µ2)t ≤ N(t),

and

N(t) ≤ A1 +A2

µ1 ∧ µ2
+
(
N(0)− A1 +A2

µ1 ∧ µ2

)
e−(µ1∧µ2)t.

Hence

lim
t→∞

x1(t) + y1(t) + x2(t) + y2(t)

t
= 0 a.s.

The proof is complete.
□

Lemma 3. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3). Then

lim sup
t→∞

⟨x1(t)⟩ ≤
A1 +A2

µ1
a.s.,

lim sup
t→∞

⟨x2(t)⟩ ≤
A1 +A2

µ2
a.s.

Proof. By (7), we obtain

⟨x1(t)⟩ ≤
A1 +A2

µ1
− ϕ(t)

µ1
,

⟨x2(t)⟩ ≤
A1 +A2

µ2
− ϕ(t)

µ2
,

where

ϕ(t) =
x1(t) + y1(t) + x2(t) + y2(t)

t

− x1(0) + y1(0) + x2(0) + y2(0)

t
.

Bearing in mind Lemma 2, we get the seeked re-
sults. □

Proof of Theorem 5. 1. By Lemma 3, there is
T1 > 0 such that, for any t ≥ T1,

⟨x1(t)⟩ ≤
A1 +A2

µ1
and ⟨x2(t)⟩ ≤

A1 +A2

µ2
.

For all t ≥ T1, we assume that

⟨x1(t)⟩ ≤
A1 +A2

µ1
≤ β1

σ2
1

,

and

⟨x2(t)⟩ ≤
A1 +A2

µ2
≤ β4

σ2
4

.

Together with (6), we have

1

t
ln

y1(t)

y1(0)
≤− σ1

2

2

(A1 +A2

µ1
− β1

σ2
1

)2
+

β2
1

2σ2
1

− σ2
4

2

(A1 +A2

µ2
− β4

σ2
4

)2
+

β2
4

2σ2
4

− µ1

=β1
A1 +A2

µ1
+ β4

A1 +A2

µ2
− σ2

1

2

(A1 +A2

µ1

)2
− σ2

4

2

(A1 +A2

µ2

)2
− µ1.
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Since

β1
A1 +A2

µ1
+ β4

A1 +A2

µ2
− σ2

1

2

(A1 +A2

µ1

)2
−σ2

4

2

(A1 +A2

µ2

)2
− µ1 < 0,

then

lim sup
t→∞

ln y1(t)

t
< 0 a.s.

Consequently

lim
t→∞

y1(t) = 0 a.s.

2. Following the same method above, we get

lim
t→∞

y2(t) = 0 a.s.

□

5. Disease prevalence

Theorem 6. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If (β1 ∧ β4)
A1+A2
µ1∨µ2

− σ2
1+σ2

4
2

(
A1+A2
µ1∧µ2

)2
>

(β1 ∧ β4) + µ1, then: lim inf
t→∞

⟨y1(t)⟩ >

0 a.s.

(2) If (β2 ∧ β3)
A1+A2
µ1∨µ2

− σ2
2+σ2

3
2

(
A1+A2
µ1∧µ2

)2
>

(β2 ∧ β3) + µ2, then: lim inf
t→∞

⟨y2(t)⟩ >

0 a.s.

Proof. 1. From (7), we have

(µ1 ∨ µ2)⟨x1(t) + x2(t)⟩ ≥ A1 +A2 − µ1⟨y1(t)⟩

− µ2
A1 +A2

µ1 ∧ µ2
− ϕ(t).

Then, one can get

⟨x1(t) + x2(t)⟩ ≥
A1 +A2

µ1 ∨ µ2
− µ1

µ1 ∨ µ2
⟨y1(t)⟩

− µ2

µ1 ∨ µ2

A1 +A2

µ1 ∧ µ2
− ϕ(t)

µ1 ∨ µ2

≥ A1 +A2

µ1 ∨ µ2
− ⟨y1(t)⟩ −

A1 +A2

µ1 ∧ µ2

− ϕ(t)

µ1 ∨ µ2
. (9)

On the other hand, one can have

1

t
ln

y1(t)

y1(0)
≥ (β1 ∧ β4)⟨x1(t) + x2(t)⟩ − µ1

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
+

M1(t)

t
.

(10)

Combining (9) and (10) yields

1

t
ln

y1(t)

y1(0)
≥ (β1 ∧ β4)

A1 +A2

µ1 ∨ µ2
− (β1 ∧ β4)⟨y1(t)⟩

− (β1 ∧ β4)
A1 +A2

µ1 ∧ µ2
− β1 ∧ β4

µ1 ∨ µ2
ϕ(t)− µ1

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
+

M1(t)

t
.

As a consequence, we get

lim inf
t→∞

(β1 ∧ β4)⟨y1(t)⟩ ≥(β1 ∧ β4)
A1 +A2

µ1 ∨ µ2

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
−
(
(β1 ∧ β4) + µ1

)
a.s.

Immediately, under the condition stated in the
first part of Theorem 6, we deduce that

lim inf
t→∞

⟨y1(t)⟩ > 0 a.s.

2. Concerning the second part of Theorem 6, we
get the desired result using the above method.

□

6. Simultaneous extinction and
persistence

Theorem 7. Let (x1(t), y1(t), x2(t), y2(t)) be the
solution of system (3) with any initial value
(x1(0), y1(0), x2(0), y2(0)) ∈ Γ.

(1) If (β2 ∨ β3)
A1+A2
µ1∨µ2

− σ2
2+σ2

3
2

(
A1+A2
µ1∧µ2

)2
>

µ2 and lim
t→∞

y1(t) = 0 a.s., then:

lim inf
t→∞

⟨y2(t)⟩ > 0 a.s.

(2) If (β1 ∨ β4)
A1+A2
µ1∨µ2

− σ2
1+σ2

4
2

(
A1+A2
µ1∧µ2

)2
>

µ1 and lim
t→∞

y2(t) = 0 a.s., then:

lim inf
t→∞

⟨y1(t)⟩ > 0 a.s.
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Proof. 1. In the case of the extinction of urban
infected, we have: lim

t→∞
y1(t) = 0 a.s.

Then, for any ϵ > 0, there existT2 > 0 such that:
y1(t) ≤ ϵ for all t ≥ T2.

Together with (7), one can get

ϕ(t) ≥ A1 +A2 − (µ1 ∨ µ2)⟨x1(t) + x2(t)⟩
− µ1⟨y1(t)⟩ − µ2⟨y2(t)⟩
= A1 +A2 − (µ1 ∨ µ2)⟨x1(t) + x2(t)⟩

− µ1
1

t

∫ T2

0
y1(r)dr − µ1

1

t

∫ t

T2

y1(r)dr

µ2⟨y2(t)⟩ ≥ A1 +A2 − (µ1 ∨ µ2)⟨x1(t) + x2(t)⟩

− T2

t
µ1 sup

r∈[0,T2]
y1(r)− µ1(1−

T2

t
)ϵ− µ1⟨y2(t)⟩.

Then

⟨x1(t) + x2(t)⟩ ≥
A1 +A2

µ1 ∨ µ2
− T2

t
sup

r∈[0,T2]
y1(r)

− ϵ− ⟨y2(t)⟩ −
ϕ(t)

µ1 ∨ µ2
. (11)

Now, we apply Itô formula on system (3) to ob-
tain

1

t
ln

y2(t)

y2(0)
≥(β2 ∧ β3)⟨x1(t) + x2(t)⟩ − µ2

− σ2
2 + σ2

3

2

(A1 +A2

µ1 ∧ µ2

)2
+

M2(t)

t
,

(12)

where

M2(t) = σ2

∫ t

0
x2(r)dB2(r) + σ3

∫ t

0
x1(r)dB3(r).

Injecting (11) on (12) gives

1

t
ln

y2(t)

y2(0)
≥ (β2 ∧ β3)

A1 +A2

µ1 ∨ µ2

− (β2 ∧ β3)
1

t
sup

r∈[0,T2]
y1(r)

− (β2 ∧ β3)⟨y2(t)⟩ − (β2 ∧ β3)ϵ

− β2 ∧ β3
µ1 ∨ µ2

ϕ(t)− µ2

− σ2
2 + σ2

3

2

(A1 +A2

µ1 ∧ µ2

)2
+

M2(t)

t
.

According to Lemma 2, we can have

lim inf
t→∞

(β2 ∧ β3)⟨y2(t)⟩ ≥ (β2 ∧ β3)
A1 +A2

µ1 ∨ µ2
− µ2

− σ2
2 + σ2

3

2

(A1 +A2

µ1 ∧ µ2

)2
a.s.

2. Similarly, we get

lim inf
t→∞

(β1 ∧ β4)⟨y1(t)⟩ ≥ (β1 ∧ β4)
A1 +A2

µ1 ∨ µ2
− µ1

− σ2
1 + σ2

4

2

(A1 +A2

µ1 ∧ µ2

)2
a.s.

The proof is complete.
□

7. Numerical results

The main goal of this section is to perform a
numerical verification of the results obtained in
the previous sections. First of all, we choose
the initial value as (x1(0), y1(0), x2(0), y2(0)) =
(0.5, 0.7, 0.4, 0.9). The other parameters values
are summarized in Table 2 split into 8 tests.

7.1. Deterministic stability

Based on the values of Test 0, we have

((
(β1 + β4)

A1 +A2

µ1 ∧ µ2
− µ1

)
∨
(
(β2 + β3)

A1 +A2

µ1 ∧ µ2
− µ2

))
= −0.41477.

According to Theorem 2, the equilibrium E =
(0.2308, 0, 0.1667, 0) is globally asymptotically
stable which is depicted in Figure 1.

7.2. Stochastic extinction of the epidemic

By considering the values of Test 1, we have the
following calculation

β2
1

2σ2
1

+
β2
4

2σ2
4

− µ1 = −0.0036,

and

β2
2

2σ2
2

+
β2
3

2σ2
3

− µ2 = −0.1375.

From Figure 2, we observe that: lim
t→∞

y1(t) =

lim
t→∞

y2(t) = 0, which conform to the Theorem 4.

Second, we obtain for Test 2

A1 +A2

µ1
−β1
σ2
1

= −1.3626,
A1 +A2

µ2
−β4
σ2
4

= −2.441
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and

β1
A1 +A2

µ1
+ β4

A1 +A2

µ2
− σ2

1

2

(A1 +A2

µ1

)2
− σ2

4

2

(A1 +A2

µ2

)2
− µ1 = −0.017.

According to Theorem 5, y1(t) converges expo-
nentially to zero (see Figure 2).

Next, based on the parameters values for Test 3,
the numerical values are

A1 +A2

µ1
−β3
σ2
3

= −0.9437,
A1 +A2

µ2
−β2
σ2
2

= −2.2292

and

β3
A1 +A2

µ1
+β2

A1 +A2

µ2

σ2
3

2

(A1 +A2

µ1

)2
−σ2

2

2

(A1 +A2

µ2

)2
− µ2 = −0.0799.

From Figure 2, we see that y2(t) tends to zero,
which agrees with Theorem 5.

7.3. Stochastic persistence of the epidemic

We choose values of Test 4 and Test 5 to get the
following

(β1 ∧ β4)
A1 +A2

µ1 ∨ µ2
− σ2

1 + σ2
4

2

(A1 +A2

µ1 ∧ µ2

)2
− (β1 ∧ β4)− µ1 = 0.1589

and

(β2 ∧ β3)
A1 +A2

µ1 ∨ µ2
− σ2

2 + σ2
3

2

(A1 +A2

µ1 ∧ µ2

)2
− (β2 ∧ β3)− µ2 = 0.1489.

By virtue of Theorem 6, the epidemic will be per-
sistent in both urban and rural areas (see Figure
3).

7.4. Simultaneous extinction and
persistence

Case 1. We have already considered that
lim
t→∞

y1(t) = 0. From values of Test 6, we obtain

(β2 ∨ β3)
A1 +A2

µ1 ∨ µ2
− σ2

2 + σ2
3

2

(A1 +A2

µ1 ∧ µ2

)2
− µ2 = 0.0631.

Therefore, Theorem 7 yields

lim inf
t→∞

⟨y2(t)⟩ > 0,

which is well confirmed by Figure 4.

Case 2. Based on the values of Test 7 and , we
get that

(β1 ∨ β4)
A1+A2
µ1∨µ2

− σ2
1+σ2

4
2

(
A1+A2
µ1∧µ2

)2 − µ1 = 0.0528.

If we consider lim
t→∞

y2(t) = 0, then Theorem 7 im-

plies that: lim inf
t→∞

⟨y1(t)⟩ > 0.

Therefore, Figure 4 reflects perfectly the state-
ment of Theorem 7.
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Figure 1. Computer simulation of
x1(t), x2(t), y1(t) and y2(t) for
model (2), corresponding to Test 0.
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Figure 2. The paths of y1(t) and
y2(t) for model (3), corresponding to
Test 1, Test 2 and Test 3.
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Table 2. Parameters values.

Parameters Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
A1 0.06 0.3 0.06 0.04 0.1 0.1 0.06 0.04
A2 0.05 0.25 0.05 0.035 0.1 0.2 0.05 0.035
µ1 0.26 0.1 0.26 0.2 0.08 0.08 0.26 0.2
µ2 0.3 0.2 0.1 0.2 0.09 0.09 0.1 0.2
β1 0.14 0.2 0.14 — 0.5 — 0.14 0.6
β2 0.1 0.15 0.1 0.15 — 0.5 0.5 0.15
β3 0.2 0.2 0.2 0.211 — 0.4 0.4 0.211
β4 0.08 0.3 0.211 — 0.4 — 0.211 0.7
σ1 — 0.7 0.28 — 0.2 — 0.28 0.28
σ2 — 0.6 — 0.24 — 0.2 0.2 0.24
σ3 — 0.8 — 0.4 — 0.2 0.2 0.4
σ4 — 0.9 0.244 — 0.2 — 0.244 0.244
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Figure 3. The paths of y1(t) and
y2(t) for model (3), corresponding to
Test 4 and Test 5.
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Figure 4. The paths of y1(t) and
y2(t) for model (3), corresponding to
Test 6 and Test 7.

8. Conclusion

In this paper, we elucidate the dynamics of dis-
ease transmission between two groups from dis-
tinct regions, operating under the assumption of
comprehensive and unrestricted interaction. We
consider both a deterministic two-patch epidemic
model and its stochastic counterpart. For the
deterministic model (2), we examine the global
asymptotic stability of the equilibrium E =
(A1
µ1

, 0, A2
µ2

, 0). This result is illustrated in Figure

1. Regarding the stochastic version of model (2),
we demonstrate the uniqueness of a positive solu-
tion for model (3). The thresholds that determine

whether the disease will disappear are identified,
as detailed in Theorems 4 and 5. Additionally,
in Theorem 6, we establish conditions ensuring
disease persistence. We also highlight a third sce-
nario, distinct from those studied in sections 4 and
5, where the disease persists in one patch while si-
multaneously disappearing in the other. The ac-
curacy of our theoretical findings is validated in
the numerical simulation section.
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1. Introduction

Inverse electromagnetic (EM) imaging methods
that utilize scattered field data to reconstruct the
shape of an unknown scatterer precisely are in
significant demand across a wide variety of en-
gineering fields, such as non-destructive testing,
microwave imaging, and geophysical exploration,
and so on [1–8]. Apart from its diverse appli-
cations, recovering objects from scattered fields
poses an immense challenge due to its inherently
nonlinear and ill-posed nature [9]. Recently, deep
learning schemes and the corresponding applica-
tions have been of great interest among many
engineering fields [10–12]. In addition to these,
significant advancements in deep learning (DL)
have led to substantial research investments in
the field of inverse electromagnetic imaging prob-
lems [13–19]. In [14] and [15], the ill-posed prob-
lem is regularized considering Landweber itera-
tions that are implemented in the regularized DL
framework. [16] proposes two-step DL framework.

In the first step, the dielectric properties of the
inaccessible object are recovered. The object’s
shape is then reconstructed using the outcomes
of the first step. In the sense of rough surface
imaging, [18] recovers the statistical parameters
of the randomly formed rough surfaces. The
shape of random rough surfaces are directly re-
covered in [17] and [19] for different scattering
scenarios.

In addition to DL applications and with the no-
table exception of certain non-iterative inversion
techniques such as Fourier method [20], reverse
time migration (RTM)-based [21] approach, and
equivalent source model [22], the vast majority
of algorithms developed to address these issues
are based on recursive applications of regulariza-
tion and linearization techniques [23–30]. Gen-
erally, these are constructed with consideration
for multiple incident illuminations to enhance
the precision of reconstructions [24, 25, 29, 30].
Nevertheless, these undertakings incur additional
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computational expenses. Furthermore, many of
these solutions address the inverse problem asso-
ciated with perfectly electric conducting (PEC)
and sound-soft boundary conditions acoustically.
This is because conceptually and physically, the
recovery of a penetrable scatterer presents a more
difficult inverse problem than the inverse prob-
lems associated with impenetrable obstacles [31].
In this regard, [29] proposes a solution to recover
the 2D profile of an acoustically sound-soft scat-
terer by using the far-field pattern. The method
utilizes multi-incidence monochromatic incident
fields for illumination and applies multi-frequency
measurement for higher accuracy. It solves a lin-
earized system with a huge number of unknowns.
The same consequence is valid for the linearized
iterative methodologies presented in [24] and [25],
which offers multi-incidence illumination for rig-
orous reconstructions. The principal reason for
illumination is to reduce (or eliminate) the effect
of shadow regions. Namely, the information in
the far-field data becomes blurred for a limited
amount of illumination, so the lack of information
becomes dominant and yields unsuccessful recon-
structions as the problem is inherently ill-posed.
Alternatively, a recursive linearized method that
uses only single incident illumination is proposed
in [32]. The method is applied to recover unknown
non-penetrable acoustically sound-soft obstacles
using the far-field measured field pattern. Later,
it is expanded to reconstruct the shape of pen-
etrable objects in [26]. Within this context, for
penetrable and non-penetrable cases, the far-field
measured field pattern is represented by the sin-
gle layer potential form [9].

This paper proposes a regularized and linearized
recursive inverse algorithm to recover unknown
penetrable objects using the scattered field data
measured in the far-field region. Unlike other
multi-illuminated inversion algorithms, the pro-
posed algorithm applies the superposition of the
multi-incident illuminations. Thus, the unknown
2D scatterer is illuminated by multiple sources si-
multaneously, and the scattered field is collected
only once due to these simultaneous illumina-
tions. This allows a fast inverse algorithm to ob-
tain robust and successful reconstructions with a
reduced computational cost. The superposition of
incident fields is first considered for reconstructing
sound-soft obstacles in [33]. Furthermore, unlike
the open literature, the inverse algorithm uses a
combination of double and single-layer potentials
to represent the far-field measured scattered field
data.

The paper’s outline is provided as follows: Sec-
tion 2 presents the considered EM scattering sce-
nario, and the following Section 3 briefly sum-
marizes the direct problem. Section 4 presents
the regularized recursive inverse-imaging solu-
tion, which utilizes the far-field measurements
to recover the unknown surface profile in detail.
In Section 5, an extensive numerical study was
conducted using various scattering scenarios to il-
lustrate the algorithm’s efficiency and examine its
validation restrictions. Final remarks are given
in the Section 6.

2. Geometry of the Problem

Fig. 1 represents the considered 2D scattering ge-
ometry. The unknown dielectric body is denoted
as Ω embedded in infinite free space medium
with permittivity ε0 and permeability µ0. The
body is a simple non-magnetic lossy object de-
fined in terms of constitutive electromagnetic pa-
rameters, where its permittivity and conductiv-
ity are denoted with ε1 = ε0εr, and σ (S/m),
respectively. Accordingly, the body has a con-
stant complex wave number k1 with Re{k1} > 0
and Im{k1} ≥ 0, precisely its square equals to
k21 = ω2ε1µ0 + iωµ0σ, where ω is the radial op-
erating frequency. The cross-section of the body
constitutes the principle unknown of the problem,
which is denoted with ∂Ω and defined as:

∂Ω :=

{
(ρ, φ) | ρ = r(φ)

}
, (1)

Figure 1. Geometry of the problem.

where (ρ, φ) are the cylindrical polar coordinates,
such that ρ > 0 and φ ∈ (0, 2π). Within this
context, Ω has a star-like shape. As depicted,
the 2D region is illuminated by a superposition
of several monochromatic incident electric fields.
The incident fields are TE polarized (transverse
to wave propagation direction). The nth incident
is defined with a function uin

E⃗in = x̂3u
i
n, (2)
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where uin is the monochromatic plane wave, pre-
cisely equals

uin = uin(r(φ), φ
n
i ) := eik0r(φ) cos(φ−φ

n
i ). (3)

Here, k0 > 0 is the wavenumber of the free space.
The superposition of the incident fields enables to
consider the summation of incident illuminations
as a single unique field, i.e.,

ui =
N∑
n=1

uin(r(φ), φ
n
i ). (4)

Regarding the incident illumination, both within
the body and in the surrounding free space, the
electric field vectors are in the x̂3 direction. Con-
sequently, the entire problem may be simplified to
a scalar one. To do so, let u0 and u1 denote the
total fields in free space and the dielectric body,
respectively. Then, both of them satisfy the scalar
wave equation

(
∆+ k20

)
u0 =0 in R2 \ Ω,(

∆+ k21

)
u1 =0 in Ω. (5)

Denote the derivative r′(φ) = dr(φ)
dφ and the outer

normal vector of ∂Ω as ν̂, which precisely equals

ν̂ =
ρ̂r(φ)− φ̂r′(φ)√
r(φ) + r′2(φ)

. (6)

It follows that the fields and their derivatives
with respect to the outward surface normal ex-
hibit continuity on ∂Ω. Namely, the boundary
conditions imply the following:

u0 = u1, (7a)

ψ0 = ψ1, on ∂Ω. (7b)

Noting that the fields ψm = ν̂ · ∇um (m =
{1, 2}), where “∇” denotes the gradient operator.
Namely, ψ0 and ψ1 describe derivatives of u0 and
u1 with respect to ν, respectively. The scattered
field, in this regard, is defined as the difference

us = u0 − ui, (8)

which is an outgoing wave and fulfills the Som-
merfield radiation condition

lim
ρ→∞

√
ρ

(
∂us

∂ρ
− ik0u

s

)
= 0, r in R2 \ Ω (9)

in a uniform way in all directions. Furthermore, it
is straightforward to demonstrate that us exhibits
the subsequent asymptotic behavior:

us(ρ, φ) =
eikρ
√
ρ
u∞(φ)+O

(
1

ρ3/2

)
, ρ→ ∞. (10)

Here, u∞ represents the scattered field measured
far away from the source, namely the far-field pat-
tern. It is worth noting that the field also depends
on k0 and the incoming direction. However, the
assumption is made by taking these quantities
fixed so that u∞ has only φ dependence. The
fields defined in (7) represent the surface currents
on the cross-section ∂Ω. These are the unknowns
of the direct scattering problem for which ∂Ω and
the constitutive parameters are known. Once the
currents are obtained, one can take an opportu-
nity to obtain the fields scattered anywhere in
the first medium (in our particular case, in free
space). The whole procedure constitutes the “di-
rect EM scattering problem”. In the inverse prob-
lem, conversely, the inputs and the outputs are
reversed. That is, the main concern is to recover
the unknown cross-section, ∂Ω, utilizing the mea-
sured far-field pattern of the scattered field data,
i.e., u∞. To this aim, the integral representation
of the scattered field data, described in the fol-
lowing subsection, is taken as a mapping operator
into account, which maps ∂Ω onto u∞. Hence, the
problem turns into taking the inverse of the map-
ping operator. The following subsection describes
the direct EM scattering problem applied to ac-
quire the synthetic scattered field data utilized in
the inverse problem.

3. Direct EM Problem

As mentioned above, the forward scattering prob-
lem mainly considers obtaining the surface cur-
rents given in (7) within the knowledge of the 2D
cross-section ∂Ω. Using Green’s theorem both in
the free space and Ω, one can easily obtain the
integral representations of the surface currents u0
and ψ0 [34]

u0(r) = ui(r)+

ˆ
∂Ω
u0(r

′)K0(r; r
′) ds(φ′)

−
ˆ
∂Ω
ψ0(r

′)G0(r; r
′) ds(φ′)

u1(r) = −
ˆ
∂Ω
u1(r

′)K1(r; r
′) ds(φ′)

+

ˆ
∂Ω
ψ1(r

′)G1(r; r
′) ds(φ′)

(11)
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Here, Gm(r; r
′) (m = {0, 1}) is the fundamental

solution of the scalar wave equation in 2D, i.e.,

Gm(r; r
′) =

i

4
H

(1)
0 (km

∣∣r − r′
∣∣), (12)

where r = x̂1ρ cos(φ) + x̂2ρ sin(φ) and r′ =
x̂1r(φ) cos(φ

′) + x̂2r(φ) sin(φ
′) so that the argu-

ment of the Hankel-type function precisely

∣∣r − r′
∣∣ =√ρ2 + r2 − 2ρr cos(φ− φ′), (13)

and the integrand is also

ds(φ) =
√
r2 + r′2dφ. (14)

Noting that r := r(φ) and r′ := r′(φ). More-
over, Km = ∂Gm/∂ν. In regards to (8) and (11),
the scattered field has an integral representation
as a combination of single and double potential
integral operators [9] as:

us(r) =
´
∂Ω

(
u0(r

′)K0(r; r
′)− ψ0(r

′)G0(r; r
′)

)
ds(φ′).

(15)

Now, by substituting (7) into (11) and considering
the jump relations, the subsequent classical set of
the boundary integral equations are obtained [35]:

ui(r) =
1

2
u0(r)−−

ˆ
∂Ω
K0(r; r

′)u0(r
′) ds(φ′)

+

ˆ
∂Ω
G0(r; r

′)ψ0(r
′) ds(φ′)

0 = −1

2
u0(r)−−

ˆ
∂Ω
K1(r; r

′)u0(r
′) ds(φ′)

+

ˆ
∂Ω
G1(r; r

′)ψ0(r
′) ds(φ′).

(16)

Accordingly, one can find the unknown surface
currents by the numerical solution of the inte-
gral equations such as the method of moments
(MoM) [35] and then obtain the scattered field us-
ing the integral representation given in (15). It is
worth noting that the recursive inverse algorithm
described in Section 4 also needs to solve the di-
rect problem for the reconstructed shape at each
iteration step. Thus, an accurate solution for the
direct scattering case, for which a numerical MoM
solution is applied in this study, is essential. To
verify the numerical solution of the direct prob-
lem, the following subsection is designed by con-
sidering scattering from an infinite-length cylin-
der, which has an analytical expression in terms
of the Mie series.

3.1. Validation: Scattering by dielectric
cylinder

Consider an infinitely long cylinder with a cross-
section radius r = a located at the origin. Sup-
pose it is a non-magnetic lossy dielectric with
complex wavenumber k1 and embedded in free
space with the wavenumber k0. An incident plane
wave with the angle of incidence φi illuminates
the cylinder. The plane wave can be expressed
with the infinite Bessel series by Jacobi-Anger
identity [36]:

ui(r, φ) = eik0r cos(φ−φi)

=
n=+∞∑
n=−∞

inJn(k0r)e
−in(φ−φi)

(17)

The fields inside and outside the cylinder are de-
noted u0 and u1, respectively. They both satisfy
the scalar Helmholtz equation regarding (5) and
continuous on the boundary (r = a) as in (7). It
is worth reminding that ν̂ = ρ̂ for the circular
cylinder. They have series representations

u0(r, φ) =
n=+∞∑
n=−∞

(
BnJn(k0r) + CnH

(1)
n (k0r)

)
e−inφ,

u1(r, φ) =

n=+∞∑
n=−∞

AnJn(k1r)e
−inφ, (18)

where Bn = ineinφi according to (17). Substitut-
ing (18) into (7) yields

BnJn(k0a) + CnH
(1)
n (k0a) = AnJn(k1a)

BnJ
′
n(k0a) + CnH

′(1)
n (k0a) =

k1
k0
AnJ

′
n(k1a).

(19)

Leading with ς = k1/k0, the solution reads:

An = Bn
H

(1)
n (k0a)J

′
n(k0a)−H

′(1)
n (k0a)Jn(k0a)

ςH
(1)
n (k0a)J ′

n(k1a)−H
′(1)
n (k0a)Jn(k1a)

,

Cn = Bn
Jn(k1a)J

′
n(k0a)− ςJn(k0a)J

′
n(k1a)

ςH
(1)
n (k0a)J ′

n(k1a)−H
′(1)
n (k0a)Jn(k1a)

.

(20)

Accordingly, one can compute the total fields in-
side and outside the cylinder by substituting (20)
into (18). In the context of the numerical MoM-
point matching solution, the whole cylinder sam-
pled as follows: The circular cylinder with ra-
dius r(φ) = a has a circumference 2πa with

0 ≤ φ < 2πİt is divided into the number of N
equally spaced segments. nth segment is denoted
φn with its width is ∆φ, precisely
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φn = (n− 1)∆φ with ∆φ =
2π

N
. (21)

Here, n ∈ [1, N ] and the sample number is settled
as

N = 10

∣∣∣∣k1k0
∣∣∣∣2πa (22)

The unknown surface fields in (16) are expanded
as linear combinations of the pulse-basis subdo-
main functions with some unknown coefficients
positioned at each segment’s center. Namely,

{
u0
ψ0

}
≈

N∑
n=1

{
un
ψn

}
fn(φ), (23)

where the pulse basis function,

fn(φ) =

{
1 (φn −∆φ/2) ≤ φ ≤ (φn +∆φ/2)

0 elsewhere .

(24)

The length of each segment is sufficiently small
so that the integrand doesn’t vary significantly.
Regarding point matching, the whole equation is
weighted by Dirac-delta functions. Accordingly,
one can obtain the matrix equation system.

Zdie Idie = V die, (25)

where Idie and V die are vectors with size 2N × 1.
The elements of the vectors and the impedance
matrices are precisely given in the appendix. The
numerical comparison of the analytic and MoM
solutions for a dielectric cylinder is given in the
following subsection.

3.2. Numerical comparisons for a
dielectric cylinder

To validate MoM-point matching with the ana-
lytic Mie series solution, a dielectric lossy cylinder
with radius r = 2m is considered. Outside of the
cylinder is free space, and the dielectric parame-
ters are εr = 4 and σ = 5× 10−5. In (18), n = 64
and in (22), N = 252. Operating frequency is
300MHz, the angle of the incident plane wave il-
lumination φ = 60◦. The following figures 2 and 3
show the modulus and the phase of the surface
fields acquired by MoM and analytic series, re-
spectively.
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Figure 2. Modulus of the surface
fields on dielectric cylinder
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Figure 3. phase of the surface fields
on dielectric cylinder

To compare the results quantitatively, an ℓ2 norm-
based error is defined between the fields obtained
from analytic and MoM solutions:

e(%) =
∥uA − uMoM∥2

∥uA∥2
× 100. (26)

Here, uA and uMoM denote the surface fields ob-
tained by analytic and MoM solutions, respec-
tively. The obtained surface fields with MoM so-
lution in the figures 2 and 3 requires sampling
N = 252. High agreements were achieved be-
tween the MoM and analytical solutions. The nu-
merical errors obtained for this sampling number
are below 2% for both u0 and ψ0. As expected, in-
creasing the number of samples in MoM improves
the agreement between the two methods. Hence,
the quantitative error decreases for a higher sam-
pling number. The obtained errors for increased
N values are shown in Fig. 4
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Figure 4. Errors vs. the number of
samples in MoM

4. Inverse Problem

The inverse problem addressing involves deter-
mining the boundary ∂Ω of the scatterer Ω, given
the far-field pattern u∞ for the superposition of
the incident plane wave illuminations ui. To de-
fine the far-field pattern precisely, it is neces-
sary to consider the asymptotic behavior of the
Hankel type functions for large argument, which
equals [36]

H
(1)
0 (ω) =

√
2

πω
eiω−

π
4

(
1 +O

(
1

ω

))
, ω → ∞.

(27)

Within this context, assume that a point in the
far field is described as rs := rs(x̂1 cos(φs) +
x̂2 sin(φs)) and the cross-section is represented as
in (1). Then, in accordance with Huygens’ prin-
ciple [37], the standard approximation for the 2D
Green’s function given in (12) and (13) have the
phase term and the amplitude term as following

G̃(r; rs) = γeik0rse−ik0r(φ) cos(φs−φ), (28)

where the constant

γ =
i

4

√
2

πk0rs
e−i

π
4 . (29)

That is, the modulus term of G̃ is approximated
as |r − rs| ≈ rs and the phase term is |r − rs| ≈
rs − k0(rs · r). It is naturally a good approxima-
tion for Green’s functions and is conventionally
applied to represent a far-field pattern of the scat-
tered field. The reader may refer to [38] for the
Huygens’ principle in 3D and 2D scattering prob-
lems [39], for the details of the far-field expansion
of 2D Green’s function, and thus the far-field ex-
pansion of the Greens’ function [34, 37]. In this
context, one can easily define the derivative of

the function with respect to the surface normal ν̂
as

∂G̃(r; rs)

∂ν
= ν̂ · ∇G̃(r; rs) = −iG̃(r; rs)k̂s · ν̂.

(30)

Here, k̂s is the wavenumber vector in scattering
direction with the angle φs, particularly equals to

k̂s = k0

(
x̂1 cos(φs) + x̂2 sin(φs)

)
, (31)

which can be converted into polar coordinates:

k̂s = k0

(
ρ̂ cos(φs − φ) + φ̂ sin(φs − φ)

)
. (32)

Accordingly, the far-field scattered field has the
integral representation as

u∞(φ) =γ

ˆ
∂Ω

(
− ik̂s · ν̂u0(φ′) + ψ0(φ

′)

)
e−ik0r(φ

′) cos(φs−φ′) ds(φ′). (33)

Substituting (6) and (31) into (33) yields more
precise expression for u∞ as

u∞(φ) = −ik0γ
ˆ 2π

0

{(
r(φ′) cos

(
φs − φ′)

− r′(φ′) sin
(
φs − φ′))u0(φ′)

+ ψ0(φ
′)
√
r(φ′)2 + r′(φ′)2

}
e−ik0r(φ

′) cos(φs−φ′) dφ′. (34)

To have a much more compact form of (34), the
integral equation can be defined in an operator
form D. Thus, with the knowledge of the u∞ and
the surface fields, the inverse problem consists of
solving the nonlinear and ill-posed equation

D(r, u0, ψ0) = u∞, (35)

for the unknown boundary ∂Ω represented by
r := r(φ). To start with the inversion pro-
cess, first, the operator is linearized via Newton’s
type iterations and then regularized by Tikhonov.
Within the context of linearization, let r0 be the
initially guessed shape, for which one can solve
the direct problem to obtain the surface currents
(u10 , ψ10) of the guessed shape. Accordingly, the
linearization proceeds in the sense of Newton as
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D(r, u0, ψ0) ≈ D(r0, u00 , ψ00)+D′(r0;u00 , ψ00)δr0.
(36)

Here, D′(r0;u10 , ψ10)δr0 is the Frechet derivative
of the surface with respect to r, and δr0 is the up-
dated correlation function for which (36) has to be
solved. For the regularization procedure, let D′

0

stand for the Frechet derivative for a short nota-
tion, and its ad-joint be denoted by D′†

0 . Then,
by defining a regularization parameter 0 < τ < 1,
δr0 is the solution of

τδr0 +D′†
0 D

′
0 = D′†

0 ∆u∞, (37)

where ∆u∞ = u∞−D(r0, u10 , ψ10). Furthermore,
one may also consider a scaling (tuning) parame-
ter to have a much more robust δr0. In this sense,
the solution of (37) is written as

δr0 = α
[
τI+D′†

0 D
′
0

]−1D′†
0 ∆u∞. (38)

Here, I is the identity matrix, and 0 < α < 1 is the
scaling parameter. The reader may refer to [40]
for the details of α and τ . For a predetermined
threshold ξ, the procedure is repeated recursively
until the stopping criteria ∥δrN∥2 ≤ ξ. Accord-

ingly, nth approximated boundary is updated by
setting

rn+1 = rn + δrn. (39)

Moreover, to have a more robust reconstruction,
the solution is obtained via the least squares [41].
To this aim, the update correlation is expanded
by the linear combination of some basis functions
Φq(φ), q = 1, · · · , Q as

δr(φ) =

Q∑
q=1

aqΦq(φ). (40)

Hence, the problem turns into finding unknown
coefficients of (40). For a set of grid points
φ1, · · · , φP , the unknown coefficients are deter-
mined by minimizing the sum of squares at nth

iteration, i.e.,

P∑
p=1

∣∣∣∣∣∣D′(rn, u0n , ψ0n)

Q∑
q=1

aqΦq(φ
p)−∆u∞

∣∣∣∣∣∣
2

.

(41)

The whole procedure is summarized as follows:

(i). Choose a closed curve for the initial guess
ρ = r0(φ)

(ii). Obtain the surface currents of the closed
curve and thus the far-field pattern us-
ing (16) and (34), respectively.

(iii). Solve (36) and (38) in the sense of least
squares (40)-(41) for the updated correla-
tion function δr0

(iv). Obtain the new surface profile via (39)
(v). Repeat (ii)-(iv) for n times (n > 1) such

that rn+1 = rn + δrn.
(vi). Break the loop, if ∥δrn∥ ≤ ξ

Here, the crucial part of the whole framework is
the Frechet derivative part, which is for a map-
ping from a domain of functions [42]. For the sake
of simplicity, one may consider the Frechet deriva-
tive D′(r0;u10 , ψ10)δr0 := D′

0 as the superposition
of two operators

D′
0 = F ′

D(r0;ψ10)δr0 + F ′
N (r0;u10)δr0 (42)

where the Frechet operators are:

F ′
D(r0;ψ10)δr0 =− γ

ˆ 2π

0
ik cos

(
φs − φ′)

e−ikr0(φ
′) cos(φs−φ′)ψ10(φ

′)√
r(φ′)2 + r′(φ′)2 δr0dφ

′, (43)

F ′
N (r0;u10)δr0 =− γ

ˆ 2π

0

(
ik cos

(
φs − φ′)

κ(r0, φ
′, φs)u10(φ

′)

+
∂κ(r0, φ

′, φs)

∂r0
u10(φ

′)

)
e−ikr0(φ

′) cos(φs−φ′) δr0dφ
′, (44)

and κ function

κ(r0, φ, φs) = r0 cos(φs − φ)− r′0 sin(φs − φ)
(45)

is basically the result of k̂s · ν̂.

5. Numerical results and discussion

The section is reserved to demonstrate the feasi-
bility of the proposed inverse framework. For all
considered scattering scenarios, the operating fre-
quency is 300MHz so that the wavelength in free-
space λ0 = 1m. For all numerical examples, the
predetermined threshold is ξ = 0.07. Except for
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one example, the far-field pattern is assumed to be
known at 64 points equally distributed around the
unit circle. For the expansion of the unknown up-
dated correlation function with some basis func-
tions, Φq(φ) = e−iqφ, q = 0,±1, · · ·±Q. To verify
the success of the reconstructions quantitatively,
an ℓ2-norm based error is defined precisely

err(%) =
∥r(φ)− rn(φ)∥

∥r(φ)∥
× 100, (46)

where r(φ) and rn(φ) represent the actual and
the reconstructed surfaces, respectively.

The first example aimed to put forth the effect of
the penetrability of the object on the inverse algo-
rithm. To this aim, a kite-like object is considered
for reconstruction, considering both PEC and di-
electric cases. The unknown kite-like surface is a
radial function

r(φ) = 1.5
(
1 + 0.15 cos(3φ)

)
. (47)

For the dielectric case, the constitutive EM pa-
rameters are ε1 = 4ε0 and σ = 10−5 (S/m). For
both PEC and dielectric cases, the region is il-
luminated by 7 incident illuminations simultane-
ously, for which the angles of incidence are se-
lected in the range: 0◦ : ∆φi : 330◦ with the
∆φi = 55◦ angular increments. The reconstruc-
tions and the actual surface for PEC and Dielec-
tric scenarios are shown in Fig. 5 and Fig. 6, re-
spectively.
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Figure 5. Reconstruction of the surface defined
in (47) for PEC case.
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Figure 6. Reconstruction of the surface defined
in (47) for Dielectric (penetrable) case.

It is worth noting that for the PEC case, the far-
field pattern of the scattered field is represented
with a single layer potential as shown in [32] in
detail. Accordingly, for the Frechet derivative of
the PEC case, (43) should be taken into con-
sideration. As illustrated in the figure, a cross-
section of an infinitely long cylinder with a radius
1.5λ1 is considered as the initial guess for both
cases. Moreover, both cases’ stopping criteria are
∥δr∥ ≤ ξ = 0.07. Accordingly, the needed 16 iter-
ation is for the PEC case, and the 28 iteration is
for the dielectric case. To visualize the expected
decreasing tendency of the ∥δr∥ for each new it-
eration, Fig. 7 shows ∥δr∥ versus the number of
iterations for the dielectric case.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7. ∥δrn∥ vs. iterations.

In addition, the reconstruction of PEC is better
than the dielectric case qualitatively and quanti-
tatively. This is mostly because the PEC case has
no penetrated field to the second region. Hence,
a more powerful scattered field contains more
information for the scatterer, leading to better
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reconstructions. The quantitative errors for both
cases are err(%) = 0.31% and err(%) = 1.37%,
respectively, for PEC and dielectric cases.

The next analysis covers the algorithm’s sensitiv-
ity to the constitutive parameters of the dielectric
object, i.e., εr and σ. Accordingly, the response
of the algorithm is tested for higher and lower
dielectric permittivity and conductivity values.
In this regard, “4− leaf” shape boundary curve is
assumed to be unknown, and it is reconstructed
for different εr and σ values. The considered
“leaf-shaped” radial function is defined as

r(φ) = 1.3
(
1 + 0.15 cos(4φ)

)
(48)

First, the objective is to observe the dielectric de-
pendency of the iterative inverse reconstruction
algorithm. In order to notice the sensitivity to
the dielectric permittivity, the algorithm is run
for different εr values for a fixed conductivity
σ = 10−5 (S/m). Within this context, the di-
electric permittivity range is taken into account
εr ∈ [2, 10]. Hence, the dielectric permittivities
are defined in a wide range, from very penetra-
ble cases to high levels. For all reconstructions,
run for different εr, the circle with radius 1.5λ1
is considered for the initial guess. The obtained
quantitative errors of the reconstructions for dif-
ferent dielectric permittivity values are shown in
Fig. 8.
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Figure 8. Error: err(%) vs. dielectric constant: εr

As shown, the bigger contrast between free space
and the dielectric object yields better reconstruc-
tions quantitatively. It is worth noting that if
εr < 2, it becomes impossible to obtain accu-
rate reconstructions. Furthermore, εr > 10 yields

higher computational cost as the inversion algo-
rithm needs a direct solver whose unknown is di-
rectly related to the dielectric permittivity εr. A
similar analysis was also carried out to observe
the conductivity sensitivity. To this aim, εr = 2
is fixed and the conductivity varies in the range
σ ∈ [5 × 10−7, 10−2] (S/m). The algorithm’s er-
rors for different conductivity values are shown in
Fig. 9
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Figure 9. Error: err(%) vs. conductivity σ (S/m)

Accordingly, the higher conductivity yields better
reconstructions such that for σ = 10−2, the error
err < 0.4%. However, such a high conductivity
yields a huge loss, so the unknown object can al-
most turn into PEC rather than a penetrable ob-
ject. Fig. 10 shows the worst and the best cases
together to demonstrate reconstructions visually.
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Figure 10. Reconstructions for the highest and the
lowest conductivity values

Noting that the region is illuminated for 12 inci-
dent plane waves simultaneously where the angles
of incidence are defined as 0◦ : ∆φi : 330

◦ with
the ∆φi = 30◦ angular increments. Again, the
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circle with the radius 1.5λ1 is considered the ini-
tial guess. For all analyses conducted to obtain
the sensitivity to the constitutive parameters, 19
exponential-type basis functions are applied in
the sense of least squares.

The next analysis covers the algorithm’s sen-
sitivity against noise. For this purpose, a
synthetic noise is added to the far-field pat-
tern. The noisy scattered field is defined as
ũ∞ = u∞ + nℓ|u∞|ei2πrd , where nℓ is the noise-
level and rd is the random number in the interval
0 < rd < 1. The bean-shaped object is considered
for the noise analyses. It is defined as

r(φ) = 0.8
1 + 0.85 cos

(
φ+ π

4

)
+ 0.05 sin

(
2φ+ π

4

)
1 + 0.5 cos

(
φ+ π

4

) .

(49)

In regards to the scattering scenario, εr = 4 and
σ = 10−5 (S/m), and the number of 6 incident
illuminations is applied simultaneously, where
φni = {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}. Fig. 11
shows the obtained quantitative errors for differ-
ent noise levels.
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Figure 11. Error: err(%) vs. noise level: nℓ(%)

Accordingly, the algorithm is sensitive to the noise
such that nℓ(%) ≤ 10% for satisfactory recon-
structions. The reconstructions for the noise-free
case and with the highest noise level are shown in
Fig. 12
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Figure 12. Reconstruction of the bean-shaped object
for the noise-free and the highest noise level

The following example investigates the sensitiv-
ity of the reconstructions to the amount of scat-
tered field data. Let #MP denote the number
of measurement points. It is worth to remind
that, up to this example, #MP = 64. To this
aim, a 5-leaf shape is reconstructed for different
numbers of scattered field data. The inaccessible
5-leaf shape is defined as

r(φ) = 1.3
(
1 + 0.15 cos(5φ)

)
(50)

For the sensitivity analysis to the number of scat-
tered field data, the remaining parameters are
kept constant such as the number of incident fields
is 11, precisely defined in the range φi = 0◦ :
30◦ : 300◦, the penetrable medium parameters are
εr = 4, σ = 10−5 S/m and the number of applied
exponential basis functions are 27. The obtained
error vs the amount of the measured field data is
given in Fig. 13
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Figure 13. Error: err(%) vs. the number of mea-
surement points: #MP

Accordingly, insufficient reconstructions observed
for#MP < 25. For an accurate result, #MP ≥
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25. As shown in Fig. 13, the error remains around
5% such that the differences between the recon-
structions cannot be distinguished with the naked
eye. To visualize this, the unsuccessful recon-
structions obtained for #MP = 8, #MP = 16 and
the satisfactory result of #MP = 32 are shown in
Fig. 14
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Figure 14. Reconstructions for different #MP values

The next analysis is carried out to emphasize the
significance of multi-illumination. For this pur-
pose, a potato-shaped curved object is considered.
It is defined as a radial function

r(φ) = 4

√(
1
4 + 3

40 cos(2φ)
)2

+
(
1
4 + 3

100 cos(3φ)
)2
.

(51)

In the first case, the object is illuminated with a
single incident plane wave with the angle of inci-
dence φi = 0◦. The result is shown in Fig. 15
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Figure 15. Reconstruction of the potato-shaped ob-
ject with a single incident illumination

As illustrated, the reconstruction is unsatisfac-
tory as the shadow region predominates inver-
sion [24,33,43]. To overcome this, the same object
is recovered for the superposition of 4 incident
plane waves. The angles of incidence are φni =
{−30, 30, 150, 210}, for n = {1, 2, 3, 4}. The
satisfactory reconstruction for the multi-incidence
is illustrated in Fig. 16
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Figure 16. Reconstruction of the potato-shaped ob-
ject with superposition of multi-incident illumination

Noting that, for both multi and single-
illumination cases of potato shape objects, εr = 4
and σ = 10−5 (S/m) and there are 13 exponential
basis functions were utilized. Actually, the super-
position of multi-incidence illumination is one of
the essential factors for satisfactory reconstruc-
tions. To underline this, all 2D shapes recon-
structed so far have been reconstructed again by
considering different numbers of incident illumi-
nation in the following analysis. The error for
different number of illuminations are shown in
Fig. 17
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Figure 17. Error: err(%) vs. number of multi-
incidence illumination: N
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Table 1. Parameters for the superposition of the
multi-incident illumination

r(φ)
Angels of incidence:
φ1
i : ∆φ : φNi

increments: ∆φ (Deg.)
number of incident field in su-
perposition: N

3-leaf 0◦ : ∆φ : 330◦ {22, 30, 55, 110, 165, 330} {2, 3, 4, 7, 12, 16}
4-leaf 0◦ : ∆φ : 360◦ {30, 45, 60, 72, 90, 180, 360} {2, 3, 5, 6, 7, 9, 13}
5-leaf 0◦ : ∆φ : 300◦ {20, 30, 45, 60, 75, 90, 150, 300} {2, 3, 4, 5, 6, 7, 11, 16}

potato −30◦ : ∆φ : 210◦ {30, 60, 80, 120, 240, } {1, 2, 3, 4, 5, 9} (Single illumi-
nation at 0◦)

As shown in Fig. 17, there are no satisfactory
reconstructions for a single or double illumina-
tion. As expected, the error starts to decrease for
increasing the number of illuminations, and after
a specific number, it remains almost constant for
each specific reconstruction. There is no certain
value because it differs for every shapes. How-
ever, one can conclude that at least 2 incidence
illumination should be considered even for a sim-
ple object (like the potato). The details of the
analysis are given in Table 1. The table states
the incident fields angles, given in (4), by defining
φ1
i : ∆φ : φNi . Here, φ1

i and φNi are the initial
and the final angles of the illumination, and ∆φ
denotes the increments.

The next example shows the reconstruction of
a peanut-shaped object for the same constitutive
EM parameters with different initial guessed sur-
faces. The object is defined with a radial function

r(φ) = 0.7

√(
0.2 cos2(φ) + sin2(φ)

)
. (52)

Two incident illuminations were utilized with
φi = {90◦, 270◦}. In this example, the recon-
struction carried out for considering both a cir-
cular cylinder with a radius 0.6λ1 and an ellipse
defined as:

r0(φ) =
ab√(

a cos2(φ) + b sin2(φ)

) , (53)

where a = 0.6λ1 and b = 0.4λ1. Since the el-
liptical initial guess is more similar to the actual
peanut-shaped object, one may consider that us-
ing an elliptical cylinder as the initial guess would
lead to a better reconstruction. However, both
qualitatively and quantitatively, the difference be-
tween reconstructions is almost negligible. It is
obtained err = 3.73% with the circular cylin-
der initial guess and err = 3.61% for the case
of the elliptical cylinder. The only difference is
that it requires 7 iterations for the elliptical case,

whereas it costs 11 for the circular initial guess.
Thus, the method is stable and robust. Fig. 18
demonstrates the reconstruction, the elliptical ini-
tial guess, and the actual surface.
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Figure 18. Reconstruction of the peanut-shaped ob-
ject with the initial guess

For the peanut reconstruction cases, nℓ = 2%
noise is applied for all the simulations, and 13 ex-
ponential functions are applied in the least square
sense.

6. Conclusion

A regularized and linearized iterative framework
is presented to recover the shape of inaccessible
2-dimensional dielectric objects. The proposed
framework utilizes the far-field pattern of the
scattered field data for this aim. The inversion
is done in accordance with the boundary integral
representation of the far-field pattern considering
the combination of the double and single-layer po-
tentials. The problem is inherently ill-posed and
nonlinear. Within this context, the Newton-type
iterative linearization technique is applied, and
it is regularized via Tikhonov in the sense of the
least squares approach. To overcome the adverse
effect of the shadow region on the imaging pro-
cess, the superposition of the multi-incident wave
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is taken into account. Accordingly, robust and
fast inversion is achieved with a very low com-
putational cost. The feasibility of the proposed
framework and its validation limits are asserted
via various scattering scenarios.

The algorithm may be extended for three-
dimensional imaging problems in the acoustic
case, as it still requires a scalar solution to the
wave equations. However, the EM case must be
reformulated, as the scattering problem needs a
vectorial solution. The validation limits can be
enlarged with hybrid approaches generated with
deep learning techniques. All these issues are left
as future works.

Appendix

Idie and V die are vectors with size 2N × 1 whose
elements are precisely

Idie =

[
u0 u1 · · ·uN ψ0 ψ1 · · ·ψN

]T
, (A.1)

and tested incident fields with Dirac-delta func-
tion yields:

V die =

[
ui (φ1) u

i (φ2) · · ·ui (φN ) ︸ ︷︷ ︸
N

0 0 · · · 0
]T
.

(A.2)
Finally, the impedance matrix has a size of 2N ×
2N , which is composed of 4 sub-matrices, each of
which has a size N ×N :

Zdie =

[
Z1u Z1ψ

Z2u Z2ψ

]
. (A.3)

The elements of Zjψ (j = {1, 2}) are N ×N are
given as

Zjψmn = ∆φn


Gj (rm; rn) m ̸= n

i
4

[
1 + i 2π ln

(
γk0
4e ∆φn

)]
m = n.

(A.4)

Here, γ = 1.78107. The sub-matrix Z1u has the
elements

Z1u
mn = ∆φn

{
−K0 (rm; rn) for m ̸= n
1
2 for m = n.

(A.5)

Z2u has the same format with (A.5) taking the
wavenumber k1 instead of k0 into account. More-
over, the diagonal elements of Z2u = −1/2 in ac-
cordance with the (16).
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1. Introduction

We consider the generalized nonlinear
Schrödinger (GNLS) equation, given by

iωt + ωxx + q1|ω|2ω + q2|ω|4ω+
iq3(|ω|2)xω + iq4|ω|2ωx = 0,

(1)

where i =
√
−1, ω is a complex-valued function

of the spatial coordinate x and time t. The sub-
scripts t and x denote differentiation with respect
to time, t and space, x and q1, q2, q3, q4 are real
parameters. Eq.(1) describes the modulation of a
quasi-monochromatic wave train in a weakly non-
linear dispersive medium [1]. It also describes the
behaviour of the Stokes wave near the state of
modulation instability, which was independently
proposed by Johnson [2], Kakutani and Michi-
hiro [3]. The GNLS Eq.(1) takes some special
forms [1] and these forms have found many appli-
cations [1, 4]. One of the special forms of Eq.(1)
is the well known cubic nonlinear Schrödinger
(CNLS) equation:

iωt + ωxx + q1|ω|2ω = 0, (2)

which has found applications in nonlinear op-
tics [5], plasma physics [6] and fluid dynamics [7].
Other special forms of Eq.(1) have applications in-
cluding propagation of nonlinear Alfvên waves [8]
and the self-modulation of the complex amplitude
of the solution to the Benjamin-Ono equation [9].
Under the condition that the initial condition
ω(x, 0) vanishes for sufficiently large x, the CNLS
Eq.(2) has analytic solution given by [6,10]. There
are many papers about the numerical and ana-
lytical solutions of the CNLS equation. However,
a few papers can be found in the past about the
numerical and analytical solutions of the GNLS
equation. Exact solution of the GNLS equation
was obtained by using Gauss transformation by
Pathria and Morris [1]. They also obtained the
numerical solution of the GNLS equation using
the pseudo-spectral split-step method. Different
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split-step pseudo-spectral methods were imple-
mented for the numerical solution of the GNLS
equation by Pathria and Morris [4]. Muslu and
Erbay [11] used first, second and fourth-order ver-
sions of the split-step Fourier method to solve the
GNLS equation numerically. The quintic B-spline
collocation method was used to solve the GNLS
equation by Irk and Dağ [12]. A meshfree method
based on RBFs has been used to solve the GNLS
equation by Uddin and Haq [13]. Bashan, Ali, et
al. [14–16] used various methods based on the dif-
ferential quadrature method to find the solution
of the nonlinear Schödinger Equation. In liter-
ature, [17–19], many researchers have developed
various types of differential quadrature methods
(DQM) using different base functions.

Assuming that ω and all its derivatives tend to
zero rapidly as x → ±∞, the solutions of the
GNLS equation possess the following conservation
laws [1, 4]:

I1 =

∫ ∞

−∞
|ω|2dx, (3)

I2 =

∫ ∞

−∞

[
|ωx|2 −

1

2
(2q3 + q4)|ω|2Im(ωω̄x)

−1

2
q1|ω|4 +

1

6
{q3(2q3 + q4)− 2q2}|ω|6

]
dx,

(4)

and

I3 =

∫ ∞

−∞

[
2Im(ωω̄x)− q3|ω|4

]
dx, (5)

which are the conservation of mass, energy and
impulse respectively.

The differential quadrature method (DQM) was
first introduced by Bellman et al. [20] in 1972 as a
simple and versatile numerical technique for solv-
ing complex differential equations. This method
approximates a function’s derivative at a cer-
tain point through a weighted linear sum of the
functional values at specific collocation points,
whereby a key aspect is related to the compu-
tation of weighting coefficients. Many authors
have used various test functions to formulate
various DQ methods, like Legendre polynomi-
als, Lagrange interpolating polynomials, spline
functions, radial basis functions (RBF), Cheby-
chev polynomials, etc. [20–26]. Shu proposed a
better method for computing weighting coeffi-
cients [27]. Shu and Richards [28] used Lagrange
interpolating polynomials, which have no limi-
tation on the choice of grid points. This leads
to the polynomial-based differential quadrature
(PDQ) method. They also obtained a recurrence

formula to compute the weighting coefficients
for higher-order derivatives. When using Fourier
series expansion, we call it the Fourier-based dif-
ferential quadrature (FDQ) method.

The main advantage of DQM is their high accu-
racy. In general, DQMs are global in nature [29],
which means that they approximate a function
and its derivative at a point by using the func-
tional values at all collocation points in the do-
main. The number of collocation points in the
given domain must be large enough to achieve
high accuracy approximation. However, it was
found that DQM is inefficient when the num-
ber of collocation points is larger [30] because of
instability. In this regard, Zong and Lam [31]
introduced a localized DQ method to keep a bal-
ance between stability and accuracy. It has been
demonstrated that accuracy and stability can be
balanced by approximating the derivative of a
function at a position using a weighted sum of
functional values at the points in its neighbour-
hood rather than all collocation points. There-
fore, we proposed an efficient numerical approach
based on the local differential quadrature method
using Fourier series expansion to solve the GNLS
Eq.(1).

The paper is organized as follows: Section 2
briefly introduces DQM and the local Fourier-
based differential quadrature (L-FDQ) method.
The L-FDQ method is implemented in section 3
to solve the GNLS equation. In section 4, we dis-
cuss the matrix stability analysis of the proposed
method. Section 5 reports the numerical results
of the GNLS equation for some test problems. In
section 6, we draw a brief conclusion about the
presented method.

2. Differential quadrature method
(DQM)

DQM is an approximation to the derivative of a
function at any grid point using the weighted lin-
ear sum of all functional values at certain colloca-
tion points in the given domain of definition. We
consider an arbitrarily distributed N grid points
x1 < x2 < · · · < xN on the real axis. Then, ac-
cording to DQ discretization, the nth order deriva-
tives of U(x, t) w.r.t. the spatial coordinate x at
a point xi is given by

U (n)(xi, t) =
N∑
j=1

w
(n)
i,j U(xj , t), (6)
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where w
(n)
i,j represents the weighting coefficients,

i, j = 1, . . . , N and n = 1, . . . , N − 1.

2.1. Fourier-based differential quadrature
(FDQ)

For Fourier-based differential quadrature (FDQ),
we consider an arbitrary function defined on the
interval [a, b]. Two typical sets of base functions
are used to compute the weighting coefficients.

These sets of base functions are:

1, cos

(
πx

b− a

)
, sin

(
πx

b− a

)
, . . . ,

cos

(
(N − 1)πx

2(b− a)

)
, sin

(
(N − 1)πx

2(b− a)

)
,

(7)

and

gj(x) =
G(x)

sin
(
π(x−xj)
2(b−a)

)
G(1)(xj)

, x ∈ [a, b],

j = 1, 2, . . . , N

(8)

where

G(x) =
N∏
k=1

sin

(
π(x− xk)

2(b− a)

)
,

G(1)(xj) =

N∏
k=1,k ̸=j

sin

(
π(xj − xk)

2(b− a)

)
, x ∈ [a, b],

j = 1, . . . , N.

Using these sets of base functions given in Eq.(7)
and Eq.(8), the weighting coefficients for the first
and second-order derivatives as evaluated by Shu
[29] are as follows:

w
(1)
i,j =

π

2(b− a)

G(1)(xi)

sin
(
π(xi−xj)
2(b−a)

)
G(1)(xj)

, i ̸= j,

w
(2)
i,j = w

(1)
i,j

(
2w

(1)
i,i − π

(b− a)
cot

(
π(xi − xj)

2(b− a)

))
,

i ̸= j,

w
(n)
i,i = −

N∑
j=1,j ̸=i

w
(n)
i,j , n = 1, 2


(9)

where i, j = 1, 2, . . . , N . We used equally spaced
grid points in the space direction to approximate
the derivative of the unknown function.

2.2. Local Fourier-based differential
quadrature (L-FDQ)

We consider a partition a = x1 < x2 <
· · · < xi < · · · < xN = b of the do-
main [a,b]. Following the method adopted
by Shu [27], we consider a location xi (i =
1, 2, . . . , N) and for each i, consider a stencil Si =
{xi−K1 , xi−K1+1, . . . , xi−1, xi, xi+1, . . . xi+K2}
containing K + 1 (K = K1 + K2) grid points.
For the left boundary point x1,K1 = 0,K2 = K,
while for the right boundary point xN , K1 =
K,K2 = 0. Then using the K + 1 grid points
xi−K1 , xi−K1+1, . . . , xi−1, xi, xi+1, . . . xi+K2 the
nth order partial derivative of the function U(x, t)
with respect to x at xi is given by

U (n)
x (xi, t) =

K2∑
j=−K1

w
(n)
i,i+jU(xi+j , t) (10)

where , the L-FDQ weighting coefficients for the
first and second-order derivatives in Eq.(9) are
given by

w
(1)
i,i+j =

π

2(b− a)

G(1)(xi)

sin
(
π(xi−xi+j)

2(b−a)

)
G(1)(xi+j)

,

for j ̸= 0, j = −K1, . . . ,K2

(11)

where

G(1)(xi) =

K2∏
k=K1
k ̸=0

sin

(
π(xi − xi+k)

2(b− a)

)
and

G(1)(xi+j) =

K2∏
k=−K1
k ̸=j

sin

(
π(xi+j − xi+k)

2(b− a)

)
,

and

w
(2)
i,i+j = w

(1)
i,i+j

(
2w

(1)
i,i − π

b− a
cot

(
π(xi − xi+j)

2(b− a)

))
,

j ̸= 0, j = −K1, . . . ,K2.
(12)

For the diagonal coefficients w
(n)
i,i , we have

w
(n)
i,i = −

K2∑
k=−K1,

k ̸=0

w
(n)
i,i+k ; n = 1, 2. (13)

Once the weighting coefficients are computed,
then we make the following differentiation matri-

ces, W(1) =
(
w

(1)
i,j

)
N×N

and W(2) =
(
w

(2)
i,j

)
N×N

to approximate the first and second-order spatial
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derivatives of U(x, t) in the domain [a, b]. These
differentiation matrices are banded.

3. Implementation of L-FDQ

The GNLS Eq.(1) is examined in this part, with
the following initial and boundary conditions ap-
plied across the interval [a, b]:

ω(x, 0) = f(x), x ∈ [a, b] (14)

ω(a, t) = ω(b, t) = 0, t ∈ (0, T ]. (15)

Taking ω(x, t)= u(x, t) + iv(x, t), where i =
√
−1

the GNLS Eq.(1) with the initial and boundary
conditions (14) and (15) are transformed into the
following coupled initial-boundary value problem
(IBVP):

PDEs:

ut =− vxx − [q1(u
2 + v2) + q2(u

2 + v2)2]v

− [2q3u
2 + q4(u

2 + v2)]ux − 2q3uvvx

vt = uxx + [q1(u
2 + v2) + q2(u

2 + v2)2]u

− [2q3v
2 + q4(u

2 + v2)]vx − 2q3uvux


(16)

ICs : u(x, 0) = fu(x), v(x, 0) = fv(x), x ∈ [a, b]
(17)

BCs : u(a, t) = u(b, t) = 0, v(a, t) = v(b, t) = 0,

t ∈ (0, T ].
(18)

To solve the system (16) with ICs (17) and BCs
(18) at the collocation points {x1, x2, . . . , xN}
with uniform step size h = xi+1 − xi, for i =
1, 2, . . . , N − 1 we define the following:

U(t) = [u1(t), u2(t), . . . , uN (t)]T ,

V(t) = [v1(t), v2(t), . . . , vN (t)]T ,

where ui(t) = u(xi, t), vi(t) = v(xi, t) for all
i = 1, 2, . . . , N .

Using these definitions and the differentiation ma-
trices W(1) and W(2) as defined in section 3,
the system of PDEs (16) reduces to the following
system of ordinary differential equations (ODEs),
which can be written in the following matrix form:

U′(t) = − W(2) ·V(t)−
[
q1

(
U2(t) +V2(t)

)
+

q2
(
U2(t) +V2(t)

)2] ∗V(t)

−
[
2q3U

2(t) + q4
(
U2(t) +V2(t)

)]
∗(

W(1) ·U(t)
)
− 2q3U(t) ∗V(t) ∗

(
W(1) ·V(t)

)
V′(t) = W(2) ·U(t) +

[
q1

(
U2(t) +V2(t)

)
+

q2
(
U2(t) +V2(t)

)2] ∗U(t)

−
[
2q3V

2(t) + q4
(
U2(t) +V2(t)

)]
∗(

W(1) ·V(t)
)
− 2q3U(t) ∗V(t) ∗

(
W(1) ·U(t)

)


(19)

where “ · ” indicates the multiplication of two
matrices and U(t)∗V(t), U2(t) = U(t)∗U(t) de-
note the component by component multiplication
of two matrices.

Using the corresponding ICs and BCs (17) and
(18), we solve the above system of ODEs (19) by
the usual RK4 method.

4. Stability analysis

The method’s stability is analyzed using the ma-
trix stability analysis as suggested in literature
[30,32]. After linearization of the system of ODEs
(19), the resulting system can be written in the
following matrix form:

X′(t) = A ·X(t) (20)

(since, both the system of ODEs and the BCs are
homogeneous) or

[
U′(t)
V′(t)

]
=

[
−αW(1) −βI− γW(1) −W(2)

βI− γW(1) +W(2) −αW(1)

] [
U(t)
V(t)

]

where I is the identity matrix of order N × N ,
W(1) and W(2) are the weighting coefficient ma-
trices for first and second order derivatives re-
spectively, as defined in section-3. Also, we have
taken α = 2q3ū

2 + q4(ū
2 + v̄2), β = q1(ū

2 + v̄2) +
q2(ū

2 + v̄2)2 and γ = 2q3ūv̄, where ū = ||U||∞
and v̄ = ||V||∞.
The stability region for the complex eigenvalues
is shown in Figure 1 [33].
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Figure 1. Stability region for com-
plex eigenvalues.

The stability of the numerical integration of the
system (20) is related to the stability of the nu-
merical scheme for solving it. If the system of
ODEs in (20) is not stable, then the stable nu-
merical scheme for temporal discretization may
not generate the converged solution.

The stability of (20) depends on the eigenvalues
of the coefficient matrix A since its exact solution
can be found using the eigenvalues. Let λi be the
eigenvalues of the coefficient matrix A, then the
stable solution of X(t) as t → ∞ requires:

(1) if all the eigenvalues are real −2.78 <
∆t λi < 0

(2) if eigenvalues are imaginary, −2
√
2 <

∆t λi < 2
√
2

(3) if eigenvalues are complex ∆t λi should
be in the region shown in Figure 1

At the end of section 5, we will calculate the eigen-
values of the coefficient matrix A and we will see
that our scheme is stable with the proper choice
of the time step ∆t.

5. Numerical experiment

The accuracy and effectiveness of the present
method are demonstrated by taking three test
problems. The accuracy of the method is mea-
sured by using L∞− error norm, which is defined
as

L∞ =
∥∥∥ |ω|exct − |ω|approx

∥∥∥
∞

= max
1≤i≤N

∣∣∣ |ω(i)|exct − |ω(i)|approx
∣∣∣

5.1. Single solitary wave solution

The exact solitary wave solution of the GNLS
Eq.(1) for the parameters q1 = 0.5, q2 = −1.75,
q3 = −1.0 and q4 = −2.0 is given by [1, 4]:

ω(x, t) =
2eiϕ(x,t)√

4 + 3 sinh2(x− 2t− x0)
,

(21)

where ϕ(x, t) = 2 tanh−1
[
1
2 tanh(x− 2t− x0)

]
+ x− x0.

The modulus of the above solution represents a
single solitary wave initially located at x0, mov-
ing to the right with constant speed 2. The exact
values of the three conserved quantities I1, I2 and
I3 as given in Eq.(3)-Eq.(5), for this problem can
be found as:

I1 =2 log 3 ≈ 2.19722,

I2 =− 1.5 + 3.875 log 3 ≈ 2.75712,

I3 =4− 9 log 3 ≈ −5.88751.

 (22)

Table 1. L∞− errors and conserved
quantities for different stencil sizes
K, for a single solitary wave motion,
when h = 0.1, ∆t = 0.001 over the
domain −20 ≤ x ≤ 30.

K I1 I2 I3 L∞
2 2.19724 2.75715 -5.88743 2.40377 ×10−2

4 2.19712 2.75701 -5.88717 1.26695 ×10−3

6 2.19712 2.75701 -5.88717 1.07408 ×10−4

8 2.19712 2.75701 -5.88717 9.39029 ×10−6

10 2.19712 2.75701 -5.88717 4.23275 ×10−6

12 2.19712 2.75701 -5.88717 9.42336 ×10−6

Using the initial condition obtained from (21)
and imposing the boundary conditions (18), the
GNLS equation is simulated by the proposed
method for different stencils over the solution do-
main [−20, 30]. The L∞− error and the three
conserved quantities for different stencil sizes K
are reported in Table 1. From Table 1, we observe
that L∞− error decreases when K, the size of the
stencil increases from K = 2 to K = 10, however
L∞− increase when K reached 12 .
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Table 2. Comparison of L∞− error at T = 3, for a single solitary wave motion, with
x0 = 15, N = 513, K = 18 and −20 ≤ x ≤ 60..

∆t Present Method Collocation [12] First Order [11] Second Order [11]
0.010 2.75032 ×10−5 3.0 ×10−4 3.1 ×10−3 3.0 ×10−5

0.005 5.65732 ×10−6 3.1 ×10−5 1.6 ×10−3 2.0 ×10−5

0.001 3.86334 ×10−7 2.1 ×10−6 3.1 ×10−4 8.0 ×10−7

Table 3. L∞− error norms and Rate of Convergence (ROC) for various numbers of grid points
for K = 6, K = 8 and K = 10 with ∆t = 0.001 at T = 5.

N
K = 6 K = 8 K = 10

Error ROC Error ROC Error ROC

201 1.83495× 10−2 − 1.01788× 10−2 − 6.13463× 10−3 −
301 1.98217× 10−3 5.5111 4.52132× 10−4 7.71185 1.13554× 10−4 9.87958
401 3.91842× 10−4 5.65132 5.23908× 10−5 7.51345 7.34062× 10−6 9.548

-20 0 20 40 60
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
w

T=0 T=3 T=6

Figure 2. Motion of a single solitary
wave at different time levels.

Figure 3. Space time graph of a sin-
gle solitary wave for GNLS equation
(N = 513,K = 18,∆t = 0.001)

In order to compare our result with [11, 12], we
choose x0 = 15, N = 513 over the space interval
[−20, 60] with time step size, ∆t = 0.001. This
comparison is reported in Table 2. Figure 2 and
3 represent the space-time graph of the numerical
solution of single solitary wave up to time T = 6.

The absolute error distribution at time T = 6 for
this case is shown in Figure 4.

The numerical rate of convergence (ROC) is cal-
culated by using the formula [33],

ROC ≈
ln
(
E(N2)
E(N1)

)
ln
(
N1
N2

)
where E(Ni) is the L∞− error norm when using
Ni grid points.

The L∞− error norm and numerical rate of
convergence analysis for various number of grid
points are shown in Table 3. From the table it is
evident that the rate of convergence (ROC) de-
pends on the value of K.

5.2. Interaction of two solitons

In this test problem, we consider the interaction of
two solitons for the GNLS equation, in which the
coefficients are taken as q1 = 1, q2 = 1, q3 = −2
and q4 = 0. With these coefficients, we take the
initial conditions as given by [1, 4] :

ω(x, 0) = ω1(x, 0) + ω2(x, 0), (23)

where

ω1(x, 0) =
1√
2
sech

[
1

2
(x− 15)

]
ei[

1
4
(x−15)+tanh{ 1

2
(x−15)}],

and

ω2(x, 0) =
1

2
√
2
sech

[
1

4
(x− 35)

]
ei[−

1
2
(x−35)+ 1

2
tanh{ 1

4
(x−35)}].
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Table 4. Conserved quantities at
different time levels, for interaction of
two solitons over the space interval
[−50, 100] with N = 501 and ∆t =
0.001 with stencil size K = 14.

T I1 I2 I3
0 3.00145 0.18974 −1.02223× 10−4

5 3.00139 0.18977 −1.02687× 10−4

10 3.00141 0.18986 −1.02482× 10−4

15 3.00154 0.18968 −1.02161× 10−4

20 3.00142 0.18975 −1.02403× 10−4

The exact values of the conserved quantities for
this problem are I1 = 3.0, I2 = 3

16 and I3 = 0.0.
The initial condition defined in Eq.(23), repre-
sents two solitons, one initially located at x1 = 15,
moving to the right with speed 1

2 and having

amplitude 1√
2

and another initially located at

x2 = 35 moving to the left with unit speed and
having amplitude 1

2
√
2
. We have simulated this

problem with the present method. These two
solitons interact, and after the interaction, they
retain their shapes and speeds, which has been
shown in Figure 5. In Table 4, the conserved
quantities I1, I2 and I3 at different time levels are
reported. From the table, we see that the varia-
tions of these conserved quantities from the exact
values are negligible.

-20 0 20 40 60
x

0

1.×10-7

2.×10-7

3.×10-7

4.×10-7
|w|

Figure 4. Error distribution of a sin-
gle solitary wave for GNLS equation
at t=6, (N = 513,K = 18,∆t =
0.001).

Figure 5. Interaction of two solitons
(N = 501,K = 14,∆t = 0.001).

5.3. Blow-up

In [1], it has been reported that for specific val-
ues of the coefficients and for certain initial con-
ditions, the solutions of the GNLS equation have
finite time blow-up. To see this experience, we
take q1 = −2, q2 = 20 and q3 = q4 = 0 and the

Gaussian function ω(x, 0) = e−x2
as the initial

condition, the numerical simulation has been con-
ducted by our method. The exact values of the
conserved quantities for this problem are found
to be I1 =

√
π/2 ≈ 1.5331, I2 =

√
π(9

√
2 + 9 −

20
√
6)/18 ≈ −2.68447 and I3 = 0.

Table 5. Conserved quantities at
different time levels for case of finite
time blow-up ( N = 151, −7.5 ≤ x ≤
7.5, ∆t = 10−4 and K = 6).

T I1 I2 I3
0.00 1.25330 −2.68419 0.0
0.02 1.25329 −2.68414 −4.40186× 10−17

0.06 1.25107 −2.34227 −1.13798× 10−15

0.07 1.15379 −2.07551 −6.16625× 10−14

0.08 1.24722 −2.63257 3.98570× 10−14

0.10 1.25129 −2.88368 5.09393× 10−14

0.15 1.10587 −2.23570 −6.12399× 10−12

0.20 1.24751 −3.39736 1.97811× 10−11

Figure 6. Finite time blow-up,
with initial condition ω(x, 0) =

e−x2

(−7.5 ≤ x ≤ 7.5, N = 151,∆t =
0.0001,K = 12).

The conserved quantities for this problem have
been reported in Table 5, and from the table, we
see that the variation of the conserved quantity
is more in I2. Figure 6 shows the space-time
graph of this test problem. According to [1], it
has been shown that the exact solution ω(x, t) for
this problem will blow up in finite time, and an
upper bound on the blow-up time is t ≈ 1.7. How-
ever, from Figure 6, we observed that the blow-up
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is evident at t = 0.07, and this result is consis-
tent with the result obtained using the quintic b-
spline collocation method in [12]. Also, the graph
shows that the blow-up is well occurring at about
t = 0.07, 0.11, 0.15 and 0.20.

As a part of the stability analysis, we have calcu-
lated the eigenvalues of the coefficient matrix, A
as defined in Eq.(20). We take ū = v̄ = 1, so that
α = 2q3 + 2q4, β = 2q1 + 4q2 and γ = 2q3. The
maximum absolute values of the eigenvalues of
the coefficient matrix A for a single solitary wave
motion is determined to be 248.273 (N = 513).
Therefore, for maintaining stability the maximum

value of ∆t is given by ∆t < 2
√
2

248.273 = 0.0113924.
However, we take smaller values of ∆t in order
to get more accurate results. The distribution
of eigenvalues for this case is shown in Figure 7.
The figure shows that more eigenvalues are dis-
tributed near the imaginary axis.

-3.×10-6-2.×10-6-1.×10-6 0 1.×10-62.×10-63.×10-64.×10-6
-100

-50

0

50

100

Re(λi )

Im(λi )

Figure 7

Distribution of eigenvalues for the coefficient
matrix, A (N = 513,K = 12).

6. Conclusion

In this study, we have examined the numerical so-
lution of the GNLS equation by means of the L-
FDQ method. The GNLS equation is discretized
in space using differentiation matrices obtained
from the L-FDQ method, and the resulting sys-
tem of ordinary differential equations in time t is
solved by the usual RK4 method. By the present
method, the motion of a single solitary wave has
been investigated, and the results obtained are
compared with the exact solution and some other
results obtained in earlier works. It has also been
studied how two solitons interact, and it has been
found that after the encounter, the solitons main-
tained their identities. The finite time blow-up
problem has also been tackled by the suggested
approach, which is consistent with the previous
findings. Further, this study found that the finite
time blow-up is repeating.
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Y., & Esen, A. (2021). Finite difference
method combined with differential quadra-
ture method for numerical computation of
the modified equal width wave equation.
Numerical Methods for Partial Differential
Equations, 37(1), 690-706. https://doi.or
g/10.1002/num.22547
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 This study is about multi-stage manufacturing processes and their control by 

statistical process control modeling. There are two kinds of dependence structures 

in a multi-stage manufacturing process: one is the dependence between the stages 

of the process, and the other is the dependence between the concerned quality 

characteristics. This study employs state-space models to demonstrate the 

dependency structure between the process stages and uses the Kalman filter 

method to estimate the states of the processes. In this setup, copula modeling is 

proposed to determine the dependence structure between the quality characteristics 

of interest. A simulation study is conducted to assess the model's accuracy.  As a 

result, it was found that the model gives highly accurate predictions according to 

the mean absolute percentage error (MAPE) criteria (<10%). 
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1. Introduction 

Today, production and service processes generally 

consist of many serial or parallel stages in which 

products are completed by passing from one to the 

other. In a multi-stage manufacturing process, it is not 

clear from which stage and which variables 

characterizing the process arise the variability in 

quality characteristics. The key to reducing quality 

variability in a product is understanding how,  much of 

this variability occurs at each stage of the process and 

how much is transmitted to other stages. 

The most important problem in the multi-stage 

manufacturing process is how to define the process in 

the context of interactions within and between stages 

and time dynamics. In past research, multistage 

processes have been described with statistical models 

such as the linear regression model. Conversely, for 

more effective monitoring and control of the process, 

engineering knowledge must also be combined with 

statistics in modeling and analysis of the multi-stage 

process. In this context; Many articles can be found in 

the sources that describe the multi-stage manufacturing 

process in a linear state-space model structure based on 

production engineering knowledge. A complex system, 

such as a multistage manufacturing process, may have 

many inputs and outputs. These inputs and outputs can 

be complexly interrelated. The hierarchical structure of 

the data obtained can be explained by multi-level 

dynamic models. An example of this is a two-level 

linear state-space model. 

In this study, in addition to a dynamic modeling 

approach such as the state-space model of the 

dependency between stages in multi-stage 

manufacturing processes, it is proposed to use copula 

modeling to reveal the internal dependencies of the 

quality characteristics of interest at each stage. In order 

to present the practical implications of the proposed 

model, the process was simulated and the applicability 

of the model was discussed. 

The following sections of the study are organized as 

follows: In the second section, studies on statistical 

process control (SPC) methods used for modeling 

multi-stage manufacturing processes and monitoring 

these processes will be discussed. In the third section, 

modeling of multi-stage manufacturing processes with 

state-space models will be explained. Additionally, this 

chapter will include the proposal of the Kalman filter 

method for the statistical estimation of the state 

variables of the process equations put forward by state-

space models. In the fourth chapter, the statistical 

dependence of quality characteristics and the 

explanation of dependence with copula functions will 

be highlighted, and multi-stage manufacturing process 

modeling under dependence will be presented. Multi-

stage manufacturing processes under dependency The 

example  and  process  simulation  of  SPC  approaches  

http://www.ams.org/msc/msc2010.html
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will be presented in the fifth chapter. In the sixth 

chapter, the results of the study and some 

determinations about future studies as extensions of 

these will be stated. 

2. Literature review 

In order to identify out-of-control situations in multi-

stage manufacturing processes, SPC methods have 

been applied to the quality measurements of the product 

in the final stage of the process. Generally, Shewart, 

CUSUM, EWMA control charts for univariate quality 

measurements of the final product; It has been 

suggested to use Hotelling's 𝑇2 control chart for 

multivariate quality measurements [1]. Since these 

control charts were applied to a single stage of the 

process, they were insufficient to determine the stage 

that was the source of variability. In another study, 

quality measurements obtained from each stage of the 

process were evaluated separately [2]. In this study, 

where simultaneous confidence intervals were 

established for the average of each of the quality 

variables, it was examined whether the quality 

measurements of interest were within the confidence 

intervals in terms of the defined quality levels, and it 

was stated that the explanatory power of the method 

decreased as the size of the problem increased. 

Statistical process control tools used to monitor multi-

stage manufacturing processes have a wide place in the 

literature. These tools can be examined under three 

headings: multivariate control charts, control charts 

based on regression modeling, and methods based on 

engineering-based models. 

In many production processes, it may be necessary to 

simultaneously monitor and control one or more 

interrelated quality characteristics. Independent 

examination of quality characteristics causes loss of 

information to be obtained from the process. The 

concept of multivariate quality control originated in 

Hotelling's work in 1947 [3]. In this study, he applied 

his proposed method to bombardment viewfinder data 

used in World War II. The most well-known 

multivariate process monitoring and control method 

used to monitor the mean vector of the process is 

Hotelling's 𝑇2 control chart, which is similar to the 

univariate Shewhart's �̅� chart. Applied to multi-stage 

manufacturing processes, Hotelling's 𝑇2 chart indicates 

when the entire process is out of control, but does not 

indicate which stage is out of control. Alternatively, 

quality metrics at each stage can be tracked with 𝑇2 

cards. In this case, the effect of the quality output of the 

previous stage on the quality measurements at a certain 

stage will be ignored. As a result, it is difficult to 

interpret an out-of-control situation in a multi-stage 

manufacturing process with a 𝑇2 chart [1]. Following 

this pioneering work by Hotelling, control methods for 

many related variables have been proposed [4]. 

Nowadays, the issue of multivariate quality control (or 

process monitoring) has maintained its importance as 

many quality characteristics of products manufactured 

with automatic inspection methods can be measured at 

the same time. For example; Chemical and 

semiconductor manufacturers try to keep the process 

under control by constantly updating their databases for 

hundreds of important variables in their manufacturing 

processes. 

It was thought that quality measurements in multi-stage 

manufacturing processes are affected by the output of 

the previous stage and the regression analysis technique 

was introduced [5]. This method is based on 

establishing univariate control cards for the residuals 

obtained from the multivariate regression line 

established on other variables for each quality variable 

[6]. Regression models can give misleading results 

when quality measurements from different stages are 

strongly correlated with each other. This problem in 

regression analysis can be partially reduced by the 

cause-selection method and is effective in identifying 

out-of-control stages [7]. A compilation of cause-

selection method studies was compiled by Wade and 

Woodall [8]. Nowadays, the use and applications of 

cause-selection schemes for multi-stage processes are 

also found in Shu and Tsung's article [9]. 

The hierarchical structure of data obtained from the 

multistage manufacturing process suggests a two-level 

model: At the first level, quality measurements are 

fitted to the system input and quality information. At 

the second level, the change in quality measurements is 

modeled as a function of measurements obtained from 

earlier stages of the process. An example of this 

situation is the state-space model. 

Quality measurements for the 𝑘th stage of a production 

process consisting of 𝑁 stages are formulated as a linear 

state-space model as in Eq. (1) and Eq. (2) [10]. 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝑣𝑘                           (1) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑤𝑘       {𝑘} ⊂ {1,2, … , 𝑁}           (2) 

In Eq. (1), 𝑥𝑘 shows unobservable product quality 

information such as dimensional deviations of products 

at the 𝑘th stage. 𝑣𝑘 indicates the cause of variability and 

unmodelable errors (process noise). 𝐴𝑘−1𝑥𝑘−1 shows 

the transformation of quality information from the (𝑘 −
1)th stage to the 𝑘th stage. In Eq. (2), 𝑤𝑘  is the 

measurement error of the product, and 𝐶𝑘 is the matrix 

used to relate 𝑥𝑘 with quality measurements (𝑦𝑘). 

𝐴𝑘−1 and 𝐶𝑘 are constant matrices obtained from 

engineering knowledge, laws of physics and 

process/product design information and known at the 

kth stage of the process. For univariate cases, 

𝑣𝑘~𝑁(0, 𝜎𝑣𝑘
2 ) and 𝑤𝑘~𝑁(0, 𝜎𝑤𝑘

2 ) with its variance 

depending on the stage index 𝑘 and the initial state 

𝑥0~𝑁(𝑎0, 𝜏2).  Various methods have been researched 

to monitor whether the process is out of control, and 

fixture errors, machine errors and thermal errors in the 

process are seen as process out of control or process 

errors. 

A multistage manufacturing process can have many 

inputs and outputs. These inputs and outputs can be 
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intricately related to each other. There are many articles 

explaining multi-stage manufacturing processes with 

state-space models based on process management 

expertise. Lawless et al. [11] and Agrawal et al. [12] 

revealed quality variability in multi-stage 

manufacturing processes with AR(1) type models in the 

form of state-space models. Part assembly process [12] 

and sheet metal assembly [13] are examples of 

modeling proposals in the form of state-space model. 

Detailed descriptions of state-space models can be 

found in [10] and [14]. There are many studies in the 

literature on error detection, error prevention and 

corrective methods in multi-stage manufacturing 

operations. Tsung et al.'s study compiled past studies 

on multi-stage manufacturing and service operations 

and provided ideas for future research [15]. 

Today, modeling for monitoring and control of multi-

stage manufacturing processes, which have become 

more complex with developing technology, is a 

complex issue that still maintains its importance. State-

space models are a modeling method that has a wide 

place in the literature and includes the physics rules 

surrounding engineering and production structures 

suitable for the structure of multi-stage manufacturing 

processes. In a dynamic system represented by a state-

space model, the state of the system can be predicted 

from the input and output information together with the 

previous information of the model. Estimation of the 

state of the system from a series of noisy measurements 

obtained from a dynamic system can be made with the 

Kalman filter.  

In this study, it is suggested to model the dependency 

structure between quality characteristics with copula 

and combine it with Kalman filter. Some studies in 

which copulas, Kalman filter and/or state space models 

are used together are given in Table 1. 

 

Table 1. Some selected studies on copulas, Kalman filter and state space models. 

Authors Methods/Models Examples/Application Area 

Lindsey [16]. Kalman filter and copulas The application to autoimmunity in multiple 

sclerosis data 

Junker, Szimayer and 

Wagner [17 

Kalman filter based on copula functions Nonlinear cross-sectional dependence in the 

term structure of US-Treasury yields and points 

out risk management implications 

Hafner and Manner [18] A multivariate stochastic volatility models 

with Gaussian copula 

The application to two bivariate stock index 

series 

Goto [19] State space model to describe the target 

system’s behaviour 

A simulation study conducted to show the 

effectiveness of the developed controller 

Creal and Tsay [20]  Gaussian, Student’s t, grouped Student’s t, 

and generalized hyperbolic copulas with 

time-varying correlations matrices 

Modeling an unbalanced, 200-dimensional 

panel consisting of credit default swaps and 

equities for 100 US corporations 

Alpay and Hayat [21] Copula and Data Envolopment Analysis 

(DEA) 

The application to simulated and real hospital 

data 

Zhang and Choudhry 

[22] 

Four generalized autoregressive conditional 

heteroscedasticity (GARCH) models and 

the Kalman filter method 

Empirically forecasting the daily betas of a few 

European banks during the pre-global financial 

crisis period and the crisis period 

Fernández, García and  

González-López [23] 

Copula and the multivariate Markov chain Spike prediction in neuronal data 

Smith and 

Maneesoonthorn [24] 

Construction of copulas from the inversion 

of nonlinear state space models 

Forecasting of quarterly U.S. broad inflation and 

electricity inflation 

Wang, Meng, Liui Fu 

and Cau [25] 

The Unscented Kalman Filter (UKF), 

copula and the worst case analysis 

A two-stage dynamic attack strategy using 

global network information 

Xu, Liang, Li and Wang 

[26] 

Characterization of the dependence among 

all components by a copula function 

Investigation of the optimal condition-based 

maintenance policy under periodic inspection 

for a K-out-of-N: G system 

Kreuzer, Dalla Valle and 

Czado [27] 

Non-linear non-Gaussian state space model Estimation of airborne pollutant concentrations 

Ly, Sriboonchitta, Tang 

and Wong [28]
 

A hybrid of ARMA-GARCH, static and 

dynamic copulas and dynamic state space 

models
 

Investigation of dependence and integration 

among the European electricity markets
 

Wang, Xu, Trajcevski, 

Zhang, Zhong and Zhou 

[29]
 

A non-linear neural state space model based 

on copula-augmented mechanism
 

Electricity forecasting
 

Kreuzer, Dalla Valle and 

Czado [30] 

Multivariate nonlinear non-Gaussian state 

space models 

The application to atmospheric pollutant 

measurement data 
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The rest of the study is organized as follows. In the third 

section of the study, state-space models will be 

discussed. In the fourth section, the copulas proposed 

to model the dependency structure between quality 

characteristics will be explained in detail. Application 

of the proposed approach by a simulation study is given 

in the fifth section. The last section includes the 

conclusions of the study, and the future studies.   

3. Multi-stage manufacturing processes and state-

space models 

Dynamic systems, such as multistage manufacturing 

processes, can be more generally represented in the 

form of state-space models by the equations shown in 

Eq. (3) and Eq. (4). 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝐷𝑘𝜀𝑘                   (3) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝐻𝑘𝜂𝑘                               (4) 

Similar to Eq. (1) and Eq. (2), 𝑥𝑘 is the state and 𝑦𝑘  is 

the measurement or observation vectors (𝑘 = 1, … , 𝑁). 

The vectors 𝜀𝑘 and 𝜂𝑘 express the noise in the state and 

the observations, and the vector 𝑢𝑘 represents the 

effects of managerial inputs at the 𝑘th stage in the 

process in Eq. (3) and Eq. (4). 

Estimation of the state vector 𝑥𝑘 , 𝑘 = 1, … , 𝑁 in state-

space models and other related analyzes can be done 

within the framework of three main approaches [31]. 

These are Bayesian, Fisher and unknown-bounded 

approaches. In the Bayesian approach, the error terms 

𝜀𝑘 and 𝜂𝑘 in the equations are stochastic, and the initial 

state vector 𝑥0 is a random variable. In the Fisher 

approach, the measurement equation term 𝜂𝑘 has a 

stochastic feature, 𝜀𝑘 can be stochastic or completely 

unknown, and 𝑥0 can be random. Within the framework 

of the unknown – bounded approach, 𝜀𝑘, 𝜂𝑘 and 𝑥0 are 

unknown but are limited from above to the values of 

the ellipsoids expressing the variance-covariance 

quantities [32]. 

When 𝐴𝑘−1, 𝐵𝑘 and 𝐶𝑘 matrices are accepted as known 

matrices in state-space models, the model estimation 

problem is solved by using the observation values 

𝑦1, 𝑦2, … , 𝑦𝑘1
 obtained up to time 𝑘1 and estimating 𝑥𝑘2

 

at time 𝑘2. When 𝑘1 = 𝑘2, the estimation problem 

becomes a filtering process, for which Kalman filter 

(KF) or weighted least squares (WLS) methods can  be 

used. Estimation equations that can be applied within 

the framework of the Bayesian model approach are 

known as Kalman filters in the literature [33]. 

The Bayesian model approach is the most widely used 

state-space modeling approach and can offer flexible 

perspectives on the dependence and independence of 

the vectors 𝜀𝑘, 𝜂𝑘 and 𝑥0 within and among themselves 

in the time dimension. In this sense, the issues of 

determining the prior and posterior probability 

distributions for the random variables in the state-space 

model and the expected value and covariance functions 

are needed in estimation process. 

Control effects that can be applied in a dynamic 

stochastic process are represented by the sequence {𝑢𝑘} 

in state-space models. While control effects, state 

vectors should be a function of 𝑥𝑘 's, in the absence of a 

complete and direct observation of the situations, 

measurement or observation values must be considered 

as a function of 𝑦𝑘 's and determined by the opinion of 

system experts; 𝑢𝑘 = 𝜔0 (𝑦0 , 𝑦1, … , 𝑦𝑘). In the 

literature, it is also recommended to impose a constraint 

such as |𝑢𝑘 | ≤ 1 for 𝑢𝑘 's [34]. 

The Kalman filter and its calculation equations are 

explained in detail in the next section. In the weighted 

least squares method, the aim is to estimate the state 

vector with the deviation of 𝑥𝑘, which minimizes the 

quantity in Eq. (5), where the covariance matrix of the 

variable 𝜂𝑘 is 𝑅𝑘 > 0. 

𝐽(𝑥𝑘) = (𝑦𝑘 − 𝐶𝑘𝑥𝑘)′𝑅𝑘
−1(𝑦𝑘 − 𝐶𝑘𝑥𝑘)          (5) 

In Eq. (5), the 𝑅𝑘
−1 matrix is a positive definite matrix 

and must be determined in the context of the inputs, 

states and outputs of the dynamic system of interest. 

For 𝑥𝑘   estimation that gives the smallest value of 

𝐽(𝑥𝑘). The solution in Eq. (6) is found for the 𝑥𝑘 

estimation that gives the smallest value of 𝐽(𝑥𝑘). 

�̂�𝑘 = (𝐶𝑘𝑅𝑘
−1𝐶𝑘)−1𝐶𝑘𝑅𝑘

−1𝑦𝑘                    (6) 

Estimation of 𝑥𝑘 in the context of the weighted least 

squares method for the state-space model in Eq. (5) and 

Eq. (6); 𝑃0 is the covariance matrix for the initial state 

vector 𝑥0, and 𝑄𝑘 is the covariance matrix for the vector 

𝜀𝑘, and Equation 7 is obtained by reaching its minimum 

value under the  𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝐷𝑘𝑒𝑘 

constraint. 

𝐽(𝑥𝑘 , 𝜀0, 𝜀1, … , 𝜀𝑘−1)

= ∑(𝑦𝑘 − 𝐶𝑘𝑥𝑘)′𝑅𝑘
−1(𝑦𝑘 − 𝐶𝑘𝑥𝑘)

𝑁

𝑘=1

+ ∑ 𝜀𝑘𝑄𝑘
−1𝜀𝑘 + 𝑥0

′ 𝑃0
−1𝑥0

𝑛−1

𝑘=0

          (7) 

In Eq. (7), 𝑅𝑘, 𝑄𝑘 and 𝑃0 matrices are positive definite 

and determined based on expert knowledge about the 

dynamic system of interest [10]. 

3.1. State estimation with filtering: Kalman filter 

The state of the system may not be directly measurable. 

In a dynamic system represented by a state-space 

model, the state of the system can be estimated by using 

the model's information obtained at previous times and 

its output information. Kalman filter, which was first 

introduced by Kalman in 1960, is an effective analysis 

algorithm that estimates the state of the system from a 

series of measurements obtained from a dynamic 

system that may contain error (noise), and updates the 

estimate as observations are made [35]. The Kalman 

filter combines measurement data, a priori information 

about the system, and indirectly measuring state values 

to make the desired predictions by minimizing the error 
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statistically. Therefore, it gives better results than most 

other filters for statistical estimation purposes. Within 

the framework of the Bayesian approach, by 

conditioning the real data information provided by 

measuring devices, the spread of conditional 

probability densities for the features to be estimated can 

be filtered. Kalman filter helps the purpose of 

predictive analysis of a system that can be expressed 

with a linear model, where measurement errors are 

white noise and normally distributed, by providing 

conditional probability distribution [36]. 

For the dynamic and stochastic multi-stage production 

system represented by the state-space model equations 

Eq. (3) and Eq. (4), a series of prediction and filtering 

processes are required in line with the estimation of the 

state vector 𝑥𝑘 at stage 𝑘. The difference equations 

needed for this purpose within the scope of the 

Bayesian approach are known as Kalman or Kalman-

Bucy equations. There are various approaches and 

generalizations in determining the equations in 

question, and it is possible to consider equivalent 

criteria that form the basis for all of them. Minimizing 

the expected value of prediction error squares is one of 

these criteria [37]. 

 

3.1.1. Minimization of expected value of squared 

error criteria method 

In order to make state estimation with the Kalman filter, 

explanations about the variables and coefficients in the 

state-space model equations Eq. (3) and Eq. (4) are 

given below: 

𝑥𝑘 ∈ 𝑅𝑛: System state vector. 

𝑦𝑘 ∈ 𝑅𝑚: System observation vector. 

𝐴𝑘: 𝑛 × 𝑛 dimensional system transition matrix. 

𝐵𝑘: 𝑛 × 𝑛 dimensional system input matrix. 

𝐶𝑘: 𝑚 × 𝑛 dimensional observation transition matrix. 

𝑢𝑘: Vector expressing the effect of managerial inputs at 

time (stage) 𝑘. 

𝐷𝑘: 𝑛 × 𝑛 dimensional system noise matrix. 

𝐻𝑘: 𝑚 × 𝑛 dimensional observation noise matrix. 

It is assumed that the matrices 𝐴𝑘, 𝐵𝑘 , 𝐶𝑘, 𝐷𝑘  and 𝐻𝑘 are 

known at all times 𝑘 = 0,1,2, …. The zero-mean white 

noise processes 𝜀𝑘 ∈ 𝑅𝑛 and 𝜂𝑘 ∈ 𝑅𝑚 are assumed to 

satisfy the following assumptions for each 𝑘, 𝑗 value in 

Eqs. (8)-(17). 

𝐸[𝜀𝑘] = 0                                 (8) 

𝐸[𝜂𝑘] = 0                                 (9) 

𝐸[𝜀𝑘𝜀𝑗
′] = 𝑄𝑘𝛿𝑘𝑗                         (10) 

𝐸[𝜂𝑘𝜂𝑗
′ ] = 𝑅𝑘𝛿𝑘𝑗                        (11) 

𝛿𝑘𝑗 = {
1,      𝑘 = 𝑗
0,      𝑘 ≠ 𝑗

                       (12) 

𝐸[𝜀𝑘𝜂𝑗
′ ] = 0                            (13) 

𝐸[𝑥0] = �̅�0                            (14) 

𝐸[(𝑥0 − �̅�0)(𝑥0 − �̅�0)′] = 𝑃0        (15) 

𝐸[𝑥0𝜀𝑗
′] = 0                               (16) 

𝐸[𝑥0𝜂𝑗
′ ] = 0                              (17) 

Table 2. Discrete time Kalman filter equations based on 

minimization of mean squared errors [38]. 

System dynamic model: 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝜀𝑘 ,  𝜀𝑘~𝑁(0, 𝑄𝑘) 

Measurement (observation) model: 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜂𝑘,   𝜂𝑘~𝑁(0, 𝑅𝑘) 

Starting conditions: 

𝑥0~𝑁(�̅�0, 𝑃0),   �̂�0|−1 = �̅�0,     𝑃0|−1 = 𝑃0 

Independence conditions: 

𝐸[𝜀𝑘𝜂𝑗
′ ] = 0,    𝐸[𝑥0𝜀𝑗

′] = 0,    

𝐸[𝑥0𝜂𝑗
′ ] = 0,   ∀𝑘, 𝑗 

Estimation of prediction stage: 

State estimation: 

�̂�𝑘|𝑘−1 = 𝐴𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 

Measurement condition: 

�̂�𝑘|𝑘−1 = 𝐶𝑘�̂�𝑘|𝑘−1 

= 𝐶𝑘[𝐴𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘]
 

Errors of predition stage: 

State error: 

𝑥𝑘
∗ = 𝑥𝑘 − �̂�𝑘|𝑘−1 

Measurement error: 

 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1 = 𝐶𝑘(𝑥𝑘 − �̂�𝑘|𝑘−1) + 𝐻𝑘𝜂𝑘 

Covariance matrix of prediction stage: 

𝑃𝑘(𝑤) = 𝐸[𝑤𝑘𝑤𝑘
′ ] 

= 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′  

Update of error covariance for prediction stage: 

For state: 

𝑃𝑘|𝑘−1 = 𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
′ + 𝐷𝑘𝑄𝑘𝐷𝑘

′  

For measurement: 

𝑃𝑘(𝑦) = 𝐶𝑘[𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1
′ + 𝐷𝑘𝑄𝑘𝐷𝑘

′ ]𝐶𝑘
′

+ 𝐻𝑘𝑅𝑘𝐻𝑘 
′    

Observational update of the state estimate: 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐵𝑘𝑢𝑘

+ 𝑃𝑘|𝑘−1𝐶𝑘𝑃𝑘
−1(𝑤)[𝑦𝑘 − �̂�𝑘|𝑘−1] 

        =   �̂�𝑘|𝑘−1 + 𝐾𝑘{𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1}
 

Update of error covariance for filtering stage: 

𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐶𝑘]𝑃𝑘|𝑘−1
 

Kalman gain matrix: 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
′ 𝑃𝑘

−1(𝑤)
 

 

In addition to all given assumptions, it is assumed that 

the matrices 𝑄𝑘 and 𝑅𝑘 are known. It is aimed to obtain 

�̂�𝑘|𝑚 by using observations {𝑦1, 𝑦2, … , 𝑦𝑚} for the best 
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estimation of the 𝑥𝑘 vector. In this direction, It is 

possible to use the covariance matrix (𝑃𝑘|𝑚) of the 

estimation error (𝑥𝑘 − �̂�𝑘|𝑚). When 𝑘 = 𝑚, the 

estimation is called as filtering. Considering that the 

observations are not error-free, the assumption of 𝑅𝑘 >
0 will be a realistic and necessary assumption. Let the 

vector 𝑌𝑘 = [𝑦1, … , 𝑦𝑘]′ represent the observations 

obtained until time (stage) 𝑘. If 𝜗𝑘|𝑚 is the estimation 

error of �̂�𝑘|𝑚 using 𝑌𝑘, the covariance matrix of this 

error is expressed as 𝑃𝑘|𝑚 = 𝐸[𝜗𝑘|𝑚𝜗𝑘|𝑚
′ ], with 

𝐸[�̂�𝑘|𝑚] = 𝐸(𝑥𝑘). The estimation of vector 𝑥𝑘 is done 

in two stages with various calculation steps. In Table 2, 

discrete time Kalman filter equations are summarized 

according to the method of minimizing the expected 

value of error squares by showing the filter system 

relationship. 

On the other hand, 𝜂𝑘 in the system equation Eq. (4) 

may become unobtainable. The solution to this problem 

requires adding additional state equations to the system 

equation. Bryson and Johanson proposed the first 

general solution to the problem in question [39]. To 

solve the problem, Brown and Hwang suggest 

removing exactly known state variables from the 

system equations and estimating the remaining ones by 

filtering [34]. This recommendation requires the 

separation of system state variables from other exactly 

known system variables by linear transformation. 

Simon summarized adequate explanations and methods 

of Kalman filter application approaches by considering 

the dependence as linear dependence      and correlation 

for the cases where the random vectors 𝜂𝑘 and 𝜀𝑘 are 

dependent within and between themselves [40]. 

4. Modeling multi-stage manufacturing processes 

under the dependency between quality 

characteristics 

In this section, a method is proposed by including 

copula functions in the approach of modeling and 

evaluating multi-stage manufacturing processes with 

state-space models under dependency. It has been 

suggested to use copula modeling to reveal the internal 

dependencies of the quality features within the state 

vector at each stage. With copula models, the stochastic 

relationship between quality characteristics can be 

determined by revealing the dependency structure 

without the need for common distributions of quality 

characteristics. In this context; Statistical properties 

such as marginal distributions, covariance, conditional 

probability distributions (and therefore regression 

function determination) of quality features that are 

random variables can be expressed. 

4.1. Copula functions 

Copula functions are statistical tools used to model 

dependency. Copulas are functions that combine 

multivariate distributions with their univariate marginal 

distributions. Let 𝐹 be the m-dimensional cumulative 

distribution function and 𝐹1, 𝐹2, … , 𝐹𝑚 be the 

cumulative distribution functions of one-dimensional 

marginals. In this case, the 𝑚-dimensional copula 

function is defined as in Eq. (18). 

𝐹(𝑦1, 𝑦2 , … , 𝑦𝑚)
= 𝐶(𝐹1(𝑦1), 𝐹2(𝑦2), … , 𝐹𝑚(𝑦𝑚); 𝜃)                          (18) 

𝜃 in Eq. (18) is called the dependency parameter and 

the marginal distributions of each of the quality 

characteristics express the relationship. The most basic 

theoretical determination about copula functions is put 

forward by the Scalar theorem. 

Theorem 1. (Sklar's Theorem) The 𝑚-dimensional 

copula is a function 𝐶 defined from the 𝑚-dimensional 

interval [0,1]𝑚 to the unit interval [0,1] and satisfies 

the following conditions [41]. 

• 𝐶(1, … ,1, 𝑎𝑛 , 1, … ,1) = 𝑎𝑛 , ∀𝑛 ≤
𝑚  𝑎𝑛𝑑   𝑎𝑛 ∈ [0,1]. 

• If 𝑎𝑛 = 0 for any 𝑛 ≤ 𝑚 , 𝐶(𝑎1, … , 𝑎𝑚) = 0. 

• 𝐶 is 𝑚-increasing. 

In other words, the 𝑚-copula is an 𝑚-dimensional 

distribution function with m univariate marginals, each 

of which is uniformly distributed in the range (0,1). 

There are many copula functions belonging to different 

copula families in the literature. When its application 

areas are investigated, it is seen that it has widespread 

use in finance, actuarial, time series and risk analysis. 

In this study, the focus is on the Gaussian (normal) 

copula, which belongs to the elliptic copula family and 

has many useful features. 

Definition 1. (Gaussian Copula) Consider random 

variables 𝑍1, 𝑍2, … , 𝑍𝑘 with correlation coefficients 

𝜌𝑖𝑗 = 𝜌(𝑍𝑖 , 𝑍𝑗) with multivariate normal probability 

distribution. Let the joint cumulative distribution 

function of the random variables 𝑍1, 𝑍2, … , 𝑍𝑘 be 

𝛷𝐺  (𝑧1, 𝑧2, … , 𝑧𝑘). In this case, the multivariate 

Gaussian (Normal) copula is defined in Eq. (19) [42]. 

(𝑢1, … , 𝑢𝑘) = Φ𝐺(Φ−1(𝑢1), … , Φ−1(𝑢𝑘))        (19) 

 

The two-variable Gaussian (Normal) copula is in the 

form of Eq. (20). 

𝐶(𝑢1, 𝑢2; 𝜃) = Φ𝐺(Φ−1(𝑢1), Φ−1(𝑢2); 𝜃)

= ∫ ∫
1

2𝜋(1 − 𝜃2)1/2

Φ−1(𝑢2)

−∞

Φ−1(𝑢1)

−∞

× {
−(𝑠2 − 2𝜃𝑠𝑡 + 𝑡2)

2(1 − 𝜃2)
} 𝑑𝑠𝑑𝑡   (20) 

In Eq. (20), Φ denotes the cumulative distribution 

function for the standard normal random variable and 

𝛷𝐺  (𝑢1, 𝑢2) denotes the standard bivariate normal 

distribution with the correlation parameter 𝜃, which 

takes values in the range of (−1,1). This copula 

function was proposed by Lee in 1983 [43]. The density 

function of the two-variable Gaussian copula is also in 

the form in Eq. (21). 
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𝑐(𝑢1, 𝑢2; 𝜃) =
1

√1 − 𝜃2
exp [

−(𝑢1
2 − 2𝜃𝑢1𝑢2 + 𝑢2

2

2(1 − 𝜃2)
] 

× exp (
𝑢1

2 + 𝑢2
2

2
)                             (21) 

According to the scalar theorem, the bivariate 

probability distribution of the random vector 𝑋 =
(𝑋1, 𝑋2)′ can be determined by the non-normal (any 

distribution) marginal distributions of the vector and 

the Gaussian copula [44]. 

In order to determine the probability distribution of a 

random vector 𝑋 = (𝑋1, 𝑋2)′, it is necessary to 

determine the marginal distribution of each 𝑋𝑗 and find 

the dependency structure between 𝑋𝑗. In order to 

determine the dependency structure between random 

variables, it is necessary to mention the measures and 

some special dependency structures included in the 

copula functions. There is a relationship between 

copula functions expressing dependence and 

dependence measurements, especially for two-variable 

cases. Dependency can be measured by many methods. 

The Pearson correlation coefficient is one of them; it is 

sensitive to outliers and does not change under strictly 

increasing linear transformations. The expression of the 

Pearson correlation coefficient in terms of copulas is 

shown in Eq. (22) [45]. 

𝜌𝑃(𝑋, 𝑌)

=
1

𝜎𝑋𝜎𝑌

∫ ∫[𝐶(𝑢1, 𝑢2)

1

0

1

0

− 𝑢1𝑢2]𝑑𝐹𝑋
−1(𝑢1)𝑑𝐹𝑌

−1(𝑢2),          𝑢𝑖 ∈ [0,1]        (22) 

4.2. Integration of state-space model with copula 

modeling 

In this section, the state vector of quality characteristics 

under dependency is estimated by combining the state-

space model, Kalman filtering and copula functions for 

multi-stage manufacturing processes. Therefore, a 

unique approach has been introduced to monitor quality 

in a multi-stage manufacturing process. 

4.2.1. Prediction error 

Considering the general state-space model 

representation of a multi-stage manufacturing process 

with Eq. (3) and Eq. (4), the Kalman filter method for 

estimating the state vector 𝑥𝑘 is introduced in Section 

3.1. In the prediction phase of the estimation, it was 

seen that the uncertainty in the state vector  �̂�𝑘|𝑘−1  is a 

function of the estimation of �̂�𝑘−1|𝑘−1 and the  

covariance 𝑄𝑘 of 𝜀𝑘. In the next step, the prediction 

error components for vector 𝑥𝑘 are; The statistical 

inference prediction error for 𝑥𝑘 is 𝑥𝑘 − �̂�𝑘|𝑘−1 and the 

prediction error for the observation vector 𝑦𝑘  is 𝜂𝑘. 

Therefore, as expressed in Table 2, the conditional 

variance of the prediction error given in Eq. (23) should 

be evaluated as a function of the uncertainties or errors 

related to �̂�𝑘|𝑘−1 and 𝑅𝑘. 

 

𝑃𝑘(𝑤) = 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′               (23) 

According to the information obtained up to stage or 

time 𝑘 − 1, based on the conditional probability 

distribution of 𝑥𝑘 to 𝑦𝑘 − �̂�𝑘|𝑘−1, the final estimation 

�̂�𝑘|𝑘 and its covariance 𝑃𝑘|𝑘−1 are obtained. Assuming 

that the joint probability distribution 𝑋 = 𝑥𝑘 and 𝑌 =
𝑦𝑘 − �̂�𝑘|𝑘−1 is a normal distribution given in Eq. (24), 

the conditional probability distribution 𝑋 given that 𝑌 

is  𝑁(𝜇𝑋|𝑦 , Σ𝑋𝑋|𝑦) with parameters 𝜇𝑋|𝑦 = 𝜇𝑋 +

Σ𝑋𝑌Σ𝑌𝑌
−1(𝑌 − 𝜇𝑌) and Σ𝑋𝑋|𝑦 = Σ𝑋𝑋 − Σ𝑋𝑌Σ𝑌𝑌

−1Σ𝑌𝑋 . 

[(
𝜇𝑋

𝜇𝑌
) , (

Σ𝑋𝑋 Σ𝑋𝑌

Σ𝑌𝑋 Σ𝑌𝑌
)]                   (24) 

In Eq. (24), 𝜇𝑋 = �̂�𝑘|𝑘−1, Σ𝑋𝑋 = 𝑃𝑘|𝑘−1, Σ𝑋𝑌 =

𝑃𝑘|𝑘−1𝐶𝑘
′  and Σ𝑌𝑌 = 𝑃𝑘(𝑤) (as in Eq. (23)) are some 

definitions. It is seen that by using these definitions, the 

expressions �̂�𝑘|𝑘 ve 𝑃𝑘|𝑘 which are the final estimates 

in the second stage of the Kalman filter, will be reached 

(see Table 2). The importance of the conditional 

variance 𝑃𝑘(𝑤) of the prediction error in the estimation 

of 𝑥𝑘 can be revealed from another perspective. For 

example; assuming that 𝑥0, 𝜀𝑘 and 𝜂𝑘 are random 

variables whose joint distribution is the normal 

distribution, the probability distribution of the random 

vector 𝑦𝑘  conditional on the information 
{𝑦1, 𝑦2, … , 𝑦𝑘−1} is normal distribution 

𝑁[𝑦𝑘|𝑘−1, 𝑃𝑘(𝑤)], the estimates of 𝑥𝑘 depend on the 

parameters of the distribution, conditional expected 

value and conditional variance-covariance 𝑦𝑘|𝑘−1 and 

𝑃𝑘(𝑤), respectively. The estimation of the model 

parameters of interest can be achieved by maximizing 

the function given in Eq. (25), which expresses the log-

likelihood in the context of all observation values. 

 𝐿𝐶
(𝑘)(𝑤ℎ𝑜𝑙𝑒) = lnℒ 

= −
1

2
∑ ln[2𝜋|𝑃𝑘(𝑤)|]

𝑘

−
1

2
∑ 𝑤𝑘

′ [𝑃𝑘(𝑤)]−1𝑤𝑘

𝑘

= ∑ 𝐿𝐶
(𝑘)

𝑁

𝑘=1

                                                                       (25) 

In the filtering stage, equations that express the 

estimates �̂�𝑘|𝑘 and 𝑃𝑘|𝑘 emerge. This was mentioned in 

Section 3.1, where the error quantities 𝑦𝑘 − �̂�𝑘|𝑘−1 =

𝑤𝑘, and the variance expression of these error 

quantities 𝑃𝑘(𝑤) are highlighted and discussed in state 

vector estimation. It has been emphasized more clearly 

that it constitutes the necessary essential element. 

Maximazing the likelihood function specified in Eq. 

(25) is equivalent to minimizing the quantity in Eq. 

(26), especially under the assumption of a normal 

distribution in general. 

𝐽 = 𝐸[𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1][𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1]
′
         (26) 

The assumptions and definitions for an illustrative 

example of this when the state vector 𝑥𝑘 is a two-

element random vector with two quality characteristics 

are as follows: 
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• 𝑥𝑘 is a 2×1 dimensional state vector and 𝑦𝑘  is a 2×1 

dimensional measurement vector. 

• The quality characteristics in the measurement vector 

have marginal distributions 𝑦𝑘1~𝐹𝑘1(. ) and 

𝑦𝑘2~𝐹𝑘2(. ), respectively, and it is assumed that the 

internal dependency structure between them is 

modeled with an appropriate copula. The cumulative 

joint probability distribution of random variables 𝑦𝑘1 

and 𝑦𝑘2 can be determined through copula functions 

as 𝐹𝑘12(𝑦𝑘1 , 𝑦𝑘2). 

• 𝐸(𝑦𝑘𝑖) = 𝜇𝑘𝑖 ,        𝑉𝑎𝑟(𝑦𝑘1) = 𝜎𝑘𝑖
2  ,      𝐸(𝑦𝑘𝑖

2 ) =
𝜎𝑘𝑖

2 + 𝜇𝑘𝑖
2  ,    𝑘 = 1,2, … , 𝑁;   𝑖 = 1,2. 

• 𝐶𝑜𝑣(𝑦𝑘1, 𝑦𝑘2) = 𝜎𝑘12,      𝐸(𝑦𝑘1𝑦𝑘2) = 𝜎𝑘12 +

𝜇𝑘1𝜇𝑘2,      𝑘 = 1,2, … , 𝑁. 

• It is assumed that the 2 × 2 dimensional matrices  

𝐴𝑘, 𝐵𝑘  and 𝐶𝑘 are known. 

• 𝑦𝑘 = [𝑦𝑘1
𝑦𝑘2

],         �̂�𝑘|𝑘−1 = [𝑥𝑘1
𝑥𝑘2

],        �̂�𝑘−1|𝑘−1 =

[
𝑥(𝑘−1)1

𝑥(𝑘−1)2
] ,         𝑢𝑘 = [𝑢𝑘1

𝑢𝑘2
]      𝑘 = 1,2, … , 𝑁. 

• 𝐵𝑘 = [
𝑏11

(𝑘)
𝑏12

(𝑘)

𝑏21
(𝑘)

𝑏22
(𝑘)

],      𝐴𝑘−1 =

[
𝑎11

(𝑘−1)
𝑎12

(𝑘−1)

𝑎21
(𝑘−1)

𝑎22
(𝑘−1)

],      𝐶𝑘 = [
𝑐11

(𝑘)
𝑐12

(𝑘)

𝑐21
(𝑘)

𝑐22
(𝑘)

] ,    𝑘 =

1,2, … , 𝑁. 

If Eq. (26) is rewritten according to the definitions, the 

matrix in Eq. (27) is obtained. 

𝐽 = 𝐸[𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1][𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1]
′

= 𝐸 [
𝑁 𝐿
𝐿 𝑀

]                                 (27) 

The expansion of the matrix elements in Eq. (27) is 

given in Eqs. (28)-(30). 

𝑁 = (𝑦𝑘1 − 𝑐11
(𝑘)

�̂�𝑘1 − 𝑐12
(𝑘)

�̂�𝑘2)
2

               (28) 

𝑀 = (𝑦𝑘2 − 𝑐21
(𝑘)

�̂�𝑘1 − 𝑐22
(𝑘)

�̂�𝑘2)
2

               (29) 

                 𝐿 = (𝑦𝑘1 − 𝑐11
(𝑘)

�̂�𝑘1 − 𝑐12
(𝑘)

�̂�𝑘2) 

× (𝑦𝑘2 − 𝑐21
(𝑘)

�̂�𝑘1 − 𝑐22
(𝑘)

�̂�𝑘2)            (30) 

When the elements of matrix 𝐽 are considered 

separately, the expected values in Eqs. (31)-(33) are 

obtained. 

𝐸(𝑁) = 𝜎𝑘1
2 + 𝜇𝑘1

2 − 2(𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2)𝜇𝑘1

+ (𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2)
2

               (31) 

𝐸(𝑀) = 𝜎𝑘2
2 + 𝜇𝑘2

2 − 2(𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)𝜇𝑘1

+ (𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)
2

               (32) 

𝐸(𝐿) = 𝜎𝑘12 + 𝜇𝑘1𝜇𝑘2 − (𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)𝜇𝑘1

− (𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2)𝜇𝑘2

+ (𝑐11
(𝑘)

�̂�𝑘1 + 𝑐12
(𝑘)

�̂�𝑘2) 

× (𝑐21
(𝑘)

�̂�𝑘1 + 𝑐22
(𝑘)

�̂�𝑘2)                 (33) 

If the system transition matrix 𝐶𝑘 is optimized 

(minimum), the partial derivatives of the expected 

values according to the elements of the 𝐶𝑘 matrix are 

equal to zero. Then, the values in Eq. (34) and Eq. (35) 

for  𝑐11
(𝑘)

and  𝑐12
(𝑘)

 are obtained. 

𝑐11
(𝑘)

=
𝜇𝑘1 − 𝑐12

(𝑘)
�̂�𝑘2

�̂�𝑘1

                    (34) 

𝑐12
(𝑘)

=
𝜇𝑘1 − 𝑐11

(𝑘)
�̂�𝑘1

�̂�𝑘2

                     (35) 

It is necessary to test that the expressions in Eq. (34) 

and Eq. (35) are the values that minimize 𝐸(𝑁). The 

values found for this are the values that make the 

second derivatives of 𝐸(𝑁) with respect to  𝑐11
(𝑘)

 and  

𝑐12
(𝑘)

 greater than zero, (𝜕2𝐸(𝑁) 𝜕(𝑐11
(𝑘)

)
2

⁄ = 2�̂�𝑘1
2 > 0 

and 𝜕2𝐸(𝑁) 𝜕(𝑐12
(𝑘)

)
2

⁄ = 2�̂�𝑘2
2 > 0, will be the values 

that minimize 𝐸(𝑁). Similarly, if the partial derivatives 

according to 𝑐21
(𝑘)

 and  𝑐22
(𝑘)

  in 𝐸(𝑀) are taken and set 

equal to zero, the expressions in Eq. (36) and Eq. (37) 

are obtained. 

𝑐21
(𝑘)

=
𝜇𝑘2 − 𝑐22

(𝑘)
�̂�𝑘2

�̂�𝑘1

                       (36) 

𝑐22
(𝑘)

=
𝜇𝑘2 − 𝑐21

(𝑘)
�̂�𝑘1

�̂�𝑘2

                       (37) 

Since, 𝜕2𝐸(𝑀) 𝜕(𝑐21
(𝑘)

)
2

⁄ = 2�̂�𝑘1
2 > 0 and 

𝜕2𝐸(𝑀) 𝜕(𝑐22
(𝑘)

)
2

⁄ = 2�̂�𝑘2
2 > 0, the values in Eq. (36) 

and Eq. (37) are the values that minimize 𝐸(𝑀). If these 

values are substituted in 𝐸(𝐿), the result will be as in 

Eq. (38) for k=1,2,…,N. 

𝐸(𝐿) = 𝐸(𝑌𝑘1𝑌𝑘2) − 𝜇𝑘1𝜇𝑘2 = 𝐶𝑜𝑣(𝑌𝑘1, 𝑌𝑘2)

= 𝜎𝑘12,          𝑘 = 1, … , 𝑁            (38) 

In conclusion, the dependency between quality 

characteristics at any stage 𝑘 is a phenomenon that 

affects the quality values of the production process. In 

the derivation made above, it is seen that the variance 

and covariance values directly affect the values 

symbolizing the quality status of the system, under the 

assumptions about the moments of the 𝑌 variables, 

which express the observable values of the 𝑋 variables, 

which are the quality characteristics. Considering that 

variance and covariance values are quantities that 

determine correlation values; The conclusion is that the 

dependence, which can be expressed in general and 

specifically in the context of Gaussian copulas, is 

effective in the Kalman filter state estimation 

equations. 
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To state this more clearly, let us consider the Pearson 

correlation measure 𝜌𝑃 = (𝑦𝑘1, 𝑦𝑘2) =
𝜎𝑘12(𝜎𝑘1𝜎𝑘2)−1 in the context of observations for a 

two-element state vector. Pearson correlation measure 

can be expressed as a function of the copula function 

𝐶(. , . ) and the marginal distributions 𝐹1 and 𝐹2, as 

shown in Eq. (22), in the form in Eq. (39). 

𝜌𝑃(𝑦𝑘1, 𝑦𝑘2) = (𝜎𝑘1𝜎𝑘2)−1 ∫ ∫ [𝐶(𝑢1, 𝑢2)
1

0

1

0

− 𝑢1𝑢2] 𝑑𝐹1
−1 (𝑢1)𝐹2

−1(𝑢2),  

𝑢𝑖 ∈ [0,1], 𝑖 = 1,2       (39) 

By expressing the covariance 𝜎𝑘12 given in Eq. (38) in 

terms of copula, using Eq. (22), the adequacy of 

combining copula functions in the estimation of state-

space models through the Kalman filter is demonstrated 

with Eq. (40). 

𝜎𝑘12 = (𝜎𝑘1𝜎𝑘2)𝜌𝑃(𝑦𝑘1, 𝑦𝑘2) 

= ∫ ∫ [𝐶(𝑢1, 𝑢2) − 𝑢1𝑢2]
1

0

𝑑𝐹1
−1

1

0

(𝑢1)𝐹2
−1(𝑢2)   (40) 

4.2.2. Copula likelihood functions 

Considering the copula functions and Sklar's Theorem, 

the joint probability distribution function for the 

elements of the observation vector 𝑦𝑘 , which takes 

continuous values, will be in the form in Eq. (41) with 

the expression of the copula function. 

𝐹𝑘12(𝑦𝑘1, 𝑦𝑘2; 𝛾, 𝜃) 

= 𝐶(𝐹𝑘1(𝑦𝑘1; 𝛾), 𝐹𝑘2(𝑦𝑘2, 𝛾); 𝜃)      (41) 

In Eq. (41), the vector γ represents the probability 

distribution parameters except the dependence 

parameter 𝜃 between 𝑦𝑘1 and 𝑦𝑘2. It is not necessary 

for 𝜃 parameter to express only correlation. If the 

distribution function in Eq. (41) is differentiated 

according to (𝑦𝑘1, 𝑦𝑘2), the joint probability density 

function in Eq. (42) is obtained 𝑘 = 1,2, … , 𝑁. 

𝑓𝑘12(𝑦𝑘1, 𝑦𝑘2; 𝛾, 𝜃) = 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃) 

× 𝑓𝑘1(𝑦𝑘1; 𝛾1)𝑓𝑘2(𝑦𝑘2; 𝛾2)           (42) 

𝑐(. , . ; 𝜃) in Eq. (42) is the copula density function 

corresponding to 𝐶(. , . ; 𝜃). Assuming that there are 𝑛 

observations that can be expressed as 
(𝑦𝑘11, … , 𝑦𝑘1𝑛) and (𝑦𝑘21, … , 𝑦𝑘2𝑛) for each of the 𝑦𝑘  

vector elements 𝑦𝑘1 and 𝑦𝑘2 at any stage or time 𝑘, the 

copula log-likelihood function, For k =1,2,…,N, the 

expression in Eq. (43) is obtained. 

ℒ𝑐
(𝑘)

= ∑ ln 𝑓𝑘12(𝑦1𝑘 , 𝑦2𝑘; 𝛾, 𝜃)

𝑛

𝑖=1

 

= ∑ ln 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃)

𝑛

𝑖=1

                   

+ ∑ ln 𝑓𝑘1(𝑦𝑘1; 𝛾1)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘2(𝑦2; 𝛾2)

𝑛

𝑖=1

      (43) 

The difference between the expression in Eq. (43) and 

the ordinary log-likelihood function is that the sum of 

the log copula density functions is included in the 

equation. In the observation vector given in Eq. (3) 

where 𝐻𝑘 = 𝐼𝑘,  𝜂𝑘1 =  𝑦𝑘1 − 𝑐11
(𝑘)

𝑥𝑘1 − 𝑐12
(𝑘)

𝑥𝑘2 and  

𝜂𝑘2 =  𝑦𝑘2 − 𝑐21
(𝑘)

𝑥𝑘1 − 𝑐22
(𝑘)

𝑥𝑘2 are defined as in the 

covariance matrix 𝑅𝑘 in Eq. (44) for 𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2)′ 
with 𝜂𝑘 = (𝜂𝑘1, 𝜂𝑘2)′~𝑁(0, 𝑅𝑘), 𝑘 = 1,2, … , 𝑁.  

𝑅𝑘 = [
𝑉𝑎𝑟(𝜂𝑘1) 𝐶𝑜𝑣(𝜂𝑘1, 𝜂𝑘2)

𝐶𝑜𝑣(𝜂𝑘1, 𝜂𝑘2) 𝑉𝑎𝑟(𝜂𝑘2)
] 

= [
𝜎𝜂𝑘1

2 𝜌𝑘𝜎𝜂𝑘1
𝜎𝜂𝑘2

𝜌𝑘𝜎𝜂𝑘1
𝜎𝜂𝑘2

𝜎𝜂𝑘2
2 ]               (44) 

When the marginal density functions and joint 

probability density functions are given in Eq. (45), Eq. 

(46) and Eq. (47), respectively, the corresponding 

Gaussian (normal) copula density function expression 

can be calculated only with the help of the marginal 

distribution functions as in Eq. (48). 

𝑓𝑘1(𝑦𝑘1; 𝑥𝑘1, 𝑥𝑘2, 𝑐11
(𝑘)

, 𝑐12
(𝑘)

)

=
1

√2𝜋𝜎𝜂𝑘1
2

 exp {−
(𝑦𝑘1 − 𝑐11

(𝑘)
𝑥𝑘1 − 𝑐12

(𝑘)
𝑥𝑘2)

2

2𝜎𝜂𝑘1
2

} (45) 

𝑓𝑘2(𝑦𝑘2; 𝑥𝑘1, 𝑥𝑘2, 𝑐21
(𝑘)

, 𝑐22
(𝑘)

)

=
1

√2𝜋𝜎𝜂𝑘2
2

 exp {−
(𝑦𝑘2 − 𝑐21

(𝑘)
𝑥𝑘1 − 𝑐22

(𝑘)
𝑥𝑘2)

2

2𝜎𝜂𝑘2
2

} (46) 

𝑓𝑘12(𝑦𝑘; 𝑥𝑘 , 𝐶𝑘, 𝑅𝑘) =
1

2𝜋√|𝑅𝑘|
 

 × exp {−
1

2
(𝑦𝑘 − 𝐶𝑘𝑥𝑘)′𝑅𝑘

−1(𝑦𝑘 − 𝐶𝑘𝑥𝑘)}           (47) 

 

𝑐(𝐹𝑘1(𝑦𝑘1; 𝑥𝑘1, 𝛾1𝑘), 𝐹𝑘2(𝑦𝑘2; 𝑥𝑘2, 𝛾2𝑘); 𝜃) 

=
1

𝜎𝜂𝑘1
2 𝜎𝜂𝑘2

2 − 𝜌𝑘
2 exp {−

(𝜂𝑘1
2 − 2𝜌𝑘𝜂𝑘1𝜂𝑘2 + 𝜂𝑘2

2 )

2(1 − 𝜌𝑘
2)

} 

× exp (
𝜂𝑘1

2 + 𝜂𝑘2
2

2
)                                                     (48) 

As seen from the copula log-likelihood function 

obtained in Eq. (43),  the value size of the copula log-

likelihood function is determined by the dependency 

parameter values when other parameters are given. 

Under normal distribution, the dependence parameter 𝜃 

is the parameter expressed in terms of moment factors 

and corresponding to the Pearson correlation. 

4.2.3. Copula functions and Kalman filter 

In order to define the stochastic dependency structure 

between the quality characteristics of a product in 

multi-stage manufacturing processes with copula 

functions, it is sufficient to know the marginal 

probability distributions of the characteristics. By 
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analyzing the representation of multi-stage 

manufacturing processes with the state-space models 

approach under dependency, it is possible to make 

Kalman filter estimations better trackable and 

interpretable on the basis of copula likelihood 

functions. To better express this, it would be useful to 

express the combination of Kalman filter estimation 

steps with copula functions, as shown in Table A1 in 

Appendix. 

For the explicit expression of the copula log-likelihood 

functions 𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) in Table A1, 

it is necessary to know or predict the likelihood 

distribution models for the state-space model state 

vector 𝑥𝑘 and therefore the observation vector 𝑦𝑘 . In 

the predictions made for the Kalman filter method  

state-space model, normal distribution is assumed for 

the relevant model variables, and it is stated by many 

researchers that the predictions are efficient under these 

conditions [42]. 

For this reason, it is necessary to determine copula 

density functions and copula log-likelihood functions 

under certain distributions by using Eq. (43) to express 

the 𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) functions in Table 

A1. 

For example; when the joint probability distribution of 

𝑥0, 𝑒𝑘 and 𝜂𝑘 is a normal distribution, the 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) functions for the 𝑦𝑘  

observation vector will be as in Eq. (49) and Eq. (50). 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) = ∑ ln 𝑓𝑘12(𝑦1𝑘 , 𝑦2𝑘; 𝛾, 𝜃)

𝑛

𝑖=1

= ∑ ln 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘1(𝑦𝑘1; 𝛾1)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘2(𝑦2; 𝛾2)

𝑛

𝑖=1

               (49) 

   𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) = ∑ 𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

𝑁

𝑖=1

                        (50) 

The copula density function in Eq. (49) is defined in 

Eq. (48). On the other hand, 𝛾1 and 𝛾2 in the 

expressions 𝑓𝑘1(𝑦𝑘1; 𝛾1) and 𝑓𝑘2(𝑦𝑘2; 𝛾2) defined in 

Eq. (45) and Eq. (46) show the distribution parameters. 

It has been stated in the previous sections that in 

determining the 𝑥𝑘 and 𝑃𝑘|𝑘 expressions in the filtering 

stage of the Kalman filter equations, the likelihood 

function should be maximized or, equivalently, the sum 

of squares of the errors 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1  should be 

minimized. .In this regard, copula log-likelihood 

functions must be determined to write the 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) and 𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) expressions shown in 

Table A1, the joint probability function of the random 

variables 𝑥𝑘 and 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1  with normal 

distribution and the copula function were used. 

Let 𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2)′ be the values observed about the 

quality characteristics of the production process at the 

𝑘th stage of the multi-stage manufacturing process. In 

the case of the existence of an observation set of size 𝑛, 

considering the equations 𝑥𝑘|𝑘−1, 𝑃𝑘|𝑘−1, 𝐸(𝑤𝑘𝑤𝑘
′ ) =

𝑃𝑘(𝑤) in Table A1, the probability density functions 

and the copula density function are given in Eqs.(51)-

(54) where 𝑤𝑘𝑖 = 𝑦𝑘𝑖 − 𝑦𝑘|𝑘−1
(𝑖)

, 𝑖 = 1,2. 

𝑓𝑘1(𝑤𝑘1; 𝑥𝑘1, 𝛾1)

=
1

√2𝜋𝜎𝑘1
2

exp {−
(𝑦𝑘1 − 𝑦𝑘|𝑘−1

(1)
)

2

2𝜎𝑤𝑘1
2

},                      (51) 

𝑓𝑘2(𝑤𝑘2; 𝑥𝑘2, 𝛾2)

=
1

√2𝜋𝜎𝑘2
2

exp {−
(𝑦𝑘2 − 𝑦𝑘|𝑘−1

(2)
)

2

2𝜎𝑤𝑘2
2

},                      (52) 

𝑓𝑘12(𝑤𝑘1, 𝑤𝑘2; 𝑥𝑘1, 𝑥𝑘2, 𝛾1, 𝛾2, 𝜃)

=
1

2𝜋√|𝑃𝑘(𝑤)|
exp {−

1

2
(𝑦𝑘 − 𝑦𝑘|𝑘−1)

′
𝑃𝑘(𝑤)(𝑦𝑘

− 𝑦𝑘|𝑘−1)},                                                                     (53) 

𝑐(𝐹𝑘1(𝑤𝑘1; 𝑥𝑘1, 𝛾1), 𝐹𝑘2(𝑤𝑘2; 𝑥𝑘2, 𝛾2); 𝜃)

=
1

𝜎𝑤𝑘1
2 𝜎𝑤𝑘2

2 − 𝜌𝑘
2 exp {−

(𝑤𝑘1
2 − 2𝜌𝑘𝑤𝑘1𝑤𝑘2 + 𝑤𝑘2

2 )

2(1 − 𝜌𝑘
2)

} 

× exp (
𝑤𝑘1

2 + 𝑤𝑘2
2

2
)                              (54) 

𝑦𝑘|𝑘−1
(𝑖)

, 𝑖 = 1,2 in Eq. (51) and Eq. (52) shows the 

prediction made for the ith element of vector 𝑦𝑘  based 

on the values observed until the kth stage. 𝑃𝑘(𝑤) in Eq. 

(53) shows the error covariance matrix in the Kalman 

filter prediction stage and is in the form in Eq. (55). 𝜌𝑘, 

which shows the correlation between 𝑤𝑘1 and 𝑤𝑘2 in 

the sense of Pearson correlation, is a copula correlation 

parameter for 𝑦𝑘1 and 𝑦𝑘2 since 𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1 and 

𝑦𝑘|𝑘−1  are calculated values. 

𝑃𝑘(𝑤) = [
𝜎𝑤𝑘1

2 𝜎𝑤𝑘1
𝜎𝑤𝑘2

𝜌𝑘

𝜎𝑤𝑘1
𝜎𝑤𝑘2

𝜌𝑘 𝜎𝑤𝑘2
2 ]                    (55) 

Then, the copula log-likelihood function derived by the 

log-likelihood expression in Eq. (43) is given Eq. (56). 

𝐿𝑐(𝑤𝑘|𝑦1, … , 𝑦𝑘−1)

= ∑ ln 𝑐(𝐹𝑘1(𝑤𝑘1𝑗 ; 𝑥𝑘1, 𝛾1), 𝐹𝑘2(𝑤𝑘2𝑗; 𝑥𝑘2, 𝛾2); 𝜃)

𝑛

𝑗=1

+ ∑ ln 𝑓𝑘1(𝑤𝑘1𝑗 ; 𝑥𝑘1, 𝛾1)

𝑛

𝑗=1

+ ∑ ln 𝑓𝑘2(𝑤𝑘2𝑗 ; 𝑥𝑘2, 𝛾2)

𝑛

𝑗=1

                                        (56) 

As seen in Eq. (56), when the copula density function 

dependence parameter is different from zero, the copula 

log-likelihood function creates an increasing or 
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decreasing effect on its value. The equations 𝑥𝑘|𝑘 and 

𝑃𝑘|𝑘, which are the expressions of the Kalman filter 

filtering stage estimates, emerge as a result of the 

optimization of the copula log-likelihood functions 

according to 𝑤𝑘1 and 𝑤𝑘2 are obtained by using 

maximum likelihood (MLE) or minimization of the 

mean squared error (MMSE) approaches, effective 

estimates for 𝑥𝑘 are obtained. When the marginal 

probability distributions of observation vectors 𝑦𝑘 and 

error vectors 𝑤𝑘 are distributions other than the normal 

distribution, the effectiveness of Kalman filter 

estimations may decrease. 

5. Application of the proposed approach 

In this section, a multi-stage manufacturing process is 

simulated with the modeling method presented and the 

results are discussed. The production process in the 

simulation study is based on assumption. Assume that 

parts are processed in the wood workshop of a factory. 

The wooden pieces, which are processed through a 

three-stage manufacturing process, are expected to 

weigh 150 grams (g) and be 30 centimeters (cm) long 

at the end of the production process. When unprocessed 

wood pieces arrive at the factory, they are weighed and 

their lengths are measured in the input quality control 

department. Based on past measurements, it will be 

assumed that the lengths of untreated wood pieces have 

a normal distribution with a mean of 32 cm and a 

standard deviation of 0.5 cm. Similarly, the weights of 

the raw parts will be assumed to have a normal 

distribution with a mean of 152g and a standard 

deviation of 1.1g. It will be assumed that the parts 

entering the processing process are cut in the first stage, 

sanded in the second stage and polished in the last 

stage. Fig.(1) shows a representative version of this 

process. 

 

 

 

 

 

 

 

Figure 1. Three-stage processing scheme 

The wooden parts, first checked in the input quality 

control department, are cut to the desired size during 

the cutting stage. After the parts are sanded, they move 

on to the polishing stage. Then, the products are left to 

dry to take their final form. It is assumed that the parts 

are weighed at the end of each stage and their length 

measured. Under these assumptions, the state equation 

will be as in Eq. (57), and the output (measurement) 

equation will be as in Eq. (58) where 𝐷𝑘 = 𝐼𝑘 and 𝐻𝑘 =
𝐼𝑘. 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝜀𝑘, 𝑘 = 1,2,3     (57) 

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝜂𝑘  , 𝑘 = 1,2,3           (58) 

In a multi-stage processing process revealed by the 

linear state-space model, 𝑥𝑘 is the directly 

unobservable quality characteristic of the product being 

inspected. 𝑥𝑘 is a vector that contains all the 

information about the current state of the process at the 

𝑘th stage. In this simulation study, the state vector 𝑥𝑘 

consists of two quality characteristics: 𝑥𝑘1 represents 

the actual value of the part size at the 𝑘th stage; 𝑥𝑘2 

shows the actual value of the part weight at the 𝑘th 

stage. The vectors 𝑥𝑘 = [𝑥𝑘1 𝑥𝑘2]′, 𝑘 = 1,2,3 in size 

(2×1) are known positive definite matrices that show 

the deviation during the transition from the 𝑘th stage to 

the (𝑘 + 1)th stage of the process given as  
𝐴0 = [−0.645   0.343 ; −3.165   1.660],  

𝐴1 = [−0.639   0.329; −3.170   1.670] and  
𝐴2 = [−0.761   0.352; −3.660   1.730]  

with MATLAB notation.  
 
𝐵𝑘 is defined as the input matrix at the 𝑘th stage and 

𝑢𝑘 = [𝑢1
(𝑘)

𝑢2
(𝑘)]

′
, 𝑘 = 1,2,3 is defined as a (2 × 1) 

dimensional vector showing the contribution of the 𝑘th 

stage in the state equation. Here 𝑢𝑖
(𝑘)

, 𝑖 = 1,2;  𝑘 =

1,2,3 is the contribution of the 𝑘th stage to the 𝑖th 

quality characteristic. This contribution is provided by 

the multiplication of the known matrix 𝐵𝑘 and the 

vector 𝑢𝑘. In this application, 𝐵1𝑢1 = [−0.01 −
0.025]′, 𝐵2 𝑢2 = [−0.01 − 0.01]′ and 𝐵3𝑢3 =
[0.01  0.01]′. Let the unobservable process noise be 

defined as 𝜀𝑘 = [𝑒1
(𝑘)

𝑒2
(𝑘)]

′
, 𝑘 = 1,2,3. In the 

simulation study, it is assumed that 𝑒𝑖
(𝑘)

~𝑁(𝜇 =

0, 𝜎2), 𝑖 = 1,2; 𝑘 = 1,2,3. It is also assumed that the 

measurements can be taken from every stage. In this 

case, the measurement vector 𝑌_𝑘 = [𝑦𝑘1 𝑦𝑘2]′ , 𝑘 =
1,2,3 can be observed for every value of the phase 

index 𝑘. Let the 𝐶𝑘 matrices, which provide the 

transition between the actual values of the quality 

characteristics and the measurement values, be 

determined as 𝐶1 = [1.30  − 0.01; 0.01  0.99], 𝐶2 =
[1.01  − 0.01; 0.01  0.99], and 𝐶3 = [1.01  −
0.001; 0.01  0.99].  

The elements of the vector 𝜂𝑘 = [𝜉1
(𝑘)

𝜉2
(𝑘)

]
′
, 𝑘 = 1,2,3, 

which show the measurement error are distributed 

normally given as 𝜉𝑖
(𝑘)

~𝑁(𝜇 = 0 , 𝜎2), 𝑖 = 1,2; 𝑘 =
1,2,3. In this study, different correlation coefficient 

values (0.99, 0.90, 0.70, 0.50, 0.30 and 0.1) were tested 

for 0.1, 0.5 and 1 values of the 𝜎2 parameter, which 

indicates the noise level. Additionally, it is assumed 

that the dependency structure between the length and 

the weight measurement values can be determined with 

the Gaussian copula. 

In this case, the Kalman filter equations in Table 2 will 

be taken into consideration for the observed values of 

quality characteristics 𝑦𝑘 = (𝑦𝑘1, 𝑦𝑘2)′ in the 𝑘th stage 

of the multi-stage manufacturing process. Pearson 

correlation (𝜌) between 𝑤𝑘1 and 𝑤𝑘2 is a copula 

correlation parameter for 𝑦𝑘1 and 𝑦𝑘2 since 𝑤𝑘 = 𝑦𝑘 −
�̂�𝑘|𝑘−1 and 𝑦𝑘|𝑘−1 are calculated values. The values of 

𝑢2 𝜀1 𝑢1 

Cutting Sanding Polishing 
  

𝜂1 

𝑦3 

  

𝜂2 

𝜀3 𝜀2 𝑢3 

𝑥2 𝑥0 𝑥1 𝑥3 

𝑦1 𝑦2 

𝜂3 
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the Gaussian copula dependence parameter which 

models the dependency structure between 𝑦𝑘1 and 𝑦𝑘2 

are calculated for each stage by a MATLAB code. As 

previously shown in Eq. (22) and Eq. (23), by 

expressing the 𝜎𝑘12 covariance in terms of copula, the 

adequacy of combining copula functions in the 

estimation of state-space models through the Kalman 

filter was demonstrated. The obtained Gaussian copula 

dependence parameter values were used instead of 𝜌𝑘 

in the matrix given in Eq. (55). The prediction stage 

covariance matrix 𝑃𝑘(𝑤) is included in the Kalman 

gain matrix as in 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑘
′ 𝑃𝑘

−1(𝑤). As a result, 

the Kalman filter equations and copula functions have 

been integrated. 

Assume that 100 wooden parts go through this 

machining process under the defined conditions. Due to 

the structure of the multi-stage manufacturing process, 

the output of the previous stage will be the input for any 

stage. For example, the outputs from the cutting stage 

will be the input for the sanding stage. The outputs 

obtained in the sanding stage will be the input for the 

polishing stage (see in Figure 1). 

Table 3. MAPE values (%) for the simulation study 

  Cutting Sanding Polishing 

𝜌 𝜎2 L W L W L W 

0.99 0.1 4.95 9.28 0.85 0.84 8.85 1.07 

0.99 0.5 4.80 9.27 2.26 1.14 8.91 1.62 

0.99 1.0 5.03 9.25 2.57 1.28 8.49 1.96 

0.90 0.1 4.97 9.27 1.21 0.93 8.51 1.11 

0.90 0.5 4.92 9.24 2.06 1.17 8.93 1.66 

0.90 1.0 4.64 9.27 3.55 1.68 7.90 2.05 

0.70 0.1 4.95 9.26 1.12 0.89 8.64 1.08 

0.70 0.5 4.87 9.26 2.09 1.15 8.51 1.77 

0.70 1.0 4.74 9.26 3.09 1.37 8.52 2.02 

0.50 0.1 4.96 9.25 1.02 0.88 8.76 1.28 

0.50 0.5 4.84 9.26 2.23 1.14 8.64 1.44 

0.50 1.0 4.75 9.30 2.48 1.18 9.05 2.06 

0.30 0.1 4.90 9.27 1.01 0.90 8.71 1.15 

0.30 0.5 4.99 9.25 2.18 1.19 8.78 1.55 

0.30 1.0 4.91 9.29 4.02 2.11 8.94 3.04 

0.10 0.1 4.88 9.24 1.29 0.95 8.76 1.09 

0.10 0.5 4.97 9.26 2.32 1.21 8.50 1.96 

0.10 1.0 4.95 9.23 2.90 1.19 8.81 1.71 

 

A MATLAB code was written to obtain simulation 

values for the quality characteristics, weight (W) and 

length (L), for each production stage under the 

assumptions. The mean absolute percentage error 

(MAPE) criterion was used to measure the performance 

of the Kalman filter model under the copula 

dependency. Table 3 displays the MAPE values that are 

obtained for various noise levels (𝜎2) and correlation 

coefficients (𝜌). Since every MAPE value is less than 

10%, it is evident that the proposed model, which 

provides remarkably accurate predictions, allows for 

the examination of the dependencies between quality 

characteristics at every stage [46]. 

6. Conclusions 

In this study, the state-space model established for the 

dependency between the stages in the multi-stage 

manufacturing process is integrated with the copula 

modeling used to reveal the internal dependency 

structure between the quality characteristics in a stage. 

The importance of the conditional variance of the 

prediction error in the Kalman filter equations in the 

estimation of 𝑥𝑘 has been revealed and it has been 

emphasized that it constitutes the main element that 

needs to be addressed. In the application part of the 

study, first, the dependency structure between the 

quality variables of interest in a hypothetical 

production process was expressed with copulas, system 

state predictions were made with the Kalman filter, and 

evaluated under the mean absolute percentage error 

(MAPE) criterion. The resulting model has shown that 

it is a model that allows examining the dependency 

between quality characteristics at every stage and gives 

extremely accurate predictions. 

The original contribution of this study to the theory, 

method and practice on the subject is as follows: The 

Kalman filter estimation method, based on state-space 

models of multi-stage manufacturing processes, has 

been presented in a broad perspective, with a solution 

algorithm proposed and subject-specific comments. In 

order to take into account the statistical dependence 

between the quality characteristics of interest at any 

stage of the process, the dependence was expressed 

with copula functions and integrated with the Kalman 

filter method. 

The innovations and improvements that the specified 

original contributions brought to the modeling and 

analysis of multi-stage manufacturing processes are as 

follows: The fact that quality characteristics are 

essentially interdependent is reflected in the models 

and internalized in the analyses. Model components, 

structure and calculation steps that are dependent on 

modeling and analysis are clearly stated. The internal 

dependency structure that can exist between the quality 

characteristics of interest at any production stage is 

integrated with the dependency structure between the 

stages. 

In order to further the results put forward in the study, 

future studies that are deemed useful are as follows: 

Prediction methods for various copulas that can be used 

in modeling the internal dependency between the 

quality characteristics of interest at any stage of multi-

stage manufacturing process structures can be 

investigated and implemented. State-space modeling 

generalizations involving dependency can be made 

with multivariate copula models for more than two 

quality characteristics. In the presence of models 
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containing noise terms and observation errors with 

distributions other than normal distribution, the 

robustness of Kalman filter estimates can be addressed. 
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Appendix 

Table A1. Kalman filter and copula functions [47] 

Stages Related Equations 

Initial: 

𝑥0, 𝑃0 
 

Prediction stage: 

�̂�𝑘|𝑘−1 

𝑃𝑘(𝑦) 

𝑤𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1 

𝑃𝑘(𝑤) = 𝐸(𝑤𝑘𝑤𝑘
′ ) 

 

(Table 2)   �̂�𝑘|𝑘−1 = 𝐴𝑘−1�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 

(Table 2) 𝑃𝑘(𝑦) = 𝐶𝑘[𝐴𝑘−1𝑃𝑘−1|𝑘−1𝐴𝑘−1
′ + 𝐷𝑘𝑄𝑘𝐷𝑘

′ ]𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′                 

(Table 2)   𝑤𝑘 = 𝐶𝑘(𝑥𝑘 − �̂�𝑘|𝑘−1) + 𝐻𝑘𝜂𝑘 

(Table 2) 𝑃𝑘(𝑤) = 𝐶𝑘𝑃𝑘|𝑘−1𝐶𝑘
′ + 𝐻𝑘𝑅𝑘𝐻𝑘

′  

Estimation prediction stage – 

copula likelihood function 

𝐿𝑐(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) 

General: Eq. (43) 

                  ℒ𝑐
(𝑘)

= ∑ ln 𝑓𝑘12(𝑦1𝑘 , 𝑦2𝑘; 𝛾, 𝜃)

𝑛

𝑖=1

= ∑ ln 𝑐(𝐹𝑘1(𝑦𝑘1; 𝛾1), 𝐹𝑘2(𝑦𝑘2; 𝛾2); 𝜃)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘1(𝑦𝑘1; 𝛾1)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑘2(𝑦2; 𝛾2)

𝑛

𝑖=1

 

Specific:  
Copula likelihood function for �̂�𝑘|𝑘−1 and 𝑤𝑘 

Estimation-filtering stage 

�̂�𝑘|𝑘 

𝑃𝑘|𝑘 

 

 

(Table 2)   �̂�𝑘|𝑘 =   �̂�𝑘|𝑘−1 + 𝐾𝑘{𝑦𝑘 − 𝐶𝑘�̂�𝑘|𝑘−1}    

(Table 2)    𝑃𝑘|𝑘 = [𝐼 − 𝐾𝑘𝐶𝑘]𝑃𝑘|𝑘−1 

Copula likelihood function for 

all process stages 

𝐿𝑐(𝑤ℎ𝑜𝑙𝑒) 

 

 

Generalization of Eq. (43) 
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