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Linear second-order cone programming (SOCP) deals with optimization
problems characterized by a linear objective function and a feasible region
defined by linear equalities and second-order cone constraints. These
constraints involve the norm of a linear combination of variables, enabling
the representation of a wide range of convex sets. The SOCP serves as a
potent tool for addressing optimization challenges across engineering, finance,
machine learning, and various other domains. In this paper, we introduce new
optimality conditions tailored for SOCP problems. These conditions have the
form of two optimality criteria that are obtained without the requirement of any
constraint qualifications and are defined explicitly. The first criterion utilizes
the concept of immobile indices of constraints. The second criterion, without
relying explicitly on immobile indices, introduces a special finite vector set
for assessing optimality. To demonstrate the effectiveness of these criteria, we
present two illustrative examples highlighting their applicability. We compare
the obtained criteria with other known optimality conditions and show the
advantage of the former ones.

Keywords:
Second-order cone programming
Constraint qualification
Optimality conditions
Immobile indices

AMS Classification 2010:
90C25; 90C46; 90C22; 49N15

1. Introduction

A conic optimization problem is characterized
by a constraint stipulating that the optimization
variables must belong to a closed convex cone.
Such problems encompass a wide spectrum of
optimization problems and serve as a fundamental
framework for addressing various real-world
challenges. Conic problems form a broad and
important class of optimization problems, since
according to [1, 2], any convex optimization
problem can be represented as a conic one.
This universality underscores the essential
significance of conic optimization in mathematical
optimization theory. In recent years, conic
optimization has attracted considerable attention
due to its versatility and widespread applicability
across diverse domains [3–5]. Among the most
prominent and extensively studied subclasses

of conic optimization problems are Linear
Programming (LP) and convex Quadratic
Programming (QP) problems. Another
notable class of conic optimization problems is
Semidefinite Programming (SDP), where the
optimization is performed over the cone of
positive semidefinite matrices. SDP has garnered
significant interest owing to its utility in tackling
a broad range of optimization tasks, including
control theory, combinatorial optimization, and
quantum information processing (see [6–8]).

Linear Second-Order Cone Programming (SOCP)
deals with conic problems where the objective
is to optimize a linear cost function over
the intersection of an affine set and the
product of the second-order (Lorentz) cones in a
finite-dimensional vector space. The problems of
LP, QP, and the quadratically constrained convex
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quadratic problems can be formulated as SOCP
problems, which in turn, belong to a special class
of SDP problems (see e.g. [9–11], and others).

The class of SOCP problems has been extensively
studied in the past two decades due to its broad
applicability across various fields of research,
including engineering, finance, control theory,
robust and combinatorial optimization. The
literature dedicated to second-order problems is
vast. For the applications, see, e.g. [10, 12, 13],
and the references therein. As highlighted in
[9], many of the SDP problems encountered
in practical applications and considered in [7],
can also be formulated as instances of SOCP
problems, further emphasizing the significance
and relevance of SOCP in optimization theory and
practice.

Necessary and sufficient optimality conditions
play an important role in optimization by
providing a framework for identifying optimal
solutions. By leveraging these conditions,
researchers and practitioners can effectively
discern the best possible outcome from the
optimization process. Among the various types of
optimality conditions, two prominent categories
can be distinguished: the optimality conditions
in ordinary (punctual) form as in, e.g., [14–17]
and sequential optimality conditions, see [18–20].
Additionally, other types of optimality conditions,
such as those discussed in [21, 22], contribute to
the comprehensive understanding of optimization
processes and strategies.

To test ordinary optimality conditions for a
primal feasible solution x0, one has to find a
finite vector y0, which is a dual feasible solution,
and check a finite number of equalities and
inequalities constructed on the base of x0 and y0.
When applying sequential optimality conditions
to a feasible solution x0, it is necessary to
identify some sequences, {xk} and {yk}, of vectors
associated with the primal and dual variables,
respectively, and check some conditions in the
form of limits of functions built on the base of
these sequences.

Optimality conditions are often formulated under
certain additional conditions on the problem’s
constraints, known as constraint qualifications
(CQ). Constraint qualifications are properties
inherent in the analytical description of a feasible
set ensuring that its structure around a given
feasible point can be described by (first-order)
approximations of the constraint functions (see
e.g. [23]) and guarantee the Karush-Kuhn-Tucker
(KKT) optimality conditions to hold at a local
minimizer. The most widely used CQ for
SOCP is the Slater condition (or strict feasibility)

presupposing the existence of a feasible solution
that belongs to the interior of the feasible set.

Constraint qualifications are particularly
crucial for deriving primal and primal-dual
characterizations of solutions in optimization
and variational problems. They are essential
for studying duality relations, conducting
sensitivity and stability analysis, and justifying
the convergence and evaluating the convergence
rate of computational methods.

Many papers are dedicated to CQ conditions for
different classes of optimization problems (see
[14, 15, 18, 23–26], and others). One of the
main challenges in this area is that for many
conic problems in general and SOCP problems
in particular, the CQs needed for formulation
of optimality conditions may not hold (see, for
example, [9, 16, 27], and the references therein).
Therefore, it is very important to search for
optimality conditions that do not rely on any
CQ (referred to as CQ-free optimality conditions).
Many research is dedicated to CQ-free optimality
conditions for different classes of optimization
problems (see [16, 19–21, 28, 29], and others).
However, to the best of the authors’ knowledge,
no CQ-free optimality conditions in the ordinary
form specifically designed for SOCP problems
have been published to date.

In this paper, new CQ-free optimality conditions
in the ordinary form are derived for SOCP
problems. These conditions are formulated and
proven in the form of two criteria. Illustrative
examples demonstrate situations where classical
conditions fail to test optimality, while the
optimality criteria presented in the paper allow
such a test.

The paper is structured as follows. In section 2,
we formulate the problem and introduce the basic
notation. In section 3, we introduce the set I0 of
special constraint indices referred to as immobile.
Here the immobility of a constraint’s index means
that this constraint remains active for all feasible
values of the problem’s variables. We utilize the
set of immobile indices to prove an optimality
criterion for SOCP problems. This criterion does
not use any additional conditions on the feasible
set of the problem under consideration, making
it an CQ-free optimality criterion. However, its
application may be hindered by the requirement
for information about the set I0, which may not
always be available. In the subsequent section
4, we present an alternative CQ-free optimality
criterion wherein the set I0 is not explicitly
utilized. At the end of the section, we provide
a short discussion on two different approaches
to the CQ-free optimality conditions and on the
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properties of the approach proposed in the paper.
Illustrative examples in section 5 highlight the
new optimality conditions derived in the paper
particularly in scenarios where the classical KKT
optimality conditions fail to suffice. In section
6, motivated by the optimality criterion obtained
by Gorokhovik in [21], for a more general class
of convex problems and using the lexicographical
separations approach, we formulate the optimality
criteria for SOCP. We compare this criterion with
that obtained in sections 3 and 4. The paper ends
with some conclusions presented in section 7.

2. Problem’s statement and basic
notions

Consider a linear second-order cone programming
problem in the form

SOCP : max b⊤x

s.t. Aix+c(i) ∈ SOC(i), i ∈ I,

where x ∈ Rn is a vector of decision variables,
b ∈ Rn, c(i) ∈ Rmi+1, Ai ∈ R(mi+1)×n, i ∈ I, are
given vectors and matrices; the sets

SOC(i) := {z =

(
z0
z∗

)
∈ Rmi+1,

z0 ∈ R, z∗ ∈ Rmi : ||z∗|| ≤ z0}, i ∈ I,

are the second-order cones. Here n ∈ N, mi ∈ N,
i ∈ I; ||z∗|| =

√
z⊤∗ z∗, and the set I ⊂ N is

supposed to be a finite index set.

Given i ∈ I, the second-order cone SOC(i) is
convex, full-dimensional, nice, and consequently,
is facially exposed (for definitions see e.g. [6]).

In what follows, for i ∈ I, we will suppose that a
vector z ∈ SOC(i) has the form z = (z0, z

⊤
∗ )

⊤ ∈
Rmi+1, where z0 ∈ R, z∗ ∈ Rmi .

Given x ∈ Rn and i ∈ I, denote

z(i, x) := Aix+ c(i).

For the problem (SOCP), the corresponding
standard (Lagrangian) dual problem has the form

SOCD : min
∑
i∈I

c(i)⊤y(i)

s.t.
∑
i∈I

A⊤
i y(i) = −b, y(i) ∈ SOC(i), i ∈ I,

where vectors y(i), i ∈ I, are the decision
variables.

A vector x ∈ Rn is a strictly feasible solution
in the problem (SOCP) if z(i, x) ∈ intSOC(i)
for all i ∈ I. A feasible solution of the problem
(SOCD), consisting of vectors y(i), i ∈ I, is
called strictly feasible if y(i) ∈ intSOC(i) for all
i ∈ I. Here intS stands for the interior of a set S.

Lemma 1. [Weak duality, [9]] If x̄ is feasible in
the problem (SOCP) and (ȳ(i), i ∈ I) is feasible
in the dual problem (SOCD), then the value of
the objective function of (SOCP) evaluated at x̄
is less than or equal to the value of the objective
function of (SOCD) evaluated at (ȳ(i), i ∈ I).

Given a primal-dual pair of optimization
problems (P) and (D), let val(P) and val(D)
denote the optimal values of the cost functions of
these problems. The difference val(D) − val(P)
is called the duality gap.

From Lemma 1, it follows that for a pair of dual
problems (SOCP) and (SOCD), the duality gap
is non-negative. To guarantee that the duality
gap is equal to zero, the problems should satisfy
certain additional conditions.

The following theorems are proved in [9].

Theorem 1. [Strong duality] If the second-order
cone problems (SOCP) and (SOCD) have
strictly feasible solutions, then they both
have optimal solutions (are solvable) and
val(SOCD)− val(SOCP) = 0.

Theorem 2. [KKT optimality conditions]
Suppose that (SOCP) is strictly feasible (admits
a strictly feasible solution). Then a feasible
solution x0 is optimal in this problem iff there
exist vectors y0(i), i ∈ I, such that∑

i∈I
A⊤

i y
0(i) = −b,

y0(i) ∈ SOC(i), y0(i)⊤z(i, x0) = 0 ∀i ∈ I.

(1)

Without additional conditions (CQs) on the
constraints of the problem (SOCP), the duality
gap may be positive. In this case, the KKT
optimality conditions may not be met (see [9,27],
and the example below).

The aim of this study is to formulate and prove
for the second-order cone problem (SOCP) new
CQ-free optimality conditions in the ordinary
form.

3. An optimality criterion for the
primal second-order cone problem

Denote by X the set of feasible solutions of the
problem (SOCP):

X := {x ∈ Rn : z(i, x) ∈ SOC(i) ∀ i ∈ I}. (2)

Notice that the set X is convex.

Suppose that X ̸= ∅ and consider a subset of the
index set I:

I0 := {i ∈ I : ||z∗(i, x)|| = z0(i, x) ∀x ∈ X}. (3)

This subset plays an important role in our
approach. It contains the indices of constraints
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that can be characterized as always active or
immobile in the terminology of our previous
papers (see e.g. [16, 30], and the references
therein).

The constraints of the problem (SOCP) are said
to satisfy the Slater condition if the problem
admits a strictly feasible solution, i.e. there exists
a vector x̄ ∈ Rn such that

z(i, x̄) ∈ intSOC(i) ∀i ∈ I. (4)

The Slater condition is one of CQs that guarantee
the existence of KKT multipliers for a given
optimal solution.

It is easy to show that conditions (4) are
equivalent to the inequalities

||z∗(i, x̄)|| < z0(i, x̄) ∀i ∈ I. (5)

Therefore, in terms of (3), one can see that the
constraints of the problem (SOCP) satisfy the
Slater condition iff I0 = ∅. Hence, the emptiness
of the set I0 can be considered as a constraint
qualification.

In what follows, we will use the following notation
for i ∈ I:

Ri :=


1 0 ... 0
0 −1 .... 0
... ... ... ...
0 0 ... −1

 ∈ R(mi+1)×(mi+1);

intSOC(i) := {z =

(
z0
z∗

)
∈ Rmi+1 : ||z∗|| < z0},

bd+ SOC(i) :={z =

(
z0
z∗

)
∈ Rmi+1 : ||z∗|| = z0,

z0 > 0}.
Then, for any i ∈ I, it holds

SOC(i) = intSOC(i) ∪ bd+ SOC(i) ∪ {0}, (6)

where 0 is the null vector in the corresponding
real space Rmi+1.

Since X ̸= ∅, then it is easy to show that there
exists a vector x̃ ∈ Rn such that

||z∗(i, x̃)|| < z0(i, x̃) ∀i ∈ I \ I0,
||z∗(i, x̃)|| = z0(i, x̃) ∀i ∈ I0. (7)

A vector x̃ satisfying (7), is called a minimally
active feasible solution of the problem (SOCP).

For i ∈ I, let z ∈ Rmi+1 and y ∈ Rmi+1

be complementary, i.e. satisfy the following
complementarity conditions:

z⊤y = 0, z ∈ SOC(i), y ∈ SOC(i). (8)

Then (see [9]) one of the next conditions takes a
place:

a0) z ∈ intSOC(i) =⇒ y = 0;

b0) z ∈ bd+ SOC(i) =⇒ y = αRiz, α ≥ 0;

c0) z = 0 =⇒ ∀y ∈ SOC(i).

Proposition 1. Let x̃ be a minimally active
feasible solution of the problem (SOCP). Then
for i ∈ I0 and x ∈ X, there exists a corresponding
number αi = αi(x), such that

z(i, x) = αiz(i, x̃), αi ≥ 0. (9)

Proof. Let i ∈ I0 and x ∈ X. It follows from the
convexity of the set X that 0.5(x̃+ x) ∈ X. From
this inclusion and the definition of the index set
I0, one can conclude:

||z∗(i, 0.5(x̃+ x))|| = z0(i, 0.5(x̃+ x)),

||z∗(i, x̃)|| = z0(i, x̃), ||z∗(i, x)|| = z0(i, x).
(10)

Consequently,

0.5||z∗(i, x̃) + z∗(i, x)|| = 0.5z0(i, x̃) + 0.5z0(i, x)

= 0.5||z∗(i, x̃)||+ 0.5||z∗(i, x)||.
The equality

||z∗(i, x̃) + z∗(i, x)|| = ||z∗(i, x̃)||+ ||z∗(i, x)||
obtained above can be rewritten as follows:

(z∗(i, x̃) + z∗(i, x))
⊤(z∗(i, x̃) + z∗(i, x)) =

||z∗(i, x̃)||2 +2||z∗(i, x̃)||·||z∗(i, x)||+||z∗(i, x)||2,
wherefrom we obtain

z∗(i, x̃)
⊤z∗(i, x) = ||z∗(i, x̃)|| · ||z∗(i, x)||.

Taking into account the latter equality and the
well-known relation a⊤b = cos(φ)||a|| · ||b||, where
φ is the angle between the vectors a and b,
we obtain that the cosine of the angle between
vectors z∗(i, x) and z∗(i, x̃) is equal to 1, and,
hence, these vectors are collinear. This implies
that

z∗(i, x) = αiz∗(i, x̃) with some αi ≥ 0. (11)

It follows from (10) and (11) that

z0(i, x) = ||z∗(i, x)|| = αi||z∗(i, x̃)|| = αiz0(i, x̃).

The equality obtained, z0(i, x) = αiz0(i, x̃),
together with (11) imply that relations (9) hold
true for i ∈ I0 and x ∈ X. 2

Let us fix a minimally active feasible solution x̃
of the problem (SOCP) and denote

γ(i) := z(i, x̃) ∀i ∈ I0.

Then it follows from Proposition 1 that for an
immobile index i ∈ I0 and for a feasible solution
x ∈ X, the non-linear condition

z(i, x) ∈ SOC(i) ⇐⇒ ||z∗(i, x)|| ≤ z0(i, x)

can be replaced by (mi + 1) linear equalities
z(i, x) = αiz(i, x̃) with one additional variable
αi ≥ 0. Based on this, it is easy to show that
X = X̄, where

X̄ := {x ∈ Rn : z(i, x) ∈ SOC(i) ∀i ∈ I \ I0,
z(i, x) = αiγ(i) with some αi ≥ 0 ∀i ∈ I0}.
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It follows from the considerations above that the
problem (SOCP) is equivalent to the following
one:

P∗ : max b⊤x

s.t. Aix+ c(i) = z(i), z(i) ∈ SOC(i) ∀i ∈ I \ I0;
Aix+ c(i) = αiγ(i), αi ≥ 0 ∀i ∈ I0,

where the decision variables are vector x ∈ Rn

and numbers αi, i ∈ I0.

Notice that in the problem (P∗), there is a finite
number of equality and inequality constraints

Aix+ c(i) = αiγ(i), αi ≥ 0 ∀i ∈ I0,

that are linear w.r.t. x ∈ Rn and αi ∈ R, i ∈ I0.
Moreover, there exists a feasible solution x̃ of the
problem (SOCP) such that the feasible solution

x̃, α̃i = 1, i ∈ I0, z̃(i) = z(i, x̃), i ∈ I \ I0,
of the problem (P∗) satisfies the following strict
inequalities:

α̃i > 0, i ∈ I0, ||z̃∗(i)|| < z̃0(i), i ∈ I \ I0.
Hence, the constraints of this problem satisfy the
generalized Slater condition (see [31]), and one
can use the classical KKT optimality conditions
for testing optimality of its feasible solution
(x0, α0

i , i ∈ I0).

Taking into account the equivalence of the
problems (SOCP) and (P∗), we obtain the
following result.

Theorem 3. [Optimality criterion 1] A feasible
solution x0 ∈ X of the problem (SOCP) is
optimal in this problem iff there exist vectors
y(i) ∈ Rmi+1, i ∈ I, such that the following
relations hold true:

∑
i∈I

A⊤
i y(i) = −b, z(i, x0)⊤y(i)=0 ∀i ∈ I; (12)

y(i) ∈ SOC(i) ∀i ∈ I \ I0;

y(i)⊤γ(i) ≥ 0 ∀i ∈ I0.
(13)

Conditions (12), (13) are similar to the KKT
conditions (1) but simpler than them. The
difference is as follows: the conic conditions
y0(i) ∈ SOC(i), i ∈ I0, in (1) are replaced by the
linear ones y(i)⊤γ(i) ≥ 0, i ∈ I0, in (12), (13).
Therefore, finding a solution to system (12), (13)
is no more difficult than finding a solution to the
KKT system (1).

It is evident that if I0 = ∅, then conditions (12),
(13) coincide with (1).

It should be noted here that the optimality
criterion in the form of Theorem 3 does not use
any additional conditions on the feasible set of
the problem (SOCP) and is therefore an CQ-free
optimality criterion. The only possible difficulty

in its application is the need to know the set of
immobile indices I0.

In the next section, we will demonstrate an
alternative CQ-free optimality criterion that does
not explicitly rely on any knowledge of I0.

4. An alternative CQ-free optimality
criterion for the second-order cone
programming

The optimality criterion presented in this section
is based on the following idea used in literature for
convex optimization problems (see, for example
[22]).

For a given convex problem, at the first step,
one attempts to obtain an exact extended dual
problem (EEDP) explicitly formulated in terms
of the data of the original primal problem (see
[32–35]). The exact (strong) duality property
entails that when the primal problem and its
corresponding dual are consistent, their optimal
values are equal, and the dual problem attains its
optimal value.

The dual problem (EEDP) has an extended
set of dual decision variables compared to the
Lagrangian dual. Note that some regularization
procedure is necessary to justify the exactness of
this dual problem.

At the second step, taking into account
the exactness of the extended dual problem
(EEDP), attempts are made to formulate CQ-free
optimality conditions for a feasible solution to the
original primal problem using an optimal solution
to this dual problem.

Below, we utilize this idea to derive an CQ-free
optimality criterion for the problem (SOCP).
Taking into account the specific nature of the
problem under consideration, we are able to
formulate the optimality conditions without an
explicit representation of the corresponding exact
extended dual problem. The regularization
procedure associated with this formulation is
implicitly embedded within the proof of the
criterion.

It is worth noting that the KKT optimality
conditions (see Theorem 2) are also based on
a similar idea: these conditions are formulated
using the set of vectors y0(i), i ∈ I, (the KKT
multipliers for a given optimal solution) which,
in fact, represents an optimal solution of the
Lagrangian dual problem (SOCD). However, in
the formulation of these conditions, this fact is
not explicitly mentioned.

We commence by formally introducing a set of
vectors that, in essence, constitutes a feasible
solution of the exact extended dual problem.
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Having fixed i ∈ I and k0 ∈ N, 0 ≤ k0 ≤ |I|,
consider the following set of vectors:

{π(k, i) ∈ Rmi+1, k = 0, 1, . . . , k0}. (14)

If π(k, i) ̸≡ 0 for all k = 0, 1, . . . , k0, denote

qi = min{k : 0 ≤ k ≤ k0, π(k, i) ̸= 0}.

We say that for a given i ∈ I, the set of vectors
(14) satisfies Condition (A) if one of the following
conditions is true:

A1) π(k, i) ≡ 0 for all k = 0, 1, . . . , k0;
A2) π(qi, i) ∈ SOC(i), π(k, i)⊤Riπ(qi, i) ≥ 0

for all k = qi + 1, . . . , k0.

Here and in what follows, the set of indices {k =
q, q + 1, . . . , s} is assumed to be empty if s < q.

Let us prove a technical proposition.

Proposition 2. Suppose that i ∈ I and that the
set of vectors (14) satisfies Condition (A). Then
for any z ∈ SOC(i), there exists θ̄ = θ̄(z) > 0
such that

k0∑
k=0

θk0−kz⊤π(k, i) ≥ 0 ∀θ ≥ θ̄. (15)

Proof. If π(k, i) ≡ 0 for all k = 0, 1, . . . , k0, then
inequalities (15) are trivially satisfied with any
θ̄ > 0.

Suppose that π(k, i) ̸≡ 0 for k = 0, 1, . . . , k0. In
this case, we have

k0∑
k=0

θk0−kz⊤π(k, i) =

k0∑
k=qi

θk0−kz⊤π(k, i), (16)

where z⊤π(qi, i) ≥ 0 since z ∈ SOC(i) and
π(qi, i) ∈ SOC(i).
If z⊤π(qi, i) > 0, then evidently, the inequalities
(15) hold true for a sufficiently large θ̄ > 0.

Suppose that z⊤π(qi, i) = 0. Since z ∈ SOC(i),
we can distinguish the following three cases:

1) z = 0, 2) z ∈ intSOC(i), and 3) z ∈ bd+ SOC(i).

In case 1), relations (15) are trivially satisfied with
any θ̄ > 0.

In case 2), the equality z⊤π(qi, i) = 0 implies
π(qi, i) = 0 that contradicts the assumption
π(qi, i) ̸= 0. Therefore, this case is impossible.

In case 3), the equality z⊤π(qi, i) = 0 and the
inequality π(qi, i) ̸= 0 imply z = αi(z)Riπ(qi, i)
with some αi(z) > 0. Hence, taking into account
the latter relations and Condition A2), we obtain
the following inequalities:

z⊤π(k, i) = αi(z)π(k, i)
⊤Riπ(qi, i) ≥ 0,

for all k = qi + 1, . . . , k0. These inequalities
together with equalities (16) and z⊤π(qi, i) = 0,

ensure that relations (15) are satisfied for any
θ̄ > 0. 2

For a given x ∈ X, introduce an index set

Ia(x) := {i ∈ I : ||z∗(i, x)|| = z0(i, x)}.

Theorem 4. [Optimality Criterion 2] A vector
x0 ∈ X is an optimal solution of the problem
(SOCP) iff there exist an integer number k0,
0 ≤ k0 ≤ |Ia(x0)|, and the sets of vectors

{π(k, i) ∈ Rmi+1, k = 0, 1, . . . , k0}, i ∈ Ia(x
0),
(17)

satisfying Condition (A) for all i ∈ Ia(x
0), such

that∑
i∈Ia(x0)

A⊤
i π(k, i) = 0 ∀k = 0, . . . , k0 − 1;

∑
i∈Ia(x0)

A⊤
i π(k0, i) = −b,

(18)

and

z(i, x0)⊤π(k, i) = 0

∀k = 0, 1, . . . , k0, ∀i ∈ Ia(x
0).

(19)

Proof. Sufficiency. Suppose that there exists a
set of vectors (17) satisfying Condition (A) and
relations (18) and (19). Then it follows from (19)
that

0 =
∑

i∈Ia(x0)

z(i, x0)⊤π(k, i)

=
∑

i∈Ia(x0)

[Aix
0 + c(i)]⊤π(k, i)

=
∑

i∈Ia(x0)

c(i)⊤π(k, i) + x0
⊤ ∑

i∈Ia(x0)

A⊤
i π(k, i),

for all k = 0, 1, . . . , k0. From these equalities and
(18), we obtain∑

i∈Ia(x0)

c(i)⊤π(k, i) = 0 ∀k = 0, . . . , k0 − 1,

∑
i∈Ia(x0)

c(i)⊤π(k0, i) = b⊤x0.
(20)

It follows from Proposition 2 that for any x ∈ X,
there exists θ̄ = θ̄(x) > 0 such that

k0∑
k=0

θ̄k0−kz(i, x)⊤π(k, i) ≥ 0 ∀i ∈ Ia(x
0). (21)
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For x ∈ X, taking into account (18) - (20), let us
calculate

b⊤x = −
∑

i∈Ia(x0)

x⊤A⊤
i π(k0, i)

= −
∑

i∈Ia(x0)

x⊤A⊤
i

k0∑
k=0

θ̄k0−kπ(k, i)

= −
∑

i∈Ia(x0)

z(i, x)⊤
k0∑
k=0

θ̄k0−kπ(k, i)

+
∑

i∈Ia(x0)

c(i)⊤
k0∑
k=0

θ̄k0−kπ(k, i)

= −
∑

i∈Ia(x0)

k0∑
k=0

θ̄k0−kz(i, x)⊤π(k, i) + b⊤x0.

These relations together with (21), permit one to
conclude that b⊤x ≤ b⊤x0 for all x ∈ X. Hence
x0 ∈ X is an optimal solution of the problem
(SOCP).

Necessity. Let x0 ∈ X be an optimal solution
to the problem (SOCP). Let us construct a set
of vectors (17) satisfying the Condition (A) and
relations (18), (19). We will do this iteratively by
performing the following iterations.

Iteration # 0. Consider the problem

P-0 : max µ,

s.t. Aix+ c(i)− e0(i)µ = z(i),

z(i) ∈ SOC(i) ∀i ∈ I,

where e0(i) = (1, 0, . . . , 0)⊤ ∈ Rmi+1, i ∈ I.

The constraints of this problem satisfy the Slater
condition. In fact, for any x ∈ X, the vector
(x, µ = −1, z(i), i ∈ I)⊤ with
z(i) = (z0(i) = z0(i, x) + 1, z∗(i) = z∗(i, x)), i ∈ I,
is a feasible solution of the problem (P-0)
satisfying the strict inequalities

||z∗(i)|| < z0(i) ∀i ∈ I.

If this problem admits a feasible solution
(x̄, µ̄, z̄(i), i ∈ I) with µ̄ > 0, then set k0 = 0
and go to the Final Step.

Otherwise, for any x ∈ X, the vector

(x, µ = 0, z(i) = z(i, x), i ∈ I) (22)

is an optimal solution of the problem (P-0).
Since the constraints of this problem satisfy the
Slater condition, applying the classical KKT
optimality conditions to its optimal solution (22),
we conclude that there exist vectors

y0(i) =

(
y00(i)
y0∗(i)

)
∈ Rmi+1,

y0∗(i) ∈ Rmi , i ∈ I,

(23)

such that the following relations hold true for any
x ∈ X: ∑

i∈I
A⊤

i y
0(i) = 0,

∑
i∈I

y00(i) = 1, (24)

z(i, x)⊤y0(i) = 0, y0(i) ∈ SOC(i) ∀i ∈ I.(25)

Consider the index set

∆I1 := {i ∈ I : y00(i) > 0}.
It follows from (24) that ∆I1 ̸= ∅. Let us show
that

||z∗(i, x)|| = z0(i, x) ∀i ∈ ∆I1, ∀x ∈ X, (26)

and consequently, the indices in ∆I1 are
immobile.

Suppose the contrary: there exist i0 ∈ ∆I1
and x̄ ∈ X such that ||z∗(i0, x̄)|| < z0(i0, x̄).
Then from the equality in (25) with i = i0
and the conditions z(i0, x̄) ∈ SOC(i0), y0(i0) ∈
SOC(i0), we can conclude that y0(i0) = 0. But
this contradicts the inequality y00(i0) > 0 that is
fulfilled by construction. Hence equalities (26) are
satisfied. Remind here that relations (24), (25)
are valid for all x ∈ X.

Let us show that for all i ∈ ∆I1 and x ∈ X, the
following is true:

∃αi(x) ≥ 0 such that z(i, x) = αi(x)Riy
0(i). (27)

Let i ∈ ∆I1 and x ∈ X. If y0(i) ∈ intSOC(i),
then it follows from the equality in (25) and the
condition z(i, x) ∈ SOC(i), that z(i, x) = 0.
Hence, in this case, relations (27) are satisfied
with αi = 0. If y0(i) ∈ bd+ SOC(i), then it follows
from (25) and the inclusion z(i, x) ∈ SOC(i),
that z(i, x) = αi(x)Riy

0(i) with some αi(x) ≥ 0.
Consequently, the equality in (27) holds true in
this case as well. Taking into account that y0(i) ̸=
0 for i ∈ ∆I1, we conclude that relations (27) are
proved.

It follows from (27) that for an immobile index
i ∈ ∆I1 and for a feasible solution x ∈ X, the
non-linear condition

z(i, x) ∈ SOC(i) ⇐⇒ ||z∗(i, x)|| ≤ z0(i, x)

can be replaced by (mi + 1) linear equalities
z(i, x) = αiRiy

0(i) with one additional variable
αi ≥ 0. Based on this, it is easy to see that
X = X0, where

X0 :={x ∈ Rn : z(i, x) ∈ SOC(i), i ∈ I \ I1;
z(i, x) = αiγ̄(i) with some αi ≥ 0, i ∈ I1},

I1 := ∆I1,

γ̄(i) := Riy
0(i) ∈ SOC(i) ∀i ∈ ∆I1.

(28)

In fact, if x ∈ X0, then it is evident that z(i, x) ∈
SOC(i) for all i ∈ I. Hence, x ∈ X, and
consequently, X0 ⊂ X. Now suppose that x ∈ X.
Then it follows from (27) and (28) that x ∈ X0
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and hence, X ⊂ X0. The equality X = X0 is
proved.

The set of vectors (23) constructed above satisfies
the conditions

y0(i) = 0 ∀i ∈ I \ I1;
y0(i) ∈ SOC(i), y0(i) ̸= 0 ∀i ∈ I1.

(29)

Go to the next Iteration #1 with the data (28).

Iteration # k (k ≥ 1). At the beginning of this
iteration, we have the following set and vectors:

Ik = ∆I1 ∪ · · · ∪∆Ik, γ̄(i) = Riy
s(i) ∈ SOC(i),

γ̄0(i) ̸= 0, i ∈ ∆Is+1, s = 0, 1, . . . , k − 1.

Consider the problem

P-k : max µ,

s.t. Aix+ c(i)− e0(i)µ = z(i) ∀i ∈ I \ Ik,
Aix+ c(i) = αiγ̄(i) ∀i ∈ Ik,

z(i) ∈ SOC(i) ∀i ∈ I \ Ik, αi ≥ 0 ∀i ∈ Ik.

The constraints of this problem satisfy the
generalized Slater condition (see [31]).

If the problem (P-k) admits a feasible solution
(x̄, µ̄, z̄(i), i ∈ I \ Ik, ᾱi, i ∈ Ik) with µ̄ > 0, then
set k0 = k and go to the Final Step.

Otherwise, for any x ∈ X, the vector

(x, µ = 0, z(i, x), i ∈ I \ Ik;
αi(x) = z0(i, x)/γ̄0(i), i ∈ Ik)

(30)

is an optimal solution to the problem (P-k).
Taking into account that the constraints of this
problem satisfy the generalized Slater condition
and applying the KKT optimality conditions to
its optimal solution (30), we conclude that there
exist vectors

yk(i) =

(
yk0 (i)
yk∗ (i)

)
∈ Rmi+1,

yk∗ (i) ∈ Rmi , i ∈ I,

(31)

such that the following relations hold true:∑
i∈I

A⊤
i y

k(i) = 0,
∑

i∈I\Ik
yk0 (i) = 1, (32)

z(i, x)⊤yk(i) = 0 ∀i ∈ I;

yk(i) ∈ SOC(i) ∀i ∈ I \ Ik; (33)

γ̄(i)⊤yk(i) ≥ 0∀i ∈ Ik.

Consider the index set

∆Ik+1 := {i ∈ I \ Ik : yk0 (i) > 0}.
It follows from (32) that

∆Ik+1 ̸= ∅. (34)

Similar to how it was done on the initial Iteration
# 0, one can show that

||z∗(i, x)|| = z0(i, x) ∀i ∈ ∆Ik+1, ∀x ∈ X, (35)

z(i, x) = αi(x)Riy
k(i),

αi(x) ≥ 0 ∀i ∈ ∆Ik+1, ∀x ∈ X.
(36)

Set
Ik+1 = Ik ∪∆Ik+1 = ∆I1 ∪∆I2 ∪ · · · ∪∆Ik+1,

γ̄(i) = Riy
k(i), i ∈ ∆Ik+1.

It follows from (36) that X = Xk, where

Xk := {x ∈ Rn : z(i, x) ∈ SOC(i), i ∈ I \ Ik+1;

z(i, x) = αiγ̄(i) with some αi ≥ 0, i ∈ Ik+1}.
(37)

The set of vectors defined in (31)-(33), satisfies
the following relations:

yk(i) = 0 ∀i ∈ I \ Ik+1, (38)

yk(i) ∈ SOC(i), yk0 (i) ̸= 0 ∀i ∈ ∆Ik+1; (39)

yk(i)⊤Riy
s−1(i) = yk(i)⊤γ̄(i) ≥ 0

∀i ∈ ∆Is, s = 1, . . . , k.
(40)

Go to the next Iteration # (k + 1) using the set
Ik+1 and vectors γ̄(i), i ∈ Ik+1, ys(i), i ∈ I,
s = 0, 1, . . . , k found above.

Final Step. It follows from condition (34) that
after a finite number of iterations, we will get to
the Final Step with some k0, 0 ≤ k0 ≤ |I0|, where
I0 is the set of immobile indices of the constraints
of the problem (SOCP) (see (3)).

From (26) and (35) we have:

Ik0 = ∆I1 ∪ · · · ∪∆Ik0 ⊂ I0. (41)

By construction, a number k0 is such that for
k = k0, the problem (P-k) has a feasible solution

(x̄, µ̄, z̄(i), i ∈ I \ Ik0 , ᾱi, i ∈ Ik0)

with µ̄ > 0. Hence, x̄ ∈ Xk0−1 = X, where Xk0−1

is defined in (37) with k = k0 − 1, and

||z∗(i, x̄)|| < z0(i, x̄) ∀i ∈ I \ Ik0 . (42)

Notice that for k0 = 0, the set Ik0 is empty.

Taking into account (41) and (42), one can
conclude that Ik0 = I0.

Consider the following problem:

P-R : max b⊤x,

s.t. Aix+ c(i) = z(i), z(i) ∈ SOC(i) ∀i ∈ I \ Ik0 ,
Aix+ c(i) = αiγ̄(i), αi ≥ 0 ∀i ∈ Ik0 .

It follows from (42) that the constraints of this
problem satisfy the generalized Slater condition.
Since X = Xk0−1, the optimality of the solution
x0 in the problem (SOCP) implies the optimality
of the solution

(x0, z0(i) = z(i, x0), i ∈ I \ Ik0 ,
α0
i = z0(i, x

0)/γ̄0(i), i ∈ Ik0)

in the problem (P-R). Applying the KKT
optimality conditions to the problem (P-R) and
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its optimal solution, one can conclude that there
exist vectors yk0(i), i ∈ I, such that

yk0(i) ∈ SOC(i) ∀i ∈ I \ Ik0 ;

yk0(i)⊤γ̄(i) = yk0(i)⊤Riy
s−1(i) ≥ 0

∀i ∈ ∆Is, ∀ s = 1, . . . , k0,∑
i∈I

A⊤
i y

k0(i) = −b,

z(i, x0)⊤yk0(i) = 0 ∀i ∈ I.

(43)

From the relations above, we get

yk0(i) = 0 ∀i ∈ I \ Ia(x0). (44)

Notice that by construction, we have Ik0 = I0,
and, consequently, I0 ⊂ Ia(x

0) for all x ∈ X.
Taking into account this inclusion, (44), and (38)
(with k = 0, . . . , k0 − 1), we conclude that the
vectors yk(i), i ∈ I, k = 0, 1, . . . , k0, constructed
here, satisfy the equalities

yk(i) = 0 ∀i ∈ I \ Ia(x0), ∀k = 0, 1, . . . , k0.

It follows from the equalities above and relations
(39), (40) (with k = 0, . . . , k0 − 1), together with
(43) that the sets of vectors

{π(k, i)=yk(i), k=0, . . . , k0}, ∀i ∈ Ia(x
0), (45)

satisfy Condition (A) and relations (18)-(19). 2

Remark 1. In the theorem, it is affirmed that the
integer k0 is less than or equal to |Ia(x0)|. In fact,
the inequalities k0 ≤ |I0| ≤ |Ia(x0)| hold true and
in the statement of the theorem, one can replace
the inequality k0 ≤ |Ia(x0)| by a tighter estimate
k0 ≤ |I0|. However, we prefer to leave here the
inequality k0 ≤ |Ia(x0)| since in a general case,
one cannot expect to have any knowledge about the
set I0. Notice that if the set I0 is known, one can
use a more simple form of optimality conditions,
namely Criterion 1.

Considering the problems (P∗) and (P-R), one
can see that they are similar but at the same time
there are some differences between them.

It was mentioned above that Ik0 = I0. Let us
introduce a subset

I00 = {i ∈ I0 : z0(i, x) = 0 ∀x ∈ X}.
For i ∈ I0 \ I00, we have γ(i) = βiγ̄(i) with
βi = γ0(i)/γ̄0(i) > 0, i.e. the vectors γ(i) and
γ̄(i) coincide up to a positive nonzero factor.

For i ∈ I00, we have γ(i) = 0 and γ̄(i) ̸= 0.

In the problem (P∗), for x ∈ X, the corresponding
variables αi, i ∈ I0 \ I00, are uniquely determined
by the rule αi = z0(i, x)/γ0(i), i ∈ I0\I00, and we
can choose any non-negative values for αi, i ∈ I00.

In the problem (P-R), for x ∈ X, the formulas
αi = z0(i, x)/γ̄0(i), i ∈ I0, uniquely define the
corresponding variables αi, i ∈ I0.

4.1. A short discussion

It was mentioned earlier that Criterion 2 proved
in this section, is based on the utilization of
an optimal solution to the exact extended dual
problem (EEDP). In fact, the set (45) constitutes
a part of an optimal solution

{yk(i), k = 0, . . . , k0}, i ∈ I, (46)

to the problem (EEDP). The vectors in (46)
serve as a generalization of the vectors of KKT
multipliers for a given optimal solution x0.
However, unlike the vectors of KKT multipliers,
which may not exist for some problems, an
optimal solution to the exact extended dual
problem always exists provided that the optimal
value of problem (SOCP) is finite.

It follows from the iterative nature of the proof of
Theorem 4 that testing the optimality criterion
is not much more difficult than checking the
KKT system. In fact, to construct generalized
multipliers (46), one has to test sequentially,
for k = 0, . . . , k0, the classical KKT optimality
conditions in the second-order programming
problem (P-k) for the feasible solution (x̄, µ =
0, z(i) = z(i, x̄), i ∈ I) with a fixed x̄ ∈ X,
and one time in the second-order programming
problem (P-R) for the feasible solution (x0, α0

i =
z0(i, x

0)/γ̄0(i), i ∈ I0).

Note here the following:

• The number k0 satisfies the inequality k0 ≤ |I0|
and hence, it is finite. One may expect the
number k0 to be less than |I0|, since |I0| =
k0∑
k=1

|∆Ik| and, as a rule, |∆Ik| > 1 for k =

1, . . . , k0.

• The constraints of all second-order problems
(P-k), k = 0, . . . , k0, and the problem (P-R)
satisfy the Slater condition.

• For k = 1, . . . , k0, the KKT system for the
problem (P-k) is simpler than the KKT system
for the problem (P-(k-1)), and the KKT system
for the problem (P-R) is the simplest among
them.

If I0 = ∅, then k0 = 0. It is easy to see that in this
case, conditions (18), (19) coincide with the KKT
conditions (1), where y0(i) = π(0, i) for i ∈ Ia(x

0)
and y0(i) = 0 for i ∈ I \ Ia(x0). Hence the KKT
conditions (1) are a particular case of conditions
(18), (19) with k0 = 0.

In case I0 ̸= ∅, conditions (18), (19) are more
complex than the KKT conditions, since to test
them, one has to find an extended dual optimal
solution. But notice that the KKT conditions are
useless if, for the problem under consideration,
the dual gap is positive or/and the corresponding
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Lagrangian dual problem has no solution. In
such situations, the KKT conditions can never be
satisfied.

In contrast to the KKT conditions, Criterion 2
can always recognize the optimality of a given
feasible solution, as an optimal generalized dual
solution exists and there is no duality gap. This
represents the main and significant advantage
of conditions (18), (19) compared to the KKT
conditions.

As mentioned earlier, verifying sequential
optimality conditions requires finding sequences
of vectors {xk} and {yk} associated with
primal and dual variables, and checking certain
conditions in the form of limits of functions
constructed on the basis of these sequences. It
is important to note that if certain CQs are
not satisfied, the sequence {yk} may become
”irregular” (or not well-defined), since ||yk|| → ∞
as k → ∞. This irregularity may pose challenges
in numerical methods for constructing such
sequences and in verifying conditions in the form
of limits.

In contrast, to test the optimality Criterion 2, one
needs to find a finite set (46) of concrete vectors
which are ”well defined” and check a finite set of
equality and inequality conditions.

One drawback of our approach is the requirement
to know the set I0 in order to apply the optimality
Criterion 1. This can pose a challenge, as
identifying this set may take additional effort or
computational resources. However, it is worth
noting that if we do know this set, our optimality
conditions offer advantages over traditional KKT
conditions, providing a practical framework for
solving optimization problems.

The second drawback of our approach is that
when applying the optimality Criterion 2, we need
to construct an extended (generalized) vector of
Lagrange multipliers. Despite this, the criterion
offers the advantage of being CQ-free.

It is known that the violation of CQs can lead
to difficulties in implementation of numerical
methods of the primal-dual type using the
classical KKT optimality conditions. This
difficulty arises from the non-existence of classical
Lagrange multipliers. It can be overcome by
utilizing (iteratively and in an approximate form)
of some CQ-free optimality conditions, in either
sequential or ordinary form. Since the optimality
conditions obtained in the paper are CQ-free,
they can be used for this purpose as well as the
CQ-free optimality conditions in sequential form
as in [18–20] et al.

5. Examples

Example 1. Consider the problem (SOCP) with
the following data: n = 6, I = {1, 2, 3}, m1 = 3,
m2 = 3, m3 = 2,

A1=


0 1 0 0 0 0
0 −1 2 3 0 1
0 1 0 0 0 0
1 0 1 −1 0 1

 ,

A2=


0 0 0 0 0 0
0 1 2 1 0 1

−1 0 1 −1 −1 0
1 −1 0 0 1 0

 ,

A3=

 1 1 −1 0 1 0
2 1 0 0 1 −1
0 1 0 1 0 1

 ,

c(1) = (0, 6, 0, 0)⊤; c(2) = (0, 4, 6,−2)⊤;

c(3) = (−4,−2,−2)⊤, b = (4, 2,−1,−3, 2,−5)⊤.

Set x0 = (2, 1,−3, 0, 1, 1)⊤ and calculate
z(i, x0) = Aix

0 + c(i), i ∈ I. In this example,
we have:

z(1, x0) = (1, 0, 1, 0)⊤, z(2, x0) = (0, 0, 0, 0)⊤,

z(3, x0) = (3, 3, 0)⊤.

Consequently, x0 is a feasible solution of this
problem and Ia(x

0) = I.

Set k0 = 1, and consider the following vectors:
π(0, 1) = (1, 0,−1, 0)⊤, π(0, 2) = (1, 0, 0, 0)⊤,
π(0, 3) = (0, 0, 0)⊤, π(1, 1) = (−2, 2, 2, 1)⊤,
π(1, 2) = (3,−1, 1,−1)⊤, π(1, 3) = (3,−3, 0)⊤.

It is easy to check that the vectors π(k, i), k = 0, 1,
satisfy Condition (A) for all i ∈ I = Ia(x

0)
and conditions (18), (19). Hence, according to
Theorem 4 the vector x0 is an optimal solution in
the problem under consideration.

Now, suppose that in this example, the set I0 is
known: I0 = {1, 2}. Using this information, let us
test the optimality of the solution x0 by applying
Theorem 3.

Set x̃ = (1.0, 0.8,−3.4,−0.2, 1.8, 2.2)⊤ and
calculate

z(1, x̃) = (0.8, 0, 0.8, 0)⊤, z(2, x̃) = (0, 0, 0, 0)⊤,

z(3, x̃) = (3, 0.4, 0.8)⊤.

It is easy to see that the vector x̃ is a minimally
active feasible solution and hence, we can choose
γ(i) = z(i, x̃) for i ∈ I0.

Set:

y(1) = (1, 2,−1, 1)⊤, y(2) = (−1,−1, 1,−1)⊤,

y(3) = (3,−3, 0)⊤.

It is easy to check that these vectors and x0

satisfy conditions (12) and (13). Hence we have
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illustrated that the conditions of Theorem 3 are
fulfilled as well.

Now, let us show that for the optimal solution
x0, the (classical) KKT optimality conditions
formulated in Theorem 2, are not satisfied.

Suppose that in this example, for the optimal
solution x0, there exist vectors y0(i), i ∈ I,
satisfying (1). Then it follows from the conditions

y0(i) ∈ SOC(i), z(i, x0) ∈ SOC(i),

y0(i)⊤z(i, x0) = 0 for i = 1 and i = 3

that y0(1) = (α, 0,−α, 0)⊤, y0(3) = (β,−β, 0)⊤

with some α ≥ 0 and β ≥ 0.

This implies

A⊤
1 y

0(1) = 0, A⊤
3 y

0(3) = β(−1, 0− 1, 0, 0, 1)⊤.

Consequently,∑
i∈I

A⊤
i y

0(i) = −b ⇐⇒

A⊤
2 y

0(2) + β(−1, 0− 1, 0, 0, 1)⊤ = −b.

It is easy to check here that there are no y0(2) ∈
R4 and β satisfying the latter linear system. Thus
we have shown that there do not exist vectors
y0(i), i ∈ I, satisfying (1).

Let us show that in this example the duality gap
is zero. In fact, one can check directly that for
all sufficiently small ε > 0, the vectors y(1, ε) =
(4ε + 1

ε , 2 + 3
2ε, −1

ε , 1)
⊤, y(2, ε) = (10, −1 −

5
2ε, 1+3ε, −1+2ε)⊤, and y(3, ε) = (3+ε, −3, ε)⊤

satisfy the following conditions:

3∑
i=1

A⊤
i y(i, ε) = −b, y(i, ε) ∈ SOC(i) ∀i = 1, 2, 3;

3∑
i=1

c⊤(i)y(i, ε) = 10 + 7ε.

Hence, these vectors form a feasible solution to
the dual problem (SOCD) and the corresponding
value of the dual cost function is equal to 10+7ε ≥
b⊤x0 = 10. Consequently, in this example, we
have the equality val(SOCP) = val(SOCD),
but the dual problem has no optimal solution.

Thus in this example, despite the zero duality gap,
the KKT optimality conditions do not allow to
test the optimality of x0.

Example 2. Now, we will analyze a problem
(SOCP) with a positive duality gap. Let us
consider a problem from subsection 2.2 in [27].
This problem can be formulated as problem
(SOCP) with the following data:

A1 =

1 0
1 0
0 1

 , A2 =

(
1 0
−1 1

)
,

c(1) = (0, 0, −1)⊤, c(2) = (0, 0)⊤, b = (0, −1)⊤,
I = {1, 2}, m1 = 2, m2 = 1, n = 2.

It has been shown in [27] that vector x0 =
(0.5, 1)⊤ is an optimal solution to the primal
problem, the corresponding Lagrangian dual
problem also possesses an optimal solution, but
a duality gap is positive and equals to 1.
In this scenario, it becomes evident that the
optimality of the given optimal solution can not
be verified using the KKT optimality conditions.
However, we will demonstrate that the optimality
conditions derived in this paper, allow us to
address this issue.

First, we will apply Theorem 3. In this example,
I0 = {1} and x̃ = (1, 1)⊤ is a minimally
active feasible solution. Consequently, we obtain:
z(1, x0) := A1x

0 + c(1) = (0.5, 0.5, 0)⊤, γ(1) :=
A1x̃ + c(1) = (1, 1, 0)⊤, z(2, x0) := A2x

0 +
c(2) = (0.5, 0.5)⊤. One can easily verify that
x0 is a primal feasible solution, and it and the
vectors y(1) = (0, 0, 1)⊤, y(2) = (0, 0)⊤ satisfy
conditions (12), (13). Hence, due to Theorem
3 we conclude that, indeed, the vector x0 is an
optimal solution to the problem (SOCP) under
consideration.

One can check that the conditions of Theorem 4
are satisfied with π(0, 1) = (1, −1, 0)⊤, π(1, 1) =
(0, 0, −1)⊤, π(0, 2) = π(1, 2) = (0, 0)⊤.

6. Optimality conditions for SOCP
based on a lexicographic approach

In paper [21], for convex programming problems
in the form

CP : min f0(x), s.t. fi(x) ≤ 0, i ∈ I,

where x ∈ Rn, fi : Rn → R, i ∈ I ∪ {0}, are
given convex functions, an optimality criterion
was proposed based on another approach, namely
the lexicographical separations approach.

Like the optimality criteria 1 and 2 proved
in sections 3 and 4 for the problem (SOCP)
(Theorems 3 and 4, respectively), this criterion
does not require the fulfillment of any additional
conditions for the constraints of the original
problem. In this section, we will apply the
optimality criterion from [21] to the problem
(SOCP) and compare the result with the criteria
proven in the previous sections.

It is evident that the problem (SOCP) can be
formulated in the form (CP) with the following
convex functions:

f0(x) := −b⊤x,

fi(x) := ||z∗(i, x)|| − z0(i, x), i ∈ I,
(47)
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where, as before, z(i, x) := Aix + c(i) ∈ Rmi+1,
z(i, x)⊤ = (z0(i, x), z

⊤
∗ (i, x)), z0(i, x) ∈ R,

z∗(i, x) ∈ Rmi , i ∈ I.

Then the criterion from [21] can be reformulated
as follows.

Theorem 5. [Optimality criterion 3] A feasible
solution x0 of the problem (CP) with the
functions defined by formula (47), is optimal if
and only if there exist an integer number s, 0 ≤
s ≤ |Ia(x0)|, a vector λ = (λi, i ∈ I), and an
ordered partition

∆I0, ∆I1, . . . ,∆Is, (48)

of the index set I satisfying

(a) the nonnegativity condition λi ≥ 0, i ∈ I,
(b) the complementary slackness condition

λifi(x
0) = 0, i ∈ I;

(c) the minimum conditions∑
i∈∆Ik

λifi(x
0) = min

x∈Qk

∑
i∈∆Ik

λifi(x),

k = 0, 2, ..., s− 1,

(49)

and

f0(x
0) +

∑
i∈∆Is

λifi(x
0)

= min
x∈Qs

(
f0(x) +

∑
i∈∆Is

λifi(x)
)
,

(50)

where Q0 = Rn and

Qk+1 = {x ∈ Qk :
∑

i∈∆Ik

λifi(x
0) =

∑
i∈∆Ik

λifi(x)},

k = 0, . . . , s− 1.

Notice that the functions fi(x), i ∈ I, defined in
(47) are convex but not smooth.

Let us compare the optimality criteria 2 and 3.

Criterion 3 looks simpler than Criterion 2,
because it requires less input data for its testing.
Indeed, in Criterion 3, we need to know the
number s, the partition (48), and |I|-vector λ
while in Criterion 2, we need to know the number
k0 and the set of vectors (17).

However, Criterion 2 is more constructive (since
it is explicit) than Criterion 3. To apply Criterion
3, it is necessary to check whether the partition
(48) and the |I|-vector λ satisfy conditions (49),
(50). These conditions have an implicit form,
since to check them, it is necessary to sequentially
solve the optimization problems (49), (50) and
construct (explicitly) their optimal solution sets
Qk, k = 0, . . . , s. At the same time, to apply
Criterion 2, one just needs to check whether the
vectors in (17) satisfy conditions (18) and (19),
which are explicit and can be easy verified.

Note that based on the explicit criterion 2, for
the problem (SOCP), it is easy to formulate an
implicit criterion, close in form to Criterion 3.

Theorem 6. [Optimality criterion 4] A feasible
solution x0 ∈ X is an optimal solution of the
problem (SOCP) if and only if there exists an
integer number s, 0 ≤ s ≤ |Ia(x0)|, a vector
λ = (λi, i ∈ I) and an ordered partition (48) of
the index set I satisfying the following conditions:

(a) λi > 0, i ∈ ∆Ik ̸= ∅, k = 0, . . . , s − 1;
λi ≥ 0, λifi(x

0) = 0, i ∈ ∆Is;
(b) the minimum conditions (49), (50), where

Q0 = Rn, Qk+1 = {x ∈ Qk : fi(x) = 0, i ∈ ∆Ik},
k = 0, . . . , s− 1.

The main difference between Theorems 5 and 6 is
the way the sets Qk, k = 1, . . . , s, are defined.

7. Conclusions

Despite the fact that the second-order cone
problems have been sufficiently studied, most
of optimality conditions for these problems
are formulated with some CQ. Constraint
qualifications, while useful in many optimization
problems, can impose restrictive assumptions on
the problem structure and hinder the applicability
of optimality conditions. By seeking optimality
conditions that do not rely on such qualifications,
researchers and practitioners can achieve a more
robust and flexible framework for solving SOCPs.

The novelty of the paper consists in new
optimality conditions for the second-order cone
problems, namely Criteria 1 and 2. These
optimality criteria are obtained using the
approach based on the concept of immobile
index set of the constraints of the problem and
allow to detect optimality of a given feasible
solution without any CQs. The absence of
constraint qualifications in these criteria enhances
the applicability of the theory to a broader range
of optimization problems.

The findings presented in the paper enable us
to conclude that the approach to optimality
conditions, which is based on immobile indices
and was developed in our earlier works, can be
applied to the optimization of second-order cone
problems.

It is worth mentioning here that there exist
different formulations of exact dual problems. In
the paper, we used one of them. Alternatively,
it is possible to apply the same approach to
other exact dual formulations and develop new
optimality conditions that may have distinct
properties and other ways of implementation. In
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the future, we will apply our approach to different
classes of optimization problems.

In conclusion, it is important to recognize that all
known optimality conditions for conic problems,
in general, and SOCP problems, in particular,
have their drawbacks and favorable properties.
Nevertheless, by familiarizing oneself with a
wide spectrum of optimality conditions, one can
gain a more comprehensive understanding of the
problem and its inherent characteristics. This
empowers users to make informed decisions and
select the most suitable method according to their
specific requirements and preferences.
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Time-delay fractional optimal control problems (OCPs) are an important
research area for developing effective control and optimization strategies to
address complex phenomena occurring in various natural sciences, such as
physics, chemistry, biology, and engineering. By considering fractional OCPs
with time delays, we can design control strategies that take into account the
system’s history and optimize its behavior over a given time horizon. However,
applying the Pontryagin principle of maximization to solve these problems
leads to a boundary value problem (BVP) that includes delay and advance
terms, making analytical solutions difficult and demanding. To address this
issue, this paper presents a precise finite difference formula to solve the
aforementioned advance-delay BVP numerically. The suggested approximate
method’s error analysis and convergence properties are provided, and several
illustrative examples demonstrate the applicability, validity, and accuracy of
the proposed approach. Simulation results confirm the proposed technique’s
advantages for the optimal control of delay fractional dynamical equations.
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1. Introduction

Over the past few years, fractional calculus
(FC), as a generalization of classical calculus,
has attracted the attention of scientists and
engineers for describing various types of physical
phenomena [1]. In fact, this calculus is
known as a powerful tool for the modelling of
complex dynamical systems related to memory
effects and non-locality [2]. The FC has some
applications in epidemic modelling [3], finance
[4], diffusion equations [5], outbreak control [6],
quasi-synchronization [7], image diagnosis [8],
chaos control [9], etc. Due to the difficulty
of analytical solution for fractional dynamical
systems, some efficient approximation approaches
have been proposed for the numerical solution

of various problems containing fractional-order
operators, e.g., differential equations [10],
delay-dependent systems [11], etc.

Optimal control problems (OCPs) play a
crucial role in determining the best strategies
for controlling dynamic systems over time,
with applications ranging from engineering and
economics to biology and robotics [12–14]. A
delay fractional OCP tries to find a control
law for a delay fractional dynamical system
by minimizing a cost functional in terms of
the corresponding state and control variables
[15]. The study of time-delay fractional
OCPs is critical to develop efficient control and
optimization strategies for addressing complex
phenomena in various natural sciences, such
as physics, chemistry, biology, and engineering.

*Corresponding Author
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However, due to the high complexity of
fractional OCPs with time-delay, it is extremely
difficult to obtain their analytical solution
[16]. To solve this issue, in the past decade,
some numerical techniques have been developed
including finite difference method [17, 18],
Bernstein polynomials [19], Legendre polynomials
[20, 21], linear programming technique [22],
Lagrange polynomials [23], neural network [24],
Taylor expansions [25], Chelyshkov wavelets
[26], embedding process [27], and fractional
orthogonal basis functions [28]. More recently,
the paper [29] presented a collocation method
for solving nonlinear delay fractional optimal
control systems with constraints on the state and
control variables. Another study [30] focused on
time-optimal feedback control of nonlocal Hilfer
fractional state-dependent delay inclusion with
Clarke’s subdifferential. The new work [31]
also introduced Mittag-Leffler wavelets and their
applications for solving fractional OCPs with and
without delay.

The field of fractional OCPs with time delays
presents a significant challenge due to the
complexity introduced by considering both FC
and time-delay terms simultaneously. While
there is existing research on fractional OCPs
and time-delay systems independently, the
intersection of these two areas remains relatively
unexplored. Current methods for solving
delay-dependent fractional OCPs often face
difficulties in providing accurate and efficient
solutions due to the intricate nature of the
boundary value problem (BVP) resulting from
applying the Pontryagin maximum principle.
Analytical solutions for such advance-delay BVPs
are scarce, leading to a gap in the literature
regarding effective numerical solution techniques
tailored specifically for this challenging class of
problems. Therefore, there is a pressing need
for innovative approaches that can accurately
and reliably address the unique characteristics
of delay-dependent fractional OCPs, providing
researchers and practitioners with appropriate
tools for optimizing complex dynamical systems
subjected to FC and time delays.

This research article addresses the above-mentioned
critical research gap in the field of fractional
OCPs with time delays. The study’s significance
lies in its focus on developing effective
control and optimization strategies for complex
phenomena present in various natural sciences
and engineering, where FC and time delays
play crucial roles. By introducing a precise
finite difference formula to numerically solve
advance-delay BVPs arising from applying the

Pontryagin maximum principle, this research
offers an innovative approach tailored specifically
for this challenging class of problems. The
study’s novelty is evident in its unique
contributions, including the development of
a novel numerical solution technique for
delay-dependent fractional OCPs, comprehensive
error analysis and convergence properties of the
proposed method, as well as illustrative examples
demonstrating its applicability and accuracy.
This research’s potential impact is substantial,
as it provides researchers and practitioners
with appropriate tools for optimizing complex
dynamical systems subjected to FC and time
delays, ultimately advancing the state-of-the-art
in this underexplored intersection of FC and
time-delay systems.

2. Problem Statement

Consider the following fractional dynamical
system with time-delay


C
τ0D

γ
τ z(τ) = A1(τ)z(τ) +Ad(τ)z(τ −m)

+B1(τ)v(τ), τ0 ≤ τ ≤ τf , (1a)

z(τ) = ψ(τ), τ0 −m ≤ τ ≤ τ0, (1b)

in which z ∈ Rq is the state vector, and
the symbol C

τ0D
γ
τ z(τ) signifies the left Caputo

fractional derivative [32]

C
τ0D

γ
τ z(τ) =

1

Γ(1− γ)

∫ τ

τ0

(τ − ξ)−γ dz(ξ)

dξ
dξ, (2)

in which the derivative order is denoted by
γ (0 < γ ≤ 1). Also, the parameter
m is the state time-delay, v ∈ Rr is the
control variable, and the coefficients A1(τ), Ad(τ),
and B1(τ) are continuous-time matrix functions.
Following the optimal control concept, it is
desired to determine the control v(τ) minimizing
the following performance index

J =
1

2

∫ τf

τ0

(
zT (τ)Qz(τ) + vT (τ)Rv(τ)

)
dτ, (3)

where the matrices R ∈ Rr×r and Q ∈ Rq×q are,
respectively, assumed to be positive definite and
positive semi-definite.

Theorem 1. (Pontryagin conditions of
optimality) Under the constraint given by the
dynamical system (1), if (z(τ), v(τ)) is a
minimizer of (3), then the costate vector y(τ)
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exists such that the following conditions are
satisfied:

• the Hamiltonian system, for τ0 ≤ τ ≤ τf ,
C
τ0D

γ
τ z(τ) =

∂H
∂y(τ)

, (4a)

R
τ Dγ

τf
y(τ) =

∂H
∂z(τ)

+A2(τ)y(τ +m), (4b)

• the stationary condition, for τ0 ≤ τ ≤ τf ,

∂H
∂v(τ)

= 0, (5)

• and the transversality condition

y(τ)|τ=τf
= 0, (6)

where R
τ Dγ

τf
y(τ) (0 < γ ≤ 1) is the γ-th order

right Riemann-Liouville fractional derivative of
y(τ) defined by [32]

R
τ Dγ

τf
y(τ) =

1

Γ(1− γ)

d

dτ

∫ τf

τ
(ξ − τ)−γy(ξ)dξ,

(7)

A2(τ) = Ad(τ + m)χ[τ0,τf−m](τ), and χ[a,b]

represents the characteristic function on the
interval [a, b]. The function H, called the
Hamiltonian, has also the following form

H:=0.5
(
zT (τ)Qz(τ) + vT (τ)Rv(τ)

)
+yT(τ) (A1(τ)z(τ) +Ad(τ)z(τ −m)

+B1(τ)v(τ)) .
(8)

Proof. First, we adjoin the dynamical
constraint (1) to the performance index (3) by
introducing the Lagrange multiplier y(τ) ∈ Rq,
so the following augmented functional can be
formed

Ja(v) =

∫ τf

τ0

[
H− yT(τ) C

τ0D
γ
τ z(τ)

]
dτ. (9)

Let δf(τ) denote the variation of the function
f(τ); then we take the variation of Ja(v) as

δJa(v) =

∫ τf

τ0

{[
∂H
∂z(τ)

]T
δz(τ)

+

[
∂H

∂z(τ −m)

]T
δz(τ −m)

+

[
∂H
∂y(τ)

− C
τ0D

γ
τ z(τ)

]T
δy(τ)

+

[
∂H
∂v(τ)

]T
δv(τ)

−yT(τ) C
τ0D

γ
τ δz(τ)

}
dτ.

(10)

Next, it is easily derived that

∫ τf

τ0

{[
∂H

∂z(τ −m)

]T
δz(τ −m)

}
dt

=

∫ τf

τ0

{
yT(τ)AT

d (τ)δz(τ −m)
}
dτ

=

∫ τf

m
(Ad(τ)y(τ))

T δz(τ −m)dτ

=

∫ τf

τ0

(A2(τ)y(τ +m))T δz(τ)dτ,

(11)

where A2(τ) = Ad(τ +m)χ[τ0,τf−m](τ), and χ[a,b]

denotes the characteristic function on the interval
[a, b]. Furthermore, by using the fractional
integration by parts [32] and taking into account
the transversality condition (6), we have

∫ τf

τ0

yT(τ) C
τ0D

γ
τ δz(τ)dτ

=

∫ τf

τ0

(
R
τ Dγ

τf
y(τ)

)T
δz(τ)dτ.

(12)

From Eqs. (10), (11) and (12), we deduce

δJa(v) =

∫ τf

τ0

{[
∂H
∂z(τ)

+A2(τ)y(τ +m)

−R
τ Dγ

τf
y(τ)

]T
δz(τ)

+

[
∂H
∂y(τ)

− C
τ0D

γ
τ z(τ)

]T
δy(τ)

+

[
∂H
∂v(τ)

]T
δv(τ)

}
dτ.

(13)

On an extremal v∗, we require that δJa(v
∗) = 0.

Thus, in Eq. (13), each factor multiplying a
variation has to be vanished. Since z(τ0) is
specified, it is concluded δz(τ0) = 0, but δz(τf ) is
not equal to 0; thus, it is required that y(τf ) = 0.
Furthermore, the necessary conditions given by
Eqs. (4) and (5) are achieved by setting to 0
the coefficients of δz(τ), δy(τ), and δv(τ) in
Eq. (13). □

Applying the Pontryagin’s optimality conditions
given by Theorem 1 for the time-delay fractional
OCP (1)-(3) leads to the following fractional
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advance-delay BVP

C
τ0D

γ
τ z(τ) = A1(τ)z(τ)

+Ad(τ)z(τ −m)− S(τ)y(τ), (14a)

τ0 ≤ τ ≤ τf ,

R
τ Dγ

τf
y(τ) = Qz(τ) +AT

1 (τ)y(τ)

+A2(τ)y(τ +m), (14b)

τ0 ≤ τ ≤ τf ,

with the following conditions{
z(τ) = ψ1(τ), τ0 −m ≤ τ ≤ τ0, (15a)

y(tf ) = 0, (15b)

where y(τ + m) is the advance term in time,
z(τ −m) is the time-delay argument, and S(τ) =
B1(τ)R

−1BT
1 (τ). Moreover, the optimal control

law has the following form

v∗(τ) = −R−1BT
1 (τ)y(τ), τ0 ≤ τ ≤ τf . (16)

The analytical solution of the fractional
BVP (14)-(15), including the advance and
the delay arguments, is not accessible.
Thus, our main objective is to develop an
effective approximate procedure to solve the
above-mentioned BVP numerically.

3. Some Notations and Lemmas

The fractional derivatives in the senses of
left Caputo and right Riemann-Liouville have
previously been defined in (2) and (7),
respectively. In the following, we give some
more definitions and properties of Caputo and
Riemann-Liouville fractional operators.

The left Riemann-Liouville fractional derivative
of z(τ) is defined by [32]

R
τ0D

γ
τ z(τ) =

1

Γ(1− γ)

d

dτ

∫ τ

τ0

(τ − ξ)−γz(ξ)dξ, (17)

where 0 < γ ≤ 1 denotes the fractional order.

Regarding the left and right fractional derivatives
in the senses of Riemann-Liouville and Caputo,
the following properties hold [32]

C
τ0D

γ
τ z(τ) =

R
τ0D

γ
τ z(τ)

− z(τ0)

Γ(1− γ)
(τ − τ0)

−γ ,

C
τ Dγ

τf
z(τ) = R

τ Dγ
τf
z(τ)

−
z(τf )

Γ(1− γ)
(τf − τ)−γ .

(18)

Definition 1. In order to approximate the
left and right Riemann-Liouville fractional
derivatives, the shifted Grünwald-Letnikov (SGL)

difference operators are defined as below [33]

Λγ
h,pz(τ) =

1

hγ

[
τ−τ0

h
]+p∑

k=0

w
(γ)
k z(τ − (k − p)h), (19)

Υγ
h,pz(τ) =

1

hγ

[
τf−τ

h
]+p∑

k=0

w
(γ)
k z(τ + (k − p)h), (20)

where h is the time step size, p is an integer, and

w
(γ)
k = (−1)k

(
γ
k

)
. Also, within the following

power series, the coefficients w
(γ)
k are satisfied

(1− x)γ =

∞∑
k=0

w
(γ)
k xk, (21)

so the following recursive formula computes them

w
(γ)
0 = 1, w

(γ)
k = (1− γ + 1

k
)w

(γ)
k−1, k ≥ 1.

(22)

From (21) and (22), some important properties

of the coefficients w
(γ)
k can easily be deduced, as

stated in the following lemma.

Lemma 1. Let 0 < γ < 1; then the coefficients

w
(γ)
k , given by Eq. (22), satisfy the properties

(1) w
(γ)
0 = 1, w

(γ)
1 = −γ, w

(γ)
k < 0, k ≥ 2,

(2) −
∑n

k=1w
(γ)
k < 1, ∀ n ≥ 1,

(3)
∑∞

k=0w
(γ)
k = 0.

Now, the space function Lj(R) is defined as

Lj(R) ={
z :

∫∞
−∞(1 + |ω|)j |ẑ(ω)|dω <∞;

ẑ is the Fourier transform of z} .
(23)

It is easy to show that for 0 < γ ≤ 1, if z ∈ L2(R),
then z ∈ L1+γ(R).

Lemma 2. Let z(τ) ∈ Cj(R), d
j+1z(τ)
dτ j+1 ∈ L1(R),

dkz(τ)
dτk

|τ=τ0 = 0 for k = 0, 1, 2, . . . , j, and 0 < γ ≤
1; then

Λγ
h,pz(τ) =

R
τ0D

γ
τ z(τ)

+

j−1∑
l=1

ωl(p)
R
τ0D

γ+l
τ z(τ)hl +O(hj),

(24)

in which ωl(p) is the coefficient of the power series(
1−e−x

x

)γ
epx − 1; in particular,

ω1(p) = p− γ

2
, ω2(p) =

γ

24
+

1

2
(p− γ

2
)2. (25)

Proof. The proof of this lemma is easily followed
from Theorem 1 in [34]. □

Using Lemma 2, we can formulate a third-order
difference operator for the Riemann-Liouville
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fractional derivative (17), as given by the
following definition.

Definition 2. We define a weighted SGL
difference operator for the Riemann-Liouville
fractional derivative (17) as follows

R
τ0∆

γ
hz(τ) =

2 + γ

2
Λγ
h,0z(τ)−

γ

2
Λγ
h,−1z(τ), (26)

where the operator Λγ
h,p has been given by (19).

Lemma 3. Let 0 < γ ≤ 1, and z(τ), its Fourier

transform, and R
τ0D

γ+2
τ z(τ) belong to L1(R). Then

for τ ∈ R
R
τ0∆

γ
hz(τ) =

R
τ0D

γ
τ z(τ) +O(h2), (27)

uniformly as h→ 0, where the operator R
τ0∆

γ
hz(τ)

has been defined in (26).

Proof. Let F [z(τ)](ω) = ẑ(ω) =
∫
e−iωξz(ξ)dξ

be the Fourier transform of z(τ), where i =
√
−1;

thus, we have F [z(τ − kh)](ω) = e−ikωhẑ(ω).
For each τ ∈ R, we also have F [Rτ0D

γ
τ z(τ)](ω) =

(iω)γ ẑ(ω). Applying the Fourier transform to the
both sides of Eq. (26), for each τ ∈ R we obtain

F [Rτ0∆
γ
hz(τ)](ω)

=
1

hγ
(1− e−iωh)γ(

2 + γ

2
− γ

2
e−iωh)ẑ(ω)

= σ2(iωh)(iω)
γ ẑ(ω),

(28)

where

σ2(x) =
(
1−e−x

x

)γ
(2+γ

2 − γ
2 e

−x)

= 1− γ

24
(5 + 3γ)x2 +O(x3).

(29)

There exists a positive constant C2 such that
|1 − σ2(−ix)| ≤ C2|x|2. Now, we apply the
inverse Fourier transform; since z(τ) ∈ Lγ+2(R),
we derive∣∣R

τ0D
γ
τ z(τ)− R

τ0∆
γ
hz(τ)

∣∣
=

∣∣∣∣ 1

2πi

∫ ∞

−∞
e−iωτ×

(F [Rτ0D
γ
τ z(τ)− R

τ0∆
γ
hz(τ)](ω))dω

∣∣
=

∣∣∣∣ 1

2πi

∫ ∞

−∞
e−iωτ×

(1− σ2(iωh))(iω)
γ ẑ(ω)dω|

≤ |h|2 1

2πi

∫ ∞

−∞
|ω|2+γ |ẑ(ω)|dω

≤ C2|h|2
1

2πi

∫ ∞

−∞
|1 + ω|2+γ |ẑ(ω)|dω

≤ C̃|h|2,

(30)

where C̃ = C2
2πi

∫∞
−∞ |1 + ω|2+γ |ẑ(ω)|dω. □

Definition 3. From (26), we can formally
define the second-order weighted SGL difference
(SGL2) operators as follows for the left and right

Riemann-Liouville fractional derivatives

R
τ0∆

γ
hz(τn) =

1

hγ

n∑
k=0

g
(γ)
k z(τn − kh), (31)

R
τf
∆γ

hz(τn) =
1

hγ

n∑
k=0

g
(γ)
k z(τn + kh), (32)

where h is the time step size and{
g
(γ)
0 = 2+γ

2 w
(γ)
0 ,

g
(γ)
k = 2+γ

2 w
(γ)
k − γ

2w
(γ)
k−1, k = 2, 3, . . . .

(33)

Lemma 3 shows that the SGL2 operator (31) has
the second-order of accuracy at every time level.

Remark 1. Let z(τ0) = 0 and 0 < γ ≤ 1; then
by using integrating by parts, we have

R
τ0D

γ
τ z(h) =

1

Γ(1− γ)

∫ h

τ0

z′(ξ)

(h− ξ)γ
dξ

=
z′(τ0)h

1−γ

Γ(2− γ)
+

1

Γ(2− γ)

∫ h

τ0

z′′(ξ)

(h− ξ)γ−1
dξ.

(34)

Therefore, if the function z(τ) has no derivative
at τ = τ0, then the SGL2 formula (31) is of
accuracy order 1−γ. Moreover, the SGL2 formula
is of accuracy order 2 − γ if z′(τ0) = 0 and the
second derivative of z(τ) does not exist at τ = τ0.

Now, we present the following properties for

{g(γ)k } by using Lemmas 1 and 3.

Lemma 4. For 0 < γ ≤ 1, the following
properties are satisfied by the coefficients in (33):

(1) g
(γ)
0 = 1 + γ

2 , g
(γ)
1 = −γ(γ+3)

2 ,

g
(γ)
2 = γ(γ+3γ−2)

4 , g
(γ)
k < 0, k ≥ 3,

(2) −
∑n

k=1 g
(γ)
k < g

(γ)
0 , ∀ n ≥ 2,

(3)
∑∞

k=0 g
(γ)
k = 0.

4. Numerical Method Formulation

Following the theoretical parts given in the
previous section, here we formulate an accurate
finite difference method to solve the fractional
advance-delay BVP (14)-(15). To this end, first
consider that the approximate values of z(τn) and
y(τn) are denoted by zn and yn, respectively.
Applying the SGL2 formulas (31) and (32) on
the uniform grid points τn = τ0 + nh (n =

0, 1, . . . , N) with h =
τf−τ0
N as the time step size,

a full discretization of the Pontryagin’s conditions
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(14)-(15) is formulated as follows

R
τ0∆

γ
hzn = A1(τn)zn +Ad(τn)ẑn

−S(τn)yn, τ0 ≤ τ ≤ τf , (35a)
R
τf
∆γ

hyn = Qzn +AT
1 (τn)yn

+A2(τn)ỹn, τ0 ≤ τ ≤ τf , (35b)

z−n = ψ(τ−n), n = 0, 1, 2, . . . , (35c)

yN = 0, (35d)

where τ−n = τ0 − nh, and

ẑn = z(τn − h)

≈


ψ(τn − h),
τn − h ≤ τ0,

p1(τn − h; zk, zk+1),
τ0 < τk ≤ τn − h < τk+1,

(36)

ỹn = y(τn + h)

≈


p1(τn + h; yi−1, yi),
τi−1 ≤ τn + h < τi,

0,
τf ≤ τn + h,

(37)

in which 0 ≤ i, k ≤ N − 1. Besides, the function
p1 is the linear interpolation polynomial

p1(ξ; zk, zk+1) =
ξ − τk
h

zk+1 +
τk+1 − ξ

h
zk, (38)

determined by the support points (τk, zk) and
(τk+1, zk+1). Therefore, the value of the optimal
control for n = 0, 1, . . . , N is approximated by

v∗n = −R−1BT
1 (τn)yn, (39)

where v∗n represents the numerical approximation
of v∗(τn).

5. Numerical Examples

Here, we employ three numerical examples to
show the effectiveness of the proposed finite
difference technique. Comparative results are also
given to verify the superiority of the suggested
scheme over the other methodologies available in
the literature.

Example 1. As the first case, consider a delay
fractional OCP in the form of minimizing

J =
1

2

∫ 2

0

(
z2(τ) + v2(τ)

)
dτ, (40)

subject to{
C
0 D

γ
τ z(τ) = τz(τ − 1) + v(τ), 0 ≤ τ ≤ 2,

z(τ) = 1, −1 ≤ τ ≤ 0.

(41)

Solving the problem (40)-(41) for different
values of γ, we portray, in Figure 1, the

approximate state and control functions.
Meanwhile, the performance index values J =
1.0807, 1.0658, 1.0510 were attained for γ =
0.8, 0.9, 1, respectively. As can be seen from
Figure 1, the numerical approximation goes to
the classic solution when γ tends to unity. Also,
as depicted in Table 1, the cost functional values
obtained by our proposed scheme is less than
those previously achieved in [35] by using a linear
programming (LP) control strategy. Thus, the
given comparative discussion in this part verifies
the efficiency of the suggested technique for
solving the fractional OCP (40)-(41).

Table 1. Comparison of the
approximate values for J (Example
1).

γ Method
LP strategy [35] Proposed technique

0.8 1.0807 1.0658
0.9 1.0658 1.0658
0.1 1.0514 1.0510
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Figure 1. Simulation curves of z(τ)
and v(τ) for Example 1.

Example 2. Let us take into account, as the
second example, the performance index

J =
1

2

∫ 1

0

{
(z1(τ) + z2(τ))

2 + v2(τ)
}
dτ, (42)
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together with the delay fractional dynamical
equations

C
0 D

γ
τ z1(τ) = τz1(τ) + z2(τ − 1

4), 0 ≤ τ ≤ 1,
C
0 D

γ
τ z2(τ) = τ2z2(τ)− 5z1(τ − 1

4)

−z2(τ − 1
4) + v(τ), 0 ≤ τ ≤ 1,

(43)
and the initial conditions[

z1(τ)
z2(τ)

]
=

[
1
1

]
, −1

4
≤ τ ≤ 0. (44)

We plot the state and control variables in Figure 2
for some values of γ. Also, the performance index
values J = 2.7999, 2.2393, 1.7548 were obtained
for γ = 0.8, 0.9, 1, respectively. Comparing the
results with those reported in [35] shows a good
agreement, a fact which confirms the efficiency of
our proposed scheme to solve the delay fractional
OCP (42)-(44). In addition, the classic solution
is recovered by the fractional response in Figure 2
when γ goes to 1, a fact which is in line with
the correctness of our numerical implementation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (sec.)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z
1
(

)

 = 0.8

 = 0.9

 = 1 (classic solution)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (sec.)

-6

-5

-4

-3

-2

-1

0

1

2

z
2
(

)

 = 0.8

 = 0.9

 = 1 (classic solution)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (sec.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

v
(

)

 = 0.8

 = 0.9

 = 1 (classic solution)

Figure 2. Simulation curves of
z1(τ), z2(τ), and v(τ) for Example 2.

Example 3. As a practical case, here we consider
the minimization of

J =

∫ tf

0

(
104z21(τ) + v2(τ)

)
dτ, (45)

subject to the simplified fractional model

C
0 Dγ

τ z(τ) =

 −a 0 0
0 0 1
0 −ω2 −2ξω

 z(τ)
+

 0 ka 0
0 0 0
0 0 0

 z(τ − 0.33)

+

 0
0
ω2

 v(τ), τ ≥ 0,

(46)

which is connected to a wind tunnel at the
NASA Langley Research Center. The vector
z(τ) represents z(τ) = (z1(τ), z2(τ), z3(τ)), the

parameters in the model (46) take the values
1

a
=

1.964, ξ = 0.8, ω = 6, and k = −0.0117, and the
initial conditions are considered as

z(τ) =

 −0.1
8.547
0

 , −0.33 ≤ τ ≤ 0. (47)

Simulation curves of z1(τ), z2(τ), z3(τ), and v(τ)
for τf = 20 and γ = 0.8, 0.9, 1 are shown in
Figure 3. This figure confirms the convergence
of the fractional response to the classic solution,
given in [36], as γ goes to 1. Comparison of
our numerical findings with those reported in
[35] also shows that the new scheme is accurate
and efficient to solve the delay fractional OCP
(45)-(47).

6. Conclusion

In this study, we presented an approximate
numerical solution for time-delay fractional OCPs
using a novel finite difference formula. We began
by formulating the optimality conditions as a
system of fractional advance-delay BVPs and then
applied our accurate finite difference method to
solve these complex problems. The error analysis
and convergence properties of the proposed
method were discussed in detail, demonstrating
its reliability and effectiveness. Through
several illustrative examples and associated
simulation results, we showed the accuracy,
validity, and correctness of our approach.
In particular, our third example, which is
connected to a wind tunnel at the NASA
Langley Research Center, served as a practical
case demonstrating the applicability of our
method to real-world problems in engineering
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Figure 3. Simulation curves of z1(τ), z2(τ), z3(τ), and v(τ) for Example 3.

and aerodynamics. Furthermore, comparative
experiments highlighted the superiority of our
new method over other approximation schemes
developed in previous studies. These results
not only validate the effectiveness of our
approach but also emphasize its potential
for addressing challenging problems in various
natural sciences and engineering disciplines.
Looking ahead, future perspectives of our work
include exploring extensions of the proposed
method to more complex systems and further
practical applications. Future research directions
may also involve further refining the algorithm,
exploring additional applications across diverse
scientific disciplines, and potentially integrating
advanced computational techniques to enhance
the method’s efficiency.
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 In this study operating room scheduling (ORS) problem is addressed in multi-

resource manner. In the addressed problem, besides operating rooms (ORs) and 

surgeons, the anesthesia team is also considered as an additional resource. The 

surgeon(s) who will perform the operation have already been assigned to the 

patients and is a dedicated resource. The assignment of the anesthesia team has 

been considered as a decision problem and a flexible resource. In this study, 

cooperative operations are also considered. A mixed integer linear programming 

(MILP) model is proposed for the problem. Since the problem is NP-hard, an 

artificial bee colony (ABC) algorithm is proposed for the problem. The solutions 

of the ABC are compared with the MILP model and random search.  
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1. Introduction 

For many hospitals, operating rooms (ORs) are the 

costliest unit, but they are also the unit that makes the 

biggest contribution to the hospital's income. 

Therefore, the planning of ORs is important for 

hospitals [1]. Scheduling activities are important in the 

effective management of ORs. Patient assignment to 

ORs and determining the starting time of the operations 

becomes a complex problem due to additional 

resources [2]. In many hospitals, ORs are scheduled 

manually. As a result of the manual solutions of such a 

complex problem, ineffective schedules are created. By 

using optimization methods in the operating room 

scheduling (ORS) problem, it may be possible for the 

hospital management to serve more effectively to 

patients and managed the ORs efficiently [2]. 

ORS problems are an important problem that is studied 

frequently. Literature reviews on the ORS problem are 

reachable to related articles [3-8]. ORS problems can 

be classified according to various criteria. These 

criteria can be considered as the resources, resource 

types, scheduling period, objective functions, patient 

types, solution methods and additional features [9]. 

ORS problems are resource-constrained problems. The 

limited resources considered in ORS problems are 

surgeons, downstream beds [10], nurses, anesthesia 

team and equipment/tools. If the resources under 

consideration have been previously assigned to 

patients, they are classified as dedicated resources. If 

the assignment of resources is considered as a decision 

problem, it is classified as flexible resources [11]. 

According to the scheduling period, it is considered as 

a single/multi period. If scheduling is done for only one 

day, it is called a single period, if it is done for more 

than one day, it is called multi-period [12]. The 

scheduling of ORs is considered in two stages in 

hospitals. In the first stage, the patient's operation is 

assigned to a future date and it is long-term planning. 

The second stage is short-term planning, and it is the 

stage of determining the operation start times and 

assignment of ORs to patients on the relevant day. In 

short-term planning, only daily planning is done in 

hospitals [2].  

Classification of the patients can be made as elective 

and emergency patients. In some studies, only elective 

patients are considered. Because in many hospitals, 

separate ORs are dedicated for emergency surgeries 

[2]. There are also studies that consider both elective 

and emergency patients [13]. In some studies, patients 

are prioritized according to the urgency of their surgery 

[14].  

Many different objective functions are considered in 

ORS problems. There are multi-objective studies as 

well as studies that consider single objective function. 

Minimizing total cost, tardiness, overtime, idle time, 

waiting time, number of ORs, total completion time, 

maximum completion time (makespan), maximizing 

resource balancing [15], maximizing number of 

patients [16], service level are objective functions of the 

ORS problems [4].  
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Solution approaches of the ORS problems can be 

classified as exact and heuristic solutions. Since ORS 

problems are NP-hard problems, heuristic algorithms 

were proposed for solving large-sized problems [17]. 

Heuristic algorithms do not guarantee the best solution. 

Mathematical modeling [18], decomposition 

algorithms ([19] and [20]), branch and price, branch 

and cut [21], column generation [22] are exact solution 

methods that guarantee the best solution. 

Real-life constraints should be taken into account as 

much as possible while defining the ORS problem. In 

other words, the problem should reflect the real-life 

problem as much as possible [23]. For this purpose, 

additional features are taken into account in many 

studies. In some studies, some parameters are 

considered fuzzy or stochastic [11]. Another feature 

that has been addressed is necessity of more than one 

surgeon in an operation [2]. Such operations are 

considered as cooperative operations. All employed 

surgeons must be available in order to perform the 

operation of the relevant patient. In some studies, 

making up of the team is considered [24]. In addition, 

the skill compatibility feature and the eligibilities on 

ORs and surgeons are considered. Not every patient can 

be assigned to every OR or surgeon with eligibility 

constraints [2]. 

The ORS literature was reviewed considering the 

classification of the problem. In most of the early 

studies on the subject, only surgeons and/or the ORs 

were considered as resources [25]. Fei et al. [25], 

proposed a column generation method for the solution 

of ORS problem. Fei et al. [26], proposed hybrid 

genetic algorithm (GA) for ORS problem. They 

considered multi- period feature. Vijayakumar et al. 

[27], considered nurses and equipment as additional 

resources. They proposed heuristic algorithms. 

Priorities of patients was taken into account. Agnetis et 

al. [19], proposed a decomposition algorithm for ORS 

problem. Fügener et al. [28], considered multiple 

downstream units for ORS problem. They proposed an 

exact solution method. Aringhieri et al. [29], proposed 

two-level heuristic algorithm for the ORS problem with 

downstream beds. Jebali et al. [30], used stochastic 

programming for ORS with downstream beds. They 

considered multi- period feature. Pariente et al. [31], 

proposed heuristic algorithm for ORS problem with 

objective function of maximizing service level. They 

considered priorities of patients. Wang et al. [32], 

considered nurses and anesthesiologist as additional 

resources for the solution of ORS problems. Constraint 

programming was used in the study. Heydari and Soudi 

[33], used stochastic programming for ORS problem. 

They considered downstream beds and 

elective/emergency patients. Vali- Siar et al. [12], 

considered nurses, anesthesiologist and downstream 

beds as additional resources. They proposed genetic 

algorithm (GA). Hamid et al. [24], considered 

downstream beds and equipment as additional 

resources for the ORS problem. NSGA II algorithm 

was proposed for the solution of the problem.  Addis et 

al. [34], used robust optimization for multi- period ORS 

problem. Ahmed and Ali [35], used fuzzy TOPSIS and 

MILP model for the problem of ORS with objective 

functions of maximizing patient preferences and 

minimizing total cost. Coban [36], proposed a heuristic 

and an optimization model for the ORS problem with 

equipment. Khaniyev et al. [37], proposed heuristic 

algorithms for ORS problem. They considered 

uncertainty on parameters. Zhang et al. [11], used 

stochastic programming for the problem of ORS with 

downstream beds. Objective function of the problem is 

minimizing total cost. Britt et al. [38], considered 

multi- period ORS problem. Downstream beds and 

equipment were taken into account as additional 

resources. Roshanaei and Naderi [21], used benders 

decomposition algorithm for ORS problem. The 

objective function of the problem was maximization 

total scheduled surgical times. Park et al. [2], proposed 

a mathematical model for ORS problem with 

preferences and cooperative operations. Rachuba et al. 

[39], taken into account downstream beds for the 

problem of ORS. Simulation is used for the solution of 

the problem. Mazloumian et al. [18], proposed a robust 

multi- objective integer linear programming (MOILP) 

model for the solution of ORS problem with 

downstream beds.  Azaiez et al. [40], proposed heuristic 

algorithm for ORS problem with makespan 

minimization. Makboul et al. [41], considered priorities 

of patients for ORS problem. Robust optimization was 

used for the problem. Oliveira et al. [42], considered 

anesthesiologist as an additional resource for ORS 

problem with multi- period. Integer linear 

programming (ILP) model was proposed for the 

problem. Lotfi and Behnamian [1], proposed multi- 

objective variable neighborhood search algorithm for 

multi- period ORS problem.  

Heuristic algorithms have been proposed in very few of 

the studies in which additional resources such as 

nurses, downstream beds, and anesthesia team are 

taken into account. In many studies, only surgeons are 

taken as additional resources. In addition, there are 

studies that consider downstream beds as additional 

resources. There are few studies that consider the 

anesthesia team ([32],[12],[42]). Among these studies, 

Vali-Siar et al. [12] proposed a GA. Other studies used 

optimization or simulation methods.  

In ORS problems, setup times have been neglected in 

many studies. However, in real life, the ORs are being 

prepared for the next operation when an operation is 

completed. Different equipment and tools are used in 

different operations. Some tools and equipment are 

mobile. After an operation is completed, setup must 

begin for the next operation immediately. During the 

setup phase, the cleaning of the OR, the transportation 

of the necessary tools, the sterilization of the used 

resources, the preparation of the surgeons, nurses and 

the anesthesia team are carried out [43]. Setup of an 

operation varies depending on the operation scheduled 

before it in the same OR. For example, when two 

operations using the same mobile devices are scheduled 
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sequentially, the setup time may be shortened 

according to the sequential scheduling of operations 

using different mobile devices. In other words, setup 

times are sequence dependent [44]. There are few 

studies that consider sequence-dependent setup times in 

ORS problems. It was observed that additional 

resources considered in ORS problems such as the 

surgeons, beds and anesthesia team were neglected in 

many studies about ORS problem with setups [44]. 

Arnaout and Kulbashian [45], considered sequence 

dependent setup times in the ORS problem. Additional 

resources were not considered in the problem. The 

objective function was makespan minimization. 

Simulation was used for the problem. Arnout [46], 

proposed a heuristic algorithm for the solution of the 

ORS problem with sequence dependent setup times. 

Additional resources were not taken into account. 

Hamid et al. [43], used simulation for the ORS problem 

with sequence dependent setup times. Intensive care 

unit (ICU) beds were taken into account as an 

additional resource. The objective function is 

makespan minimization. Zhao and Li [47], considered 

sequence dependent setup times in the ORS problem. 

The use of additional resources was not taken into 

account in the study. They minimized the total cost. A 

nonlinear programming model and constraint 

programming used to solve the problem. 

In this study, the problem is defined by considering a 

state hospital. Anesthesia teams are taken into account 

in the study. Anesthesia teams consist of specialist 

doctors, nurses and anesthesia technicians. An 

anesthesia team accompanies the patient during the 

operation. Assigning an anesthesia team to patients is 

an decision problem. In other words, the anesthesia 

team is a flexible resource. The relevant anesthesia 

team can serve only one patient at a time. Since there 

are limited number of anesthesia teams in hospitals, 

patient waiting occur if there is no team available. In 

addition, the case of more than one surgeon 

involvement in some operations is considered. 

Surgeons can only perform one operation at a time. The 

patient's operation may be start as long as the employed 

surgeon or surgeons are idle. Since the assignment of 

surgeon(s) to operations are predetermined, surgeons 

are considered as a dedicated resource. In addition, the 

setup time of the OR for the relevant patient varies 

depending on the previous operation in the same OR. 

In other words, operation setup times are sequence 

dependent. By solving the problem, the anesthesia team 

and OR are assigned to the patients and the order of the 

operation is determined. A MILP model and ABC 

algorithm are proposed for the problem. The proposed 

algorithm is compared with the MILP and random 

search. 

According to the literature review, it was seen that 

sequence-dependent setup times were not addressed in 

many studies [48]. In addition, heuristic algorithm has 

not been proposed for the ORS problems, which took 

into account the sequence-dependent setup times and 

additional flexible/ dedicated resources. Literature is 

given in Appendix Table A1. 

In this study an ORS problem is addressed that is not 

considered in the literature. Sequence dependent setup 

times, both flexible and dedicated resources are taken 

into account and a very complex operating room 

scheduling problem is addressed. In many studies that 

is proposed heuristic algorithm to similar problems, 

mathematical models are used to calculate objective 

function value of the solutions, due to complexity of the 

obtaining a feasible solution considering all resources. 

Collaboration with optimization model may be time 

consuming. In this study a heuristic algorithm is 

proposed to solve this complex problem. The unique 

value of the ABC algorithm is the decoding algorithm, 

calculation of objective function of the solutions, 

considering all flexible/dedicated resources.   

With this study, a heuristic algorithm is proposed to a 

problem that is not considered before. The success of 

the proposed algorithm is demonstrated comparing the 

results of heuristic with MILP model results through 

small size problems. Only small size test problems are 

solvable in reasonable time (3600 seconds). For large 

size test problems, the ABC algorithm is compared 

with random search.    

  

In the second section of the study, the problem 

definition and mathematical model are given. In the 

section third, heuristic algorithm is given. In the fourth 

section, test problems are derived and parameters of 

heuristic algorithms are determined. In addition, the 

success of the heuristic is demonstrated. The last 

section is the conclusion section. 

2. Optimization model 

The addressed problem is described in detail in this 

section. A MILP model has been proposed. The 

proposed model is applied to an example problem.  

2.1. Problem definition 

A state hospital was taken into account in defining the 

problem under consideration. In the study, operational 

(short time) scheduling activity was addressed. The 

assignment of OR to patients, the order of the 

operations, assignment of anesthesia team to operations 

are achieved by the solution of the addressed problem. 

In order to perform the operation of n number of 

patients, the patient must be assigned to an OR among 

m ORs. An operation of a patient may begin as long as 

the surgeon or surgeons who will perform the operation 

are available and an anesthesia team must be assigned 

to the operation of the patient. Each surgeon and 

anesthesia team can only operate on one patient at a 

time. Some operations may require more than one 

surgeon. If the surgeon or at least one of the surgeons 

who will perform the operation is in the operation of 

another patient or if there is no idle anesthesia team, 

patient waiting occur. Since both surgeons and the 

anesthesia team are taken into account, a multi-resource 

problem is defined. Since the surgeon(s) who will 
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perform the operation of the patient is determined 

before the operation day, surgeons are a dedicated 

resource. The anesthesia team to be assigned to the 

patient is considered as a decision problem and is a 

flexible resource. Before starting the operation, OR 

must be prepared for the operation. Setup is done in the 

same OR immediately after the operation of the 

previous patient is completed. In the setup phase, the 

cleaning of the OR, sterilization and positioning of the 

necessary equipment and devices are conducted. The 

setup of the operations can be done simultaneously in 

different ORs. Setup times are sequence dependent. 

 

Characteristics of the model: 

• Two different type of resource is considered 

as flexible and dedicated resource. Surgeon(s) 

that perform each operation is predetermined 

and is a dedicated resource. The assignment of 

anesthesia team to operations is conducted by 

the MILP model and is a decision problem. 

The anesthesia teams are a flexible resource. 

• Appropriate constraints have been added to 

the model so that each resource can only 

perform one operation at a time. 

• Before the operation, setup of the operation is 

conducted. 

• More than one surgeon may be involved in an 

operation. 

• If at least one surgeon that will involve in an 

operation is in another operation at a time, 

there will be a waiting times of patients. 

• If an anesthesia team is needed for different 

operations at the same time and there is no 

anesthesia team available, waiting times will 

be occurred. 

 

Assumptions: 

• The operation times and setup times are 

deterministic. 

• The surgeon(s) that perform each operation 

are predetermined. 

• The setup of an operation is conducted after 

the completion of the previous operation.  

• Patients do not have anesthesia team 

preference. 

• All patients have equal priority. 

• The resource responsible for the setup is 

ignored. 

2.2. MILP model 

Sets and Indices 

p, l and k show patient indices and N={p,l,k| 

p=l=k=1,…,n} 

o shows OR index and M={o| o=1,…,m} 

r shows position index and N={r| r=1,…,n} 

d shows surgeon index and U={d| d=1,…,u} 

g shows anesthesia team and A={g| g=1,…,a} 

 

 

Parameters 

𝑡𝑝: Operation time of the patient p 

𝑆𝑄𝑝: Setup of OR for patient p that is scheduled on the 

first position 

𝑆𝑇𝑝,𝑙: Setup time of OR for patient l that is scheduled 

after patient p 

B: Very big number 

𝐻𝑝,𝑑: {
1, 𝐼𝑓 𝑓 𝑠𝑢𝑟𝑔𝑒𝑜𝑛 𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Decision Variables 

𝑦𝑝,𝑟,𝑜: {
1, 𝐼𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑜 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 

𝑥𝑝,𝑔: {
1, 𝐼𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑛𝑒𝑠𝑡ℎ𝑒𝑠𝑖𝑎 𝑡𝑒𝑎𝑚 𝑔
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑓𝑝,𝑙:

{

1, 𝐼𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓  𝑝 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛
 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑙

0, 𝐼𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓  𝑙 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛
𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝

 

𝐶𝑝: Operation completion time of patient p 

𝑊𝑝: Operation starting time of patient p 

𝐼𝑝: Waiting time of patient p 

𝑇𝑙: Setup completion time of patient l 

𝐶𝑚𝑎𝑥: Maximum completion time 

 

Model 

Min 𝑍1= 𝐶𝑚𝑎𝑥                 (1) 

𝑇𝑙 + 𝐵(1 − 𝑦𝑙,𝑟,𝑜) ≥ 𝑆𝑄𝑙     ∀ l, r, o and r=1               (2) 

𝑇𝑙 − 𝐵(1 − 𝑦𝑙,𝑟,𝑜) ≤ 𝑆𝑄𝑙    ∀ l, r, o and r=1                    (3) 

𝑇𝑙 + 𝐵(2 − 𝑦𝑙,𝑟,𝑜 − 𝑦𝑘,𝑟−1,𝑜) ≥ 𝐶𝑘 + 𝑆𝑇𝑘,𝑙   

 ∀ k, l, r, o, l≠k,  r >1               (4) 

𝑇𝑙 − 𝐵(2 − 𝑦𝑙,𝑟,𝑜 − 𝑦𝑘,𝑟−1,𝑜) ≤ 𝐶𝑘 + 𝑆𝑇𝑘,𝑙    

∀ k, l, r, o, l≠k,  r >1                            (5) 

𝐶𝑙 = 𝑇𝑙 + 𝑡𝑙 + 𝐼𝑙   ∀ l                            (6) 

𝑊𝑝 = 𝑇𝑝 + 𝐼𝑝 ∀𝑝               (7) 

𝐶𝑙 ≤ 𝑊𝑝 + 𝐵𝑓𝑝,𝑙 + 𝐵(2 − 𝑥𝑙,𝑔 − 𝑥𝑝,𝑔) 

 ∀𝑝, 𝑙, 𝑔 𝑎𝑛𝑑 𝑝 < 𝑙               (8) 

𝐶𝑝 ≤ 𝑊𝑙 + 𝐵(1 − 𝑓𝑝,𝑙) + 𝐵(2 − 𝑥𝑙,𝑔 − 𝑥𝑝,𝑔) 

 ∀𝑝, 𝑙, 𝑔 𝑎𝑛𝑑 𝑝 < 𝑙                 (9) 

𝐶𝑙 ≤ 𝑊𝑝 + 𝐵𝑓𝑝,𝑙 + 𝐵(2 − 𝐻𝑝,𝑑 − 𝐻𝑙,𝑑) 

∀𝑝, 𝑙, 𝑑 𝑎𝑛𝑑 𝑝 < 𝑙             (10) 

𝐶𝑝 ≤ 𝑊𝑙 + 𝐵(1 − 𝑓𝑝,𝑙) + 𝐵(2 − 𝐻𝑝,𝑑 − 𝐻𝑙,𝑑) −

 ∀𝑝, 𝑙, 𝑑 𝑎𝑛𝑑 𝑝 < 𝑙                                       (11) 

∑ 𝑥𝑝,𝑔𝑔 = 1  ∀𝑝            (12) 

∑ 𝑦𝑝,𝑟,𝑜𝑝 ≤ 1  ∀ r, o             (13) 
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∑ ∑ 𝑦𝑝,𝑟,𝑜𝑜𝑟 = 1  ∀ p             (14) 

∑ 𝑦𝑝,𝑟,𝑜𝑝 − ∑ 𝑦𝑙,𝑟−1,𝑜𝑙 ≤ 0    ∀ r, o and r >1           (15) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑝    ∀ 𝑝             (16) 

𝑦𝑝,𝑟,𝑜, 𝑥𝑝,𝑔, 𝑓𝑝,𝑙 ⋲ {0,1} and 

 𝐶𝑝, 𝑇𝑙 , 𝑉𝑝, 𝐼𝑝, 𝐶𝑚𝑎𝑥 ≥ 0             (17) 

Constraint (1) minimizes makespan. Constraints (2-3) 

calculate the setup completion time of the patients that 

is scheduled on the first position of each OR. 

Constraints (4-5) calculate the setup completion time of 

the patients that is scheduled except for the first 

position of each OR. Constraint (6) calculates the 

operation completion time of the patients. Constraint 

(7) calculates the operation starting time of the patients. 

Constraints (8-9) prevent simultaneous operations on 

patients assigned to the same anesthesia team. 

Constraints (10-11) prevent simultaneous operations on 

patients assigned to the same surgeon(s). Constraint 

(12) ensures that an anesthesia team is assigned to each 

patient. Constraint (13) satisfied that maximum one 

patient can be assigned to a position of an OR. 

Constraint (14) provides that assignment of each 

patient to an OR. Constraint (15) allows patients to be 

assigned in sequence. Constraint (16) calculates 𝐶𝑚𝑎𝑥. 

Constraints (17) are sign constraints. 

An example is given in Figure 1. Parameters of the 

problem is given in Appendix Table B1. Accordingly, 

patients 1,8, and 2 were assigned to OR 1, patients 4, 7 

and 3 were assigned to OR 2, and patients 9, 5 and 6 

were assigned to OR 3. First Anesthesia team was 

assigned to the 1st patient, and the 2nd Anesthesia team 

was assigned to the 4th patient. The anesthesia team 

assigned to patients is indicated in parentheses next to 

the patient number in the Figure 1. The anesthesia team 

assigned to other patients is given in the Figure 1. (Dx) 

denotes the required surgeon(s) for operation of the 

relevant patient. For example, for patient 6 the second 

surgeon (D2) employed for the operation. If the Figure 

1 is examined, it is seen that the anesthesia teams and 

surgeon(s) are performed only one operation at the 

same time. The setups of operations can be done at the 

same time. The setup of the operations starts as soon as 

the previous operation is completed in the same OR. 

The objective function of the optimal solution is 814.  

 

 
Figure 1. Gantt Chart of the optimal schedule 

 

3. ABC algorithm 

3.1. Steps of the algorithm 

ABC algorithm was proposed in 2005 by Karaboğa 

[49]. ABC algorithm was designed by modeling the 

foraging behavior of bees. ABC algorithm is an 

algorithm based on swarm intelligence. The algorithm 

has 3 stages: employed bee stage, onlooker bee stage 

and scout bee stage. The algorithm makes 

intensification at the employed and onlooker bee 

stages. It makes diversification at the scout bee stage. 

At the end of the employed bee stage, the probability 

value of the solutions is calculated. Accordingly, the 

probability values of high-quality solutions are also 

high. Probability values are taken into account when 

choosing a solution at the onlooker bee stage. High 

quality solutions are more likely to be selected [50]. 

New solution is generated for selected solution by one 

of the insertion or swap methods. If the new solution 

produced is a better solution, the existing resource is 

replaced with the new solution, otherwise the 𝐼𝑖  value 

of the relevant resource is increased by one. In the 

algorithm, bees are in a position to turn to higher quality 

resources. For resources whose 𝐼𝑖  value is equal to the 

limit value, the scout bee stage is run and the related 

solution is replaced with a randomly derived solution. 

The steps continue until the predetermined number of 

iterations is achieved [51]. The ABC algorithm is given 

below [49,51]. 

 
Procedure: ABC algorithm 

Input: Problem parameters, Iteration 

number (T), Limit value, Population 

size (2N) 

Output: Optimal or near optimal 

solution 

Construct initial population with 

size N randomly and calculate the 

fitness (f(i)) of the each solution; 

t←0; 

While (t<T) 

Assume trial value of each 

resource 0; 

 //Employed bee phase 

 For i=1:N 

Match resource i with a 

resource randomly and 

generate a new resource 

by two point crossover 

and calculate fitness 

value of the new 

resource; 

Setup

OR 1 8 (2) (D1) 2 (1) (D2) Operation

OR 2 4 (2) (D4)

OR 3 6 (2) (D2)

3 (1) (D2-D3-D4)

9 (1) (D2)

7 (2) (D1-D3)

1 (1) (D2)

5 (1) (D2-D3-D4)

21 157 315 347 407 447 610 729

29 94 110 204 237 453 610

15711 177 315 453 488 729 814
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If new resource better 

than resource i 

Replace resource i 

with the new 

resource; 

trial(i)←0; 

  Else 

      trial(i)←trial(i)+1; 

  End 

 End 

Determine the maximum fitness 

value as F; 

Calculate probability value of 

resources; 

 Probability(i)← 0.9 (
𝑓(𝑖)

F
) + 0.1; 

 //Onlooker bee phase 

Assign each onlooker bee to a 

resource considering 

Probability values; 

For i=1:N 

Match resource i with a 

resource randomly and 

generate a new resource 

by two point crossover 

and calculate fitness 

value of the new 

resource; 

If new resource better 

than resource i 

Replace resource i 

with the new 

resource; 

trial(i)←0; 

  Else 

     trial(i)← trial(i)+1; 

  End 

 End 

Record the resource with best 

fitness value; 

 //Scout bee phase 

Find the resource with maximum 

trial number as i*; 

 If (trial(i*)>limit) 

Replace resource i with 

a random solution; 

  trial(i*)←0; 

 End  

 t←t+1; 

End 

Fitness values of the solutions are calculated by 

Equation 18. Z(i) is the objective function value of the 

resource i. 

f(i)={

1

1+𝑍(𝑖)
    𝑖𝑓  𝑍 ≥ 0

1 + |𝑍(𝑖)|      𝑖𝑓 𝑍 < 0
                         (18) 

3.2. Representation of the solutions and decoding 

algorithm 

The matrix of 𝑉𝑝
𝑃𝑜𝑝

 is used to represent the solutions. 

Pop denotes the number of individuals in the 

population. The 𝑉𝑝
𝑃𝑜𝑝

 matrix consists of the number of 

Pop rows and the number of n (number of patients) 

columns. The number of columns is equal to the 

number of patients and the number of rows is equal to 

the population size. 𝑉𝑝
𝑖 ⋲[1,n] and 𝑉𝑝

𝑖 ≠ 𝑉𝑙
𝑖 . Each row 

constitutes of permutation representation of the 

patients. In other words, patients are ranked randomly 

in each row of the 𝑉𝑝
𝑃𝑜𝑝

 matrix. The representation of 

the solutions is given in Figure 2. The assigned OR and 

the anesthesia team of patients are determined by the 

decoding algorithm. Therefore, this information is not 

included in the representation of the solutions. 

 
1st Ind. 𝑉1

1 𝑉2
1 … 𝑉𝑛

1  

2nd Ind. 𝑉1
2 𝑉2

2 … 𝑉𝑛
2      𝑉𝑝

𝑖 ⋲[1,n] and  

⋮ ⋮ ⋮ ⋮ ⋮ 𝑉𝑝
𝑖 ≠ 𝑉𝑙

𝑖 ∀𝑝, 𝑖, 𝑙 

popth Ind. 𝑉1
𝑝𝑜𝑝

 𝑉2
𝑝𝑜𝑝

 … 𝑉𝑛
𝑝𝑜𝑝

  

Figure 2. Representation of the solutions 

 

Objective function of the number of Pop solutions are 

calculated by decoding algorithm. With the decoding 

algorithm, the patients are assigned to the ORs and the 

anesthesia team and order of the operations are 

determined. In addition, anesthesia teams and 

surgeon(s) operate only one operation at the same time. 

Some of the abbreviations used in the algorithm are 

given in the description of the MILP model. Newly 

defined abbreviations are given below. 

𝑂𝑇𝑜 : Operation completion time of the last patient that 

is assigned to OR o 

𝑜∗: The OR that the next patient will be assigned 

𝑔𝑝: The anesthesia team that is assigned to patient p 

𝑃𝐴𝑔: Operation completion time of the patient that is 

assigned to anesthesia team g 

𝑝𝑜
′ : The patient that is last assigned to OR o 

𝑘𝑜: The number of patients that is assigned to OR o 

𝑠𝑒𝑞𝑘
𝑜: The patient that is scheduled the order of k in OR 

o  

The operation times of the patient 𝑉𝑝
1 that is assigned 

to OR 𝑜′ and the patient 𝑉𝑙
1 that is assigned to OR 𝑜′′ 

is not overlap as long as the one of the following 

conditions is met.   

Case 1: The operation completion time of patient 𝑉𝑝
1 is 

smaller than operation starting time of patient 𝑉𝑙
1. This 

situation is represented by Equation 19. Case 1 is 

shown in Figure 3.  

 

 𝐶𝑉𝑝
1 ≤ 𝑊𝑉𝑙

1              (19) 

 
 

𝑜′ … 𝑉𝑝−1
1  Setup 𝑉𝑝

1 … 𝑉𝑝
1  

𝑜′′  … 𝑉𝑙−1
1  Setup  𝑉𝑙

1 𝑉𝑙
1 

 ⋮ 

 

Figure 3. Case 1 

In Figure 3, the operation time of  𝑉𝑝
1 and 𝑉𝑙

1  do not 

𝑇𝑉𝑝
1 𝑊𝑉𝑝

1 𝐶𝑉𝑝
1 

𝑊𝑉𝑙
1 

𝑊𝑉𝑝−1
1  𝐶𝑉𝑝−1

1  

𝐶𝑉𝑙
1 𝑇𝑉𝑙

1 𝐶𝑉𝑙−1
1  𝑊𝑉𝑙−1

1  
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overlap. Because the operation completion time of 

patient 𝑉𝑝
1 is equal to the operation start time of patient 

𝑉𝑙
1.  

Case 2: The operation start time of patient 𝑉𝑝
1 is greater 

than the operation completion time of patient 𝑉𝑙
1. This 

situation is represented by Equation 20. Case 2 is 

shown in Figure 4. 

 

 𝑊𝑉𝑝
1 ≥ 𝐶𝑉𝑙

1              (20)  

 

  

𝑜′ … 𝑉𝑝−1
1  Setup 𝑉𝑝

1 … 𝑉𝑝
1 

𝑜′′ … 𝑉𝑙−1
1  Setup  𝑉𝑙

1 𝑉𝑙
1  

 

 

Figure 4. Case 2 

 

In Figure 4, the operation time of  𝑉𝑝
1 and 𝑉𝑙

1  do not 

overlap. Because the operation starting time of patient 

𝑉𝑝
1 is greater than the operation completion time of 

patient 𝑉𝑙
1.  

By using the decoding algorithm, feasible solutions are 

obtained from each solution representation and the 

objective functions are calculated. 

In the decoding algorithm, first of all, for each solution, 

the 𝑂𝑇𝑜 values, which shows the operation completion 

time of the patient who was last assigned to the OR o, 

are taken as 0. The first patient in each row is assigned 

to the first OR. In the first solution, the first patient is 

shown as patient 𝑉1
1 and the OR to which it will be 

assigned is 𝑜∗. The setup of the first patient 𝑉1
1 begins 

at time 0. The setup completion time of the patient 𝑉1
1 

(𝑇𝑉1
1) is calculated. Since patient 𝑉1

1 is in the first order 

of the OR it is calculated as 𝑇𝑉1
1 = 𝑆𝑄𝑉1

1. After the 

setup is completed, the operation starts and the 

operation start time is shown as 𝑊𝑉1
1. The operation 

completion time (𝐶𝑉1
1)  is calculated as 𝑊𝑉1

1+𝑡𝑉1
1. The 

time that OR is used is recorded as an interval 

(𝑊𝑉1
1−𝐶𝑉1

1). The patient is randomly assigned to the 

𝑔𝑉1
1

∗  anesthesia team. The operation time of the 

anesthesia team is taken as the interval (𝑊𝑉1
1 − 𝑃𝐴𝑉1

1)  

and the value of 𝑃𝐴𝑉1
1 is equal to the value of 𝐶𝑉1

1. 

Patient 𝑉1
1 who was last assigned to OR 𝑜∗ is recorded 

as 𝑝𝑜∗
′ . The next patient 𝑉2

1 is assigned to the OR 𝑜∗ that 

is the smallest setup completion time (𝑜∗ ←
𝑎𝑟𝑔 min

𝑜
(𝑂𝑇𝑂 + 𝑆𝑇𝑝𝑜

′ ,𝑉2
1)). 𝑇𝑉2

1 value is calculated as 

(𝑂𝑇𝑂 + 𝑆𝑇𝑝𝑜
′ ,𝑉2

1) or if no patient has been assigned to 

the relevant OR yet is calculated as  (𝑂𝑇𝑜 + 𝑆𝑄𝑉2
1). 

First, after determining the 𝑜∗ OR to which the 𝑉2
1 

patient will be assigned, the 𝑇𝑉2
1  is calculated. The 

patient's operation completion time is calculated as 

𝑊𝑉2
1 + 𝑡𝑉2

1. If this value coincides with the operation 

times of other ORs, the surgeon(s) in the conflicting 

ORs and the surgeon(s) employed in the operation of 

patient 𝑉2
1 are checked. If the same surgeon(s) is 

employed, the operation start time of the 𝑉2
1 is 

postponed. If different surgeon(s) are employed, the 

patient 𝑉2
1 is assigned a different anesthesia team than 

the patients with the overlap. If there is no free 

anesthesia team, the earliest completed anesthesia team 

is assigned to the patient. These steps are repeated for 

all patients. The decoding algorithm is given below. 

 
Procedure: Decoding algorithm 

Input: A solution (𝑉𝑝
1), problem 

parameters 

Output: Objective function of the 

solution 

𝑂𝑇𝑜 ← 0; 𝑘𝑜 ← 0; 

//The first patient 𝑉1
1 is assigned to 

first OR and first //anesthesia team;  

𝑜∗ ← 1; 𝑇𝑉1
1 ← 𝑆𝑄𝑉1

1;𝐶𝑉1
1 ← 𝑆𝑄𝑉1

1 + 𝑡𝑉1
1; 

𝑔𝑉1
1

∗
←1;𝑃𝐴𝑔

𝑉1
1

∗ ← 𝐶𝑉1
1;𝑂𝑇𝑜∗ ← 𝐶𝑉1

1;𝑝𝑜∗
′ ← 𝑉1

1;𝑘𝑜∗ ←

𝑘𝑜∗ + 1; 𝑠𝑒𝑞𝑘
𝑜∗

← 𝑉1
1; 𝑊𝑉1

1 ← 𝑇𝑉1
1; 

For i=2:n 

 𝑜∗ ← arg min
𝑜

(𝑂𝑇𝑜 + 𝑆𝑇𝑝𝑜
′ ,𝑉𝑖

1); 

𝑇𝑉𝑖
1 ← 𝑂𝑇𝑜∗ + 𝑆𝑇𝑝𝑜∗

′ ,𝑉𝑖
1; 𝑝𝑜∗

′ ← 𝑉𝑖
1; 

𝑠𝑒𝑞𝑘
𝑜∗

← 𝑉𝑖
1; 𝑊𝑉𝑖

1 ← 𝑇𝑉𝑖
1;  

𝑥 ← 𝑇𝑉𝑖
1 + 𝑡𝑉𝑖

1; z←0; 

//The operation starting time 

of patient 𝑉𝑖
1 is determined 

considering //the surgeons;   

While (j<=m) 

 ∆←1; 

 For l=1:𝑘𝑗 

  U←𝑠𝑒𝑞𝑙
𝑗
; 

     If(𝑥 ≤ 𝑊𝑈)or(𝑊𝑉𝑖
1 ≥ 𝐶𝑈) 

   //No overlap 

     Else 

z←z+1; 

Overlap(z)=U;  

     If(𝐻𝑈,𝑑 == 𝐻𝑉𝑖
1,𝑑) 

    𝑊𝑉𝑖
1 ← 𝐶𝑈;  

                                                   𝑥 ← 𝑊𝑉𝑖
1 + 𝑡𝑉𝑖

1;  

        j←1; ∆←0; 

      End 

  End 

  If (∆==0) 

   Break 

  End 

 End 

 If (∆==1) 

  j←j+1; 

 End 

End 

z←0;  

//Assignment of anesthesia team 

and updating of operation 

starting //time considering 

anesthesia teams; 

For j=1:m 

𝑇𝑉𝑙
1 𝐶𝑉𝑙−1

1  𝑊𝑉𝑙−1
1  𝐶𝑉𝑙

1 

𝑊𝑉𝑝
1 𝐶𝑉𝑝

1 

𝑊𝑉𝑙
1 
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 For l=1:𝑘𝑗 

  U←𝑠𝑒𝑞𝑙
𝑗
; 

  If(x≤𝑊𝑈)or(𝑊𝑉𝑖
1 ≥ 𝐶𝑈) 

   //No overlap 

  Else 

z←z+1;  

Overlap(z)=U; 

G\{𝑔𝑈
∗ }; 

  End 

 End 

End 

If (G=={}) 

 𝑔
𝑉𝑖

1
∗ ← arg min

𝑔
𝑃𝐴𝑔∗;  

𝑊𝑉𝑖
1 ← max (𝑃𝐴𝑔

𝑉𝑖
1

∗ , 𝑊𝑉𝑖
1);  

Else 

𝑔
𝑉𝑖

1
∗ ← arg max

𝑔⋲{𝐺}
𝑃𝐴𝑔∗;  

𝑊𝑉𝑖
1 ← max (𝑃𝐴𝑔

𝑉𝑖
1

∗ , 𝑊𝑉𝑖
1); 

End 

𝐶𝑉𝑖
1 ← 𝑊𝑉𝑖

1 + 𝑡𝑉𝑖
1;𝑃𝐴𝑔

𝑉𝑖
1

∗ ← 𝐶𝑉𝑖
1;  

𝑂𝑇𝑜∗ ← 𝐶𝑉𝑖
1; 𝑘𝑜∗ ← 𝑘𝑜∗ + 1; 

End 

4. Computational results 

4.1. Parameters of the heuristic 

Although in most of the studies on heuristic algorithms 

parameter levels are determined without an analytic 

method, in this study Taguchi experimental design 

(TED) method is used to determine the levels of the 

ABC algorithm parameters. The parameters of the ABC 

algorithm are N, T and limit value. Firstly, alternative 

parameter levels are determined through preliminary 

experiments and given in Table 1. L27 orthogonal array 

is chosen due to there are 3 parameters and 3 levels for 

each parameter. In TED method, signal-to-noise ratio 

(S/N) is used as a measure to determine the 

characteristics of engineering problems. To optimize 

the ABC algorithm parameters “the smaller, the better” 

performance criterion is used in TED method due to the 

addressed problem has a minimization objective 

function. The calculation of S/N is given in Equation 

21. In Equation 21, n is the number of observations in 

each experiment and 𝑌𝑖 is the objective function of 

ABC algorithm with the related parameters. The 

optimal parameters are selected considering the highest 

S/N values. Minitab 16 for Windows (Minitab Inc.) is 

used to apply TED method to problem.  

 
𝑆

𝑁
= −10 × log (

1

𝑛
∑ 𝑌𝑖

2𝑛
𝑖=1 )                         (21) 

    

For the test problem with 7 ORs algorithm was run at 

the relevant parameter levels. The main effects plot for 

S/N ratios for the algorithm is given in Figure 5. In 

ABC algorithm, N level sets to 1000, T level is 100 and 

limit is 10.  

 

Table 1. Parameter levels of the ABC algorithm 

Parameters Levels 

N 500/750/1000 

𝑇 50/75/100 

limit 5/7/10 

 

 
Figure 5. S/ N ratios of the algorithm 

 

4.2. Comparisons 

Properties of test problems are given in this section. 

The number of ORs (m) set to 3, 5, 7 or 10. The number 

of patients was taken as 3*m, 5*m, 7*m and 10*m. The 

number of surgeons was taken as 4, 7, 10 and 14, and 

the number of anesthesia team as 2, 3, 5 and 7. The 

parameter 𝑡𝑝 were derived according to a uniform 

distribution in the U(40,170) range. Sequence-

dependent setup times are derived in accordance with 

the uniform distribution in the range of U(20,50), 

U(10,40) or U(30,85). The 𝐻𝑝,𝑑 parameter is derived so 

that 60% of the patients receive service from only one 

surgeon, 25% of the patients receive service from two 

surgeons and 15% from 3 surgeons. For each problem 

type two test problems are derived.  

Test problems are run with the MILP model, ABC 

algorithm and random search. The results of random 

search also is an upper bound for the related test 

problem since for all test problems random search gave 

worse solution than ABC algorithm. In random search, 

random solutions are generated and the objective 

function of these solutions are calculated using the 

proposed decoding algorithm. The random search is run 

the same duration of ABC algorithm for the related test 

problem.    

 The time limit of the MILP model is 3600 seconds. The 

results are given in Table C1-C4 in Appendix section. 

Objective function values, CPU values and Error values 

obtained by using the relevant algorithm are given in 

the tables. Error value is calculated with Equation 22. 

 

𝐸𝑟𝑟𝑜𝑟 =
(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚−𝑇ℎ𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑇ℎ𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
     (22) 

 

The results with 3 OR are given in Table C1. Model 

gave optimal solutions for 7 test problems with number 

of 9 or 15 patients. Also, the heuristic algorithm found 
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optimal solutions to these problems. ABC algorithm 

gave better results except six test problems. MILP 

model found no feasible solutions to number of 5 test 

problems with the number of 21 or 30 patients within 

3600 seconds. For other test problems feasible 

solutions were found by MILP model. Accordingly, the 

ABC algorithm gave the better results for all test 

problems. The results with 5 ORs are given in Table 

C2. MILP model found feasible solutions to test 

problems with the number of 15 or 25 patients within 

time limit. MILP model could not find a solution to test 

problems with the number of 35 or 50 patients within 

time limits. Accordingly, the ABC algorithm also 

found better solutions for test problems with 5 ORs. 

The results of 7 ORs are given in Table C3. MILP 

model found feasible solutions to test problems with 

number of 21 patients. No feasible solutions were 

found other test problems by MILP model for the 

number of 7 ORs. The results of 10 ORs are given in 

Table C4. According to Table C4, MILP model found 

feasible solution to only one test problem. The ABC 

algorithm found better solutions than MILP model and 

random search.  

5. Conclusions 

ORs are one of the most important resources of 

hospitals. Therefore, effective scheduling of ORs has 

an important role in the effective management of the 

hospital. ORS problems are multi-resource problems. 

In this study, the ORS problem was defined by 

considering the anesthesia team as well as the surgeons. 

While surgeons are a dedicated resource, the anesthesia 

team is a flexible resource. In the ORS problem, 

sequence dependent setup times are taken into account. 

Although the ORS problem is an important problem, 

there are few studies that take into account the 

sequence-dependent setup times. A MILP model is 

proposed. ABC algorithm has been developed for large 

scale test problems. A heuristic algorithm is proposed 

for the first time to solve the ORS problem with multi-

resource, sequence-dependent setup times. An 

algorithm has been developed to calculate the objective 

functions of the solutions. The proposed ABC 

algorithm is compared with MILP model. As a result, 

the ABC algorithm gave more successful results than 

MILP model. In future studies, the problem can be 

handled with multi- objective functions. Objective 

functions such as tardiness minimization, maximization 

of resource utilization may be considered besides 

makespan minimization. In multi- objective 

optimization problems, pareto optimal solutions are 

found. In multi- objective optimization, all obtained 

solutions are compared with each other to select non- 

dominated solutions in solution space that is increased 

the complexity of the problem. Different methods may 

be used such as Augmented ε- constraint method to 

obtain pareto optimal solutions to multi- objective 

optimization problems. Extracting Pareto optimal 

solutions from the solution space can significantly 

increase the running time of the heuristic algorithm. In 

this study, surgeons and anesthesia teams are 

considered as resources. In future studies, the resource 

conducts the setup and other resources such as 

machines used in operations may be taken into account. 

In this study all patients have same priority. In future 

studies patients may be prioritized. In this study, 

operations and setup times are considered 

deterministic. Stochastic parameters can be taken into 

account. Different heuristic algorithms may be 

proposed to solve the problem or exact solution 

methods may be used to solve the problem. 
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Appendix 

A. Related studies 
Table A1. Related studies 

Article 

Add.  

Res. R
es

. 
T

y
p

e 

P
a

ti
en

ts
 

Obj. Funct. Method 

Add 

Pro. 

Zhang, 2021 d a a Minimizing total cost Column Gen. Based  

Heuristic, stoch. Prog. 

a,b 

Rachuba, 2022 d b a Maximizing total  

number of patients 

Chance const. Opt.,  

Simulation 

a,b 

Park, 2021 a a a Minimizing number of ORs and 

overtime 

Mathematical model c,e 

Mazloumian, 2022 d a a Minimizing total waiting 

Minimizing postponed 

Minimizing loss incurred 

Robust MOILP Model a,b 

Lotfi, 2022 a b c Minimizing total comp. time 

Minimizing makespan 

Multi- obj. variable neigh.  

Search 

b 

Khaniyev, 2020  -  - a Minimizing waiting, idle and  

overtime 

Heuristic algorithms a 

Hamid, 2019 a a,d,e a a Minimizing total cost 

Maximizing service level 

Maximizing consistecy score 

NSGA II f 

Britt, 2021 a,d,e b a Minimizing total cost 

Minimizing number of ORs 

Hybrid heuristic alg. a,b,c 

Azaiez, 2022 d b a Minimizing max. compl. time MILP, Heuristics b 

Aringhieri, 2015 a,d a a Minimizing total cost of  

waiting time 

Two level heuristic,  

ILP model 

 

Addis, 2016  -  - a Minimizing total  

waiting time and tardiness 

Robust optimization a,b 

Roshanaei, 2021 a a a Maximizing total scheduled 

surgical times 

Benders decomposition,  

MILP 

 

Wang, 2015 a,b,c,

d 

b a Minimizing makespan MILP, Constraint prog. f 

Makboul, 2022 a,d c a Maximizing score of surgeries Robust opt. a,b,f 

Fei, 2010 a a a Minimizing cost Hybrid GA b 

Coban, 2020 e a a Minimizing total cost Heuristic, MILP model 
 

Pariente, 2015 a b a Maximizing service level Heuristics f 

Oliveira, 2022 a,c c a Minimizing deviations ILP model, simulation b 

Ahmed, 2020 a b a Max. Patient preference 

Minimizing total cost 

Fuzzy TOPSIS, MILP  

model 

f 

Agnetis, 2014 a b a Maximizing total score Decomposition b 

Jebali, 2015 d b a Minimizing costs Stoch. Prog. a,b 

Vijayakumar, 2013 a,b,e a a Maximizing number of patients Heuristic b,f 

Heydari, 2016 d b c Minimizing makespan and 

overtime 

Stochastic prog. a,b 

This study a,c c a Minimizing max. compl. time Heuristic,MILP d,e 

Add. Resources: a: Surgeon, b: Nurse, c: Anesthesiologist, d: Downstream beds, e: Equipment/Tools 

Additional Resource Type: a: Dedicated, b: Flexible, c: Hybrid 

Patients: a: Elective, b: Emergency, c: Hybrid 

Add. properties: a: Uncertainty on parameters, b: Multi- period, c: Preferences, d: Setup times,  

e: Cooperative operations, f: Priorities of patients 

 
B. Parameters of example problem 

The proposed MILP model was coded in the GAMS 24.0.2 program. Solved with CPLEX solver. For the first test 

problem, the MILP model was run. In Table A1 parameters of the problem are given. There are 9 patients, 3 ORs, 

4 surgeons and 2 anesthesia teams.  
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Table B1. Parameters of 𝑆𝑄𝑝, 𝑆𝑇𝑝,𝑙 𝐻𝑝,𝑑 and 𝑡𝑝  

 p tp  SQp  
STp,l  Hp,d  

1 2 3 4 5 6 7 8 9 1 2 3 4 

1 158 21 29 32 34 12 39 25 33 32 35 0 1 0 0 

2 119 26 15 24 29 38 35 37 27 27 36 0 1 0 0 

3 157 20 11 37 22 11 32 15 14 28 18 0 1 1 1 

4 65 29 20 22 22 22 28 15 16 13 20 0 0 0 1 

5 138 34 33 17 32 31 35 35 19 19 26 0 1 1 1 

6 85 32 20 35 34 27 18 30 17 24 22 0 1 0 0 

7 94 14 26 40 33 39 17 26 12 33 28 1 0 1 0 

8 60 35 36 40 38 22 10 26 16 17 20 1 0 0 0 

9 146 11 13 32 32 26 20 35 27 39 37 0 1 0 0 

 
 

C. Solutions of test problems 

Table C1. Solution of test problems with 3 ORs 

n ST 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

9 U(10,40) 814* 1882 0 814 6.59 0 814 0 

9 U(10,40) 630* 2804 0 630 5.61 0 632 0.003 

9 U(20,50) 759* 1620 0 759 4.91 0 759 0 

9 U(20,50) 742* 1874 0 742 4.64 0 758 0.022 

9 U(30,85) 530 3600 0.017 521 6.13 0 521 0 

9 U(30,85) 514 3600 0.024 502 5.45 0 502 0 

15 U(10,40) 980* 1235 0 980 9.39 0 995 0.015 

15 U(10,40) 1065* 2152 0 1065 7.78 0 1087 0.021 

15 U(20,50) 1061 3600 0.002 1059 7.96 0 1059 0 

15 U(20,50) 878* 2252 0 878 9.28 0 878 0 

15 U(30,85) 998 3600 0.034 965 7.74 0 989 0.025 

15 U(30,85) 983 3600 0.005 978 7.59 0 1001 0.023 

21 U(10,40) 1482 3600 0.086 1365 11.86 0 1385 0.015 

21 U(10,40) 1281 3600 0.063 1205 14.79 0 1227 0.018 

21 U(20,50) 1434 3600 0.075 1334 12.49 0 1337 0.002 

21 U(20,50)  - 3600  - 1166 12.57 0 1200 0.029 

21 U(30,85) 1698 3600 0.103 1540 12.71 0 1621 0.052 

21 U(30,85)  - 3600  - 1338 13.65 0 1452 0.085 

30 U(10,40) 1908 3600 0.181 1616 23.86 0 1663 0.029 

30 U(10,40)  - 3600  - 1500 20.52 0 1559 0.039 

30 U(20,50) 2277 3600 0.368 1665 16.98 0 1738 0.044 

30 U(20,50)  - 3600  - 1644 17.58 0 1658 0.009 

30 U(30,85) 2172 3600 0.225 1773 22.45 0 1868 0.054 

30 U(30,85)  - 3600  - 1916 16 0 1927 0.006 

* optimal 

solution 
Average 0.062 

  
0 

 
0.02 
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Table C2. Solution of test problems with 5 ORs 

n ST(p,l) 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

15 U(10,40) 680 3600 0.012 672 10.75 0 684 0.018 

15 U(10,40) 579 3600 0.032 561 12.44 0 564 0.005 

15 U(20,50) 580 3600 0.133 512 10.04 0 513 0.002 

15 U(20,50) 566 3600 0 566 11.8 0 577 0.019 

15 U(30,85) 793 3600 0.025 774 12.89 0 798 0.031 

15 U(30,85) 731 3600 0.046 699 10.53 0 778 0.11 

25 U(10,40) 1276 3600 0.44 886 23.33 0 920 0.038 

25 U(10,40)  - 3600  - 915 17.49 0 923 0.009 

25 U(20,50) 1359 3600 0.162 1170 24.35 0 1189 0.016 

25 U(20,50) 1391 3600 0.218 1142 19.97 0 1184 0.037 

25 U(30,85) 1930 3600 0.885 1024 21.69 0 1198 0.169 

25 U(30,85)  - 3600  - 1012 23.56 0 1032 0.02 

35 U(10,40)  - 3600  - 1191 23.3 0 1230 0.033 

35 U(10,40)  - 3600  - 1317 33.58 0 1378 0.046 

35 U(20,50)  - 3600  - 1514 27.9 0 1698 0.121 

35 U(20,50)  - 3600  - 1494 29.1 0 1495 0.001 

35 U(30,85)  - 3600  - 1277 31.86 0 1319 0.033 

35 U(30,85)  - 3600  - 1293 30.96 0 1387 0.073 

50 U(10,40)  - 3600  - 2022 40.71 0 2023 0 

50 U(10,40)  - 3600  - 1892 35.37 0 2077 0.098 

50 U(20,50)  - 3600  - 2180 41.71 0 2223 0.02 

50 U(20,50)  - 3600  - 1967 39.75 0 2094 0.065 

50 U(30,85)  - 3600  - 1872 38.53 0 1999 0.068 

50 U(30,85)  - 3600  - 1960 41.46 0 2111 0.077 

  Average 0.19   0  0.046 

 
 

Table C3. Solution of test problems with 7 ORs  

n ST(p,l) 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

21 U(10,40) 542 3600 0.146 473 17.27 0 497 0.051 

21 U(10,40) 641 3600 0.009 635 14.56 0 645 0.016 

21 U(20,50) 747 3600 0.201 622 16.83 0 629 0.011 

21 U(20,50) 929 3600 0.078 862 16.33 0 927 0.075 

21 U(30,85) 801 3600 0.004 798 19.92 0 801 0.004 

21 U(30,85) 712 3600 0.029 692 14.11 0 785 0.134 

35 U(10,40)  - 3600  - 876 31.26 0 985 0.124 

35 U(10,40)  - 3600  - 1022 36.01 0 1108 0.084 

35 U(20,50)  - 3600  - 1163 32.53 0 1189 0.022 

35 U(20,50)  - 3600  - 1064 26.07 0 1089 0.023 

35 U(30,85)  - 3600  - 1193 32.8 0 1198 0.004 

35 U(30,85)  - 3600  - 927 28.63 0 1010 0.09 

49 U(10,40)  - 3600  - 1198 46.04 0 1267 0.058 

49 U(10,40)  - 3600  - 1275 41.35 0 1355 0.063 

49 U(20,50)  - 3600  - 1198 38.9 0 1299 0.084 

49 U(20,50)  - 3600  - 1340 42.65 0 1374 0.025 
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49 U(30,85)  - 3600  - 1540 39.15 0 1643 0.067 

49 U(30,85)  - 3600  - 1602 40.86 0 1620 0.011 

70 U(10,40)  - 3600  - 1998 65.94 0 2104 0.053 

70 U(10,40)  - 3600  - 1619 68.37 0 1779 0.099 

70 U(20,50)  - 3600  - 1868 66.32 0 1963 0.051 

70 U(20,50)  - 3600  - 1765 63.92 0 1910 0.082 

70 U(30,85)  - 3600  - 1766 68.58 0 1856 0.051 

70 U(30,85)  - 3600  - 1925 65.78 0 2034 0.057 

  Average 0.077   0  0.055 

 
 

Table C4. Solution of test problems with 10 ORs  

n ST(p,l) 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

30 U(10,40) 1101 3600 0.59 691 28.35 0 741 0.072 

30 U(10,40)  - 3600  - 780 29.31 0 803 0.029 

30 U(20,50)  - 3600  - 735 24.28 0 743 0.011 

30 U(20,50)  - 3600  - 733 25.44 0 764 0.042 

30 U(30,85)  - 3600  - 639 25.09 0 658 0.03 

30 U(30,85)  - 3600  - 826 24.54 0 995 0.205 

50 U(10,40)  - 3600  - 1154 50.48 0 1163 0.008 

50 U(10,40)  - 3600  - 985 46.8 0 1051 0.067 

50 U(20,50)  - 3600  - 943 51.19 0 1012 0.073 

50 U(20,50)  - 3600  - 1082 53.68 0 1083 0.001 

50 U(30,85)  - 3600  - 1075 51.1 0 1159 0.078 

50 U(30,85)  - 3600  - 1119 46.44 0 1252 0.119 

70 U(10,40)  - 3600  - 1686 75.05 0 1721 0.021 

70 U(10,40)  - 3600  - 1623 75.81 0 1641 0.011 

70 U(20,50)  - 3600  - 1706 73.99 0 1714 0.005 

70 U(20,50)  - 3600  - 1262 80.06 0 1405 0.113 

70 U(30,85)  - 3600  - 1469 81.6 0 1614 0.099 

70 U(30,85)  - 3600  - 1563 73.56 0 1593 0.019 

100 U(10,40)  - 3600  - 2332 112.7 0 2383 0.022 

100 U(10,40)  - 3600  - 2373 106.3 0 2393 0.008 

100 U(20,50)  - 3600  - 2086 135.8 0 2254 0.081 

100 U(20,50)  - 3600  - 1927 137.1 0 2121 0.101 

100 U(30,85)  - 3600  - 2034 146.9 0 2287 0.124 

100 U(30,85)  - 3600  - 2300 155.2 0 2406 0.046 

  Average 0.59   0  0.057 
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1. Introduction

Modeling by taking into account the memory
effect is the attraction of the fractional calculus.
The concept of memory is not taken by the
ordinary derivative, thus modeling with the
ordinary derivative gives incomplete dynamics.
The works related to fractional calculus continue
to impress the mathematician communities.
There exist now many papers addressing the
application of fractional calculus, we cite the
following paper which brings information on
the application of this field of mathematics
to biology [1–3], engineerings [4–7], physics
and applications [8–12] and fluid modeling [13–
16]. Modeling with the Caputo derivative is
more adequate due to the inconvenience of the
Riemann-Liouville fractional derivative. It is
noticed that the Riemann-Liouville derivative
of the constant function does not give zero,
it is a serious inconvenience in the pratic

because many initial conditions are constant
or null. Due to this fact, we model in
this paper using the Caputo derivative. The
field of fractional calculus has attracted many
authors due to the diversity and existence of
many fractional operators. He has the Caputo
derivative [17, 18], and the Riemann-Liouville
derivative version of the fractional operator also
exists, see more details in the paper [19]. We
have the Atangana-Baleanu derivative which
has two versions, the Caputo version and the
Riemann-Liouville version. The Caputo-Fabrizio
derivative exists but is with the exponential
kernel [20]. Note that the Antangana-Baleanu
derivative has as a kernel the Mittag-Leffler
function as described in the paper [21]. There
exist many other derivatives as conformable
derivatives, Hilfer derivatives, and others, the
difference between them is not significant, just
the kernel change in many of them. In this
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paper, the application of fractional calculus to
neutral fractional differential equations has been
considered. The problem considered in this paper
is represented by the following neutral fractional
differential equation

{
Dα

t (x(t)−Bx(t− h)) = Ax(t) + Cx(t− h) t ≥ 0

x0 = φ ∈ CX .

(1)

The literature review concerning the fractional
neutral functional differential equations as
described in the equation (1) or similar to
the previous equation is very large. In [22],
the authors addressed the neutral differential
equation using Caputo derivative, and with
the utilization of the resolvent operator, the
authors also used fixed point theorem to prove
the existence of the solution of the considered
neutral differential equation. In [23], Wen
et al provide the Complete controllability of
nonlinear fractional neutral functional differential
equations described by the Caputo derivative. In
this paper, the authors provided an interesting
example of a neutral fractional differential
equation to illustrate their main results. In [24],
Wang, et al. presented applying an iterative
technique, sufficient conditions are obtained for
the existence of the solution of the nonlinear
neutral fractional integrodifferential equation
described by the Riemann-Liouville derivatives
of different fractional orders. In this paper, the
existence has been proved without the resolvent
operators. In [25], using the conformable
derivative Li et al. provided the existence of
the unique solution of the class of the fractional
Integral neutral differential equations. In [26], the
author proposed the investigation in a fractional
context related to the existence and uniqueness of
solutions for fractional neutral Volterra-Fredholm
integrodifferential equations. In [27], we can
find the application of Krasnoselskii’s fixed
point theorem on periodicity and stability in
neutral nonlinear differential equations. In
integer versions many investigations have been
made related to neutral differential equations
in different types, the studies related to the
existence, and the controllability are already
made as well, see the following Ezzinbi et al
papers investigations [28, 29]. In [30], Sene
proposed a new fundamental result concerning
the contribution of the resolvent operator for
proving the existence of the unique solution of
the fractional integrodifferential equation under
the Caputo derivative.

It is very important to model with the Caputo
derivative or with integer derivative, it is also
important to be sure that the investigations can
be made on the considered fractional model.
To make sure that the model is well defined
in mathematics, it is important to prove the
existence and uniqueness of the solution of the
model using one known fixed point theorem. This
paper’s novelties can be summarized in different
points. The first is to prove the existence and
the uniqueness of the solution using resolvent
operators. This problem is interesting because
the resolvent operator in the fractional context
is a new problem in the literature. The second
problem is that the fractional neutral functional
differential equations described by the Caputo
derivative have been used. The last novel and
interesting thing is that we used the fixed point
theorem to prove our main results in this paper.

The present paper is organized in the following
form. In Section 2, we recall the necessary
tools for our investigation as the fractional
operators and the fixed point theorem. In Section
3, we start with the main results concerning
the existence of the solution of the fractional
neutral differential equation using the resolvents
operators. In Section 4, we illustrate our main
results with an example to highlight our results.
In Section 5 we finish with the conclusion and
future direction of investigations.

2. Preliminaries

In this section we recall the preliminary definition
necessary for our investigations. We begin
with the fractional operator, we continue with
the fractional resolvents necessary to define our
solutions.

Some important results on the fixed point
theorem can also be recalled because they will
be used in our investigation, we mean Schauder’s
Fixed Point Theorem used in many papers in the
literature.

Definition 1. The Riemann-Liouville integral of
order α > 0 for a continuous function defined on
[0, 1] is given by:

Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ)dτ, (2)

with Γ(α) :=
∫∞
0 e−uuα−1du.

Definition 2. If f ∈ Cn([0, 1],R) and n − 1 <
α ≤ n, then, the Caputo fractional derivative is
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given by:

Dαf(t) = In−α dn

dtn
(f(t))

=
1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds.

(3)

Lemma 1. Taking n ∈ N∗ and n − 1 < α < n,
then the general solution of Dαy(t) = 0 is given
by

y(t) =
n−1∑
i=0

cit
i (4)

such that ci ∈ R, i = 0, 1, 2, .., n− 1.

Lemma 2. Taking n ∈ N∗ and n − 1 < α < n,
then, we have

IαDαy(t) = y(t) +
n−1∑
i=0

cit
i (5)

such that ci ∈ R, i = 0, 1, 2, .., n− 1.

Definition 3. Let X be a Banach space. Then a
map T : X −→ X is called a contraction mapping
on X if there exists q ∈ [0, 1) such that

∥T (x)− T (y)∥ ≤ q∥x− y∥

for all x, y ∈ X.

Theorem 1 (Banach’s fixed point theorem). [31]
Let Ω be a non-empty closed subset of a Banach
space X. Then, any contraction mapping T of Ω
into itself has a unique fixed point.

Theorem 2 (Schauder’s fixed point theorem).
[31] Let X be a Banach space, and let N : X −→
X be a completely continuous operator. If the set
E = {y ∈ X : y = λNy for some λ ∈ (0, 1)} is
bounded, then N has fixed points.

3. Main results

In this section, we give the procedure to get
the analytical solution of the neutral functional
differential equation including the resolvent
operator. The novelty of this section will be
the use of the Laplace transform to get resolvent
and to get the analytical solution. We start this
procedure by applying the Laplace transform we
get the following form

Let’s give the solution of the fractional differential
equation given by Eq. (1). The form is described
in the following lemma, for the simplification we
consider f (t, xt) = Ax (t) + Cx (t− h).

Lemma 3. Let the neutral fractional differential
equation described by the Caputo derivative,
under the initial condition described in Eq. (1),
the solution are described by the following form


x (t) = φ (0)−Bφ (−h) +Bx(t− h)

+
∫ t
0 (t− s)α−1 [f (s, xs)] ds t ≥ 0

x (t) = φ (t) t ∈ [−h, 0] .

(6)

Proof. The procedure of the proof uses the
application of the Riemann-Liouville integral to
the equation Eq. (1). Using the lemma 2 in the
equation 1, we get

x(t)−Bx(t− h) =

∫ t

0
(t− s)α−1 [f (s, xs)] ds

+ c0, (7)

where c0 is a real constant. Using the initial
condition of the equation (1), we obtain


x (t) = φ (0)−Bφ (−h) +Bx(t− h)

+
∫ t
0 (t− s)α−1 [f (s, xs)] ds t ≥ 0

x (t) = φ (t) t ∈ [−h, 0] .

□

The next problem will consist to rewrite the
solution described in Eq. (6) the neutral
fractional differential equation in terms of the
resolvent operator. We make the following
lemma.

Lemma 4. We consider that Eq. (1) are hold
and then we should have the following relationship
described by the following form


x (t) = Rα (t) [φ (0)−Bφ (−h)] +Bx (t− h)

+
∫ t
0 (t− s)α−1 Sα (t− s) [AB]x(s− h)ds

+
∫ t
0 (t− s)α−1 Sα (t− s) [C]x(s− h)ds t ≥ 0

x (t) = φ (t) t ∈ [−h, 0]

where the resolvent operator in our context
is defined by the following expressions for
simplifications.

Proof. The proof, we apply the Laplace
transform to the equation represented in Eq. (6)
we get the series of transformations given in the
forthcoming equations. We have that

x̄ =
1

q
[φ (0)−Bφ (−h)] +Bx̄h − q−αAx̄+ q−αCx̄h

= qα−1 [qαI +A]−1 [φ (0)−Bφ (−h)]

+ qα [qαI +A]−1Bx̄h + [qαI +A]−1Cx̄h (8)

x (t) = φ (t) ∈ t ∈ [−h, 0] (9)
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For the rest of the proof, we suppose that

L{Tα(t)} (q) = [qαI +A]−1 (10)

where the so-called in our present paper the
fractional analytic semigroup {Tα(t)}t≥0, there
is that there exist constant M such that M =
supt∈[0,+∞[ |Tα (t)| < ∞ and for any α ∈ (0, 1), we
can found a constant Cα verifying the condition
that |AαTα (t)| ≤ Cαt

−α. Replacing Eq. (10) in
Eq. (8), we get the following relationships

x̄ = qα−1

∫ ∞

0
e−qαsTα (s) [φ (0)−Bφ (−h)] ds

+ qα
∫ ∞

0
e−qαsTα (s)Bx̄hds

+

∫ ∞

0
e−qαsTα (s)Cx̄hds. (11)

Before beginning the simplification in the
previous expression we suppose the following
density of probability is well known in the
literature of fractional calculus and can be found
in, we have the following form

ϖα (θ) =
1

π

∞∑
n=1

(−1)n−1 θ−αn−1

× Γ (nα+ 1)

n!
sin (nπα) .

(12)

The form of its Laplace transform can be
represented by

∫∞
0 e−qθϖα (θ) dθ = e−qα , this

relation will be replaced by its values in the
forthcoming calculations. We now begin the
simplification in Eq. (11), for the next
calculations the sketch is inspired by the paper
in the literature, we have to calculate the first
form of Eq. (11) given in the following equation

qα−1

∫ ∞

0
e−qαsTα (s) [φ (0)−Bφ (−h)] ds

=

∫ ∞

0
α (qt)α−1 e−(qt)αTα (t

α) [φ (0)−Bφ (−h)] dt

= −
∫ ∞

0

1

q

d

dt

[
e−(qt)αTα (t

α) [φ (0)−Bφ (−h)]
]
dt

we continue the variable change and we use the
probability density described in Eq. (12), we get
the following forms

qα−1

∫ ∞

0
e−qαsTα (s) [φ (0)−Bφ (−h)] ds

= −
∫ ∞

0

1

q

d

dt

[
e−(qt)αTα (t

α) [φ (0)−Bφ (−h)]
]
dt

=

∫ ∞

0

∫ ∞

0
θϖα (θ)

[
e−qtθTα (t

α) [φ (0)−Bφ (−h)]
]
dθdt

=

∫ ∞

0
e−qt

(∫ ∞

0
ϖα (θ)

[
Tα

(
tα

θα

)
[φ (0)−Bφ (−h)]

]
dθ

)
dt.

We take the second expression from Eq. (11) and
continue the simplifications, we have the following
relationships

∫ ∞

0
e−qαsTα (s)Cx̄hds

=

∫ ∞

0

∫ ∞

0
αtα−1e−(qt)αTα (t

α)Cx̄h (s) dsdt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
αϖα (θ) e

−(qtθ)Tα (t
α) tα−1Cx̄h (s) dθdsdt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
αϖα (θ) e

−qtTα

(
tα

θα

)
tα−1

θα
Cx̄h (s) dθdsdt

=

∫ ∞

0
e−qt

(
α

∫ ∞

0

∫ ∞

0
ϖα (θ)Tα

(
(t− s)α

θα

)
(t− s)α

θα
Cx̄h (s) dθds

)
dt.

We take the last calculation for giving a more
simple form of Eq. (11), the formula which we will
simplify is given by the following relationships

qα
∫ ∞

0
e−qαsTα (s)Bx̄hds

=

∫ ∞

0

∫ ∞

0
αqαtα−1e−(qt)αTα (t

α)Bx̄hdsdt

=

∫ ∞

0

[∫ ∞

0
−Tα (t

α)Bx̄hds

]
de−(qt)α

(13)

Applying the integration by parts, and
introducing the function described in Eq. (12),
according to the calculations, we arrive at the
following calculation for Eq. (13), that is

qα
∫ ∞

0
e−qαsTα (s)Bx̄hds =

∫ ∞

0
e−qtBx (t− h) dt

+

∫ ∞

0
e−qt

[
q

∫ t

0

∫ ∞

0
ϖα (θ)ATα

(
(t− s)α

θα

)
C
(t− s)α

θα
dθds

]
dt

(14)

We now try to compute the inverse of the Laplace
transform by inverting Eq. (11) by considering
the simplified form described in the previous
equation, we get the following form as the final
expression

x(t) =

∫ ∞

0
ϕαTα (t

αθ) [φ (0)−Bφ (−h)] dθ +Bx (t− h)

+ q

∫ t

0

∫ ∞

0
θ (t− s)α−1 ϕαAB (s− h)Tαθ (t− s)α dθds

+ q

∫ t

0

∫ ∞

0
θ (t− s)α−1 ϕαTαθ (t− s)αCx (s− h) dθds,
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where ϕα (θ) = 1
αθ

−1− 1
αϖ

(
θ−

1
α

)
. With the

previous representation of the solution we can
now define our resolvents operators which we
will consider to continue our investigation, the
resolvents are represented as

Rα (t)x =

∫ ∞

0
ϕα (θ)Tα (t

αθ)xdθ, (15)

and

Sα (t)x = q

∫ ∞

0
θϕα (θ)Tα (t

αθ)xdθ. (16)

Using Eq. (15) and Eq. (16) we get the solutions
represented in the Lemma 4 when the following
condition is respected t ≥ 0. The second form of
the solution is that x (t) = φ (t) , t ∈ [−h, 0] . We
end the proof of our lemma. □

Lemma 5. The resolvents operators Rα (t) and
Sα (t) are strongly continuous, and furthermore
verify the relationships that they are bounded
operators and satisfies the conditions that

∥Rα (t)x∥ ≤ M ∥x∥
and

∥Sα (t)x∥ ≤ Mα
Γ(1+α) ∥x∥

(17)

where M is constant.

Now, we are ready to prove the existence of the
mild solution of the neutral fractional differential
equation defined in Eq. (1). We make a
certain number of assumptions necessary in our
investigations.

(A1) The resolvent operators Rα (t) and Sα (t) are
compact operators for every t ≥ 0.

(A2) The function Cx(t − h) is messurable,
continuous and satifies the condition that there
exists q ∈ (0, 1) and m ∈ L1/q ([0, T ] ,R+), we
have that |Cx(t− h)| ≤ m(t)ρ (∥xt∥) for all x ∈ C
and furtermore almost all t ∈ [0, T ].

(A3) Let for the function Bx(t − h) and we
have existence of a constant β ∈ (0, 1) and two
constant k and k1 satisfying the condition that
Bx(t − h) ∈ D

(
Aβ

)
and for x, y ∈ C and t ∈

[0, a] we have
∥∥AβBx−AβBy

∥∥ ≤ k ∥x− y∥ and∥∥AβBx
∥∥ ≤ k1(∥xt∥+ 1).

For the main results of our present paper, we
make the following theorem. This theorem
proves the existence of the mild solution. In
our investigation, we use Schauder Fixed Point
Theorem, which is more appropriate for this
study.

Theorem 3. Under the hypotheses (A1), (A2)
and (A3) the problem (1) has at least one mild
solution.

Proof. We begin by proving the boundedness of
some mathematical expressions. Let the function
that

∥∥∥∥∫ t

0
(t− s)α−1 Sα (t− s)ABx(s− h)ds

∥∥∥∥
≤

∫ t

0

∣∣∣(t− s)α−1A1−βSα (t− s)AβBx(s− h)
∣∣∣ ds

≤
∫ t

0
(t− s)α−1

∣∣∣A1−βSα (t− s)AβBx(s− h)
∣∣∣ ds

We use the assumption described by (A3) and
the statement posed in lemma 5, the next
established results are well known in fundamental
mathematics as the Lebesgue integrability of the
function into the integration, we get the following
relationships

∥∥∥∥∫ t

0
(t− s)α−1 Sα (t− s)ABx(s− h)ds

∥∥∥∥
≤

∫ t

0
(t− s)α−1

∣∣∣A1−βSα (t− s)AβBx(s− h)
∣∣∣ ds

=

∫ t

0
(t− s)α−1 αΓ (1 + β)C1−β

Γ (1 + αβ) (t− s)α(1−β)
k1(∥xt∥+ 1)ds

=
αΓ (1 + β)C1−β

Γ (1 + αβ)
k1(∥xt∥+ 1)

∫ t

0
(t− s)α−1 ds

=
αΓ (1 + β)C1−β

Γ (1 + αβ)
k1(∥xt∥+ 1)Tαβ

(18)

As in the previous bound we also continue
the simplification by trying to find a bound
for the next integration, we have the following
relationship

∥∥∥∥∫ t

0
(t− s)α−1 Sα (t− s)Cx(s− h)ds

∥∥∥∥
≤ Mα

Γ (1 + α)

∫ t

0

∣∣∣(t− s)α−1Cx(s− h)
∣∣∣ ds.

Applying Holder inequality and using the
assumption described in (A2), we get the
following relationships
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∥∥∥∥∫ t

0
(t− s)α−1 Sα (t− s)Cx(s− h)ds

∥∥∥∥
≤ Mα

Γ (1 + α)

[∫ ∞

0
(t− s)

α−1
1−β ds

]1−β

∥m∥L1/β [0,t] ρ (∥x∥)

≤ Mα

Γ (1 + α)

αMNa

(
1+α−1

1−β

)
(1−β)

ρ (∥x∥)

Γ (1 + α)
(
1 + α−1

1−β

)1−β
.

These two previous relationships will help us in
the application of the fixed point theorem which
we want to illustrate. The application of the fixed
point need to defined an operator as the following
form Φ : Br −→ C ([−h, a] , X) such that

Φx (t) = Rα (t) [φ (0)−Bφ (−h)] +Bx (t− h)

+

∫ t

0
(t− s)α−1 Sα (t− s) [AB]x(s− h)ds

+

∫ t

0
(t− s)α−1 Sα (t− s) [C]x(s− h)ds

respect to t ≥ 0 (19)

Φx (t) = φ (t) ∈ t ∈ [−h, 0] (20)

Note that the set Br is defined as all xt ∈ Br

satisfy the condition that ∥xt∥ ≤ r. The proof
should de be divided into three parts, In the first
part the operator Φ maps to itself. The first step
is denoted by step1. We have the following.

Step 1: Let us prove that Φ maps to itself.
We suppose that the following relationships will
play important role in the proof-by-contradiction
process, we have that

lim
r→∞

(
θ (r)

r
+

K

r

∫ ∞

0
ρ (s) ds

)
< 1. (21)

We begin the proof by contradiction by applying
the norm used in our paper to the function
defined in Eq. (19), we also assume that all the
assumptions have been verified as well, we have
the following form

∥Φx (t)∥ ≤ M ∥φ∥+M
∣∣∣A−β

∣∣∣ k1 (∥φ∥+ 1)

+
∣∣∣A−β

∣∣∣ k1 (∥xt∥+ 1)

+
αΓ (1 + β)C1−β

Γ (1 + αβ)
k1(∥xt∥+ 1)Tαβ

+
Mα

Γ (1 + α)

αMNa

(
1+α−1

1−β

)
(1−β)

Γ (1 + α)
(
1 + α−1

1−β

)1−β

∫ t

0
ρ (s) ds

Let’s consider that the function and the constant
that

θ (∥xt∥) =
∣∣∣A−β

∣∣∣ k1 ∥xt∥
+

αΓ (1 + β)C1−β

Γ (1 + αβ)
k1 ∥xt∥Tαβ

(22)

and

K =
Mα

Γ (1 + α)

αMNa

(
1+α−1

1−β

)
(1−β)

Γ (1 + α)
(
1 + α−1

1−β

)1−β
(23)

And then the previous equation can be written in
the form that

∥Φx (t)∥ ≤ M ∥φ∥+M
∣∣∣A−β

∣∣∣ k1 (∥φ∥+ 1)

+
∣∣∣A−β

∣∣∣ k1 + αΓ (1 + β)C1−β

Γ (1 + αβ)
k1T

αβ

+ θ (∥xt∥) +K

∫ t

0
ρ (s) ds

Let that for each strictly positive constant r, there
exist exist x ∈ Br, such that ϕx /∈ Br. For
simplification in the calculations, we add a further
constant notation that is

M1 = M ∥φ∥+M
∣∣∣A−β

∣∣∣ k1 (∥φ∥+ 1) +
∣∣∣A−β

∣∣∣ k1
(24)

The previous assumption can be written
mathematically by the condition described in the
following form

r < ∥ϕx (t)∥ ≤ M1 + θ (r) +K

∫ t

0
ρ (s) ds (25)

The next step consists to divide the previous
Eq. (25) by our constant r, we get the following
relationships

1 < ∥ϕx (t)∥ ≤ M1

r
+

θ (r)

r
+

K

r

∫ t

0
ρ (s) ds (26)

Applying the limit respect to r at infinity, we get
the following relationship which will contradict
our preliminary assumptions, we have that

1 < ∥ϕx (t)∥ ≤ lim inf
r→∞

[
θ (r)

r
+

K

r

∫ t

0
ρ (s) ds

]
(27)

We notice that Eq. (27) is in contradiction with
the assumption reported in Eq. (21). This means
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that ∥Φx (t)∥ ≤ r, we conclude that Φ maps to
itself.

Step 2: In the second step, we will prove that the
operator Φ : Br −→ Br is continuously using the
classical method for proving the continuity. We
set that {xn} ⊆ Br respect to the property that
xn → x on the set Br. In our present context
using the assumption that (A) and the fact that
xnt → xt, we have in particular the following
intermediary condition that Cxn (t− h) →
Cx(t − h) a:e t ∈ [0, T ] when n → ∞.
Furthermore with the assumption (A), we have
in particular that ∥Cxn (s− h)− Cx (s− h)∥ ≤
m(s) ∥ρ (xn(s))− ρ (x(s))∥. We notice with
the previous condition that, the fact that the
function ρ is Lipschitz continuous implies the
convergence to zero of the previous relationship.
In addition, using the classical dominated
convergence theorem, we get the following
transformation and convergence, which are

∥Φxn (t)− Φx (t)∥ ≤ ∥Bxn (t− h)−Bx (t− h)∥X

+

∫ t

0
(t− s)α−1 |Sα (t− s) [ABxn(s− h)−ABx(s− h)]| ds

+

∫ t

0
(t− s)α−1 |Sα (t− s) [Cxn(s− h)− Cx(s− h)]| ds

≤ (k + 1))A−β |B| ∥xn(t)− x(t)∥X

+

∫ t

0
(t− s)α−1 |Sα (t− s) [ABxn(s− h)−ABx(s− h)]| ds

+

∫ t

0
(t− s)α−1 |Sα (t− s) [Cxn(s− h)− Cx(s− h)]| ds

Using the previously established results and the
Lipchitz property in the assumption (A), and
adding the condition in Lemma 5, we have the
following form

∥Φxn (t)− Φx (t)∥ ≤ (k + 1))A−β |B| ∥xn(t)− x(t)∥X

+
Mα

Γ (1 + α)

∫ t

0
(t− s)α−1 |[ABxn(s− h)−ABx(s− h)]| ds

+
Mα

Γ (1 + α)

∫ t

0
(t− s)α−1 |[Cxn(s− h)− Cx(s− h)]| ds

(28)

We observe by using Eq. (28) that
∥Φxn (t)− Φx (t)∥ → 0 as n → ∞ where it follows
that the continuity of the operator Φ. The next
section will be consecrated to prove that the set
{ϕx : x ∈ Br} is relatively compact.

Step 3: As recalled at the end of the previous
step in this part we try to prove that the set
described by {ϕx : x ∈ Br} is relatively compact.
Let x ∈ Br and t1 ≤ t2 ≤ T . We use two
sub-operators, we have the following form

ϕax = Rα (t) [φ (0)−Bφ (−h)]+Bx (t− h) (29)

We have the following expressions by applying the
norm used in our space

∥Φx (t2)− Φx (t1)∥
≤ ∥(Rα (t2)−Rα (t1)) [φ (0)−Bφ (−h)]∥X
+ ∥Bx (t2 − h)−Bx (t1 − h)∥X
≤ ∥(Rα (t2)−Rα (t1))∥X [φ (0)−Bφ (−h)]

+ ∥Bx (t2 − h)−Bx (t1 − h)∥X

We first use that the resolvent operator Rα is
strongly continuous, and then we get that when
t2 → t1 thus ∥Φx (t2)− Φx (t1)∥ → 0. We set the
second operator as the following form

ϕbx =

∫ t

0
(t− s)α−1 Sα (t− s) [AB]x(s− h)ds

(30)

Let x ∈ Br and t1 ≤ t2 ≤ T , to evaluate the
convergence as in the previous section, we have
the following relationships

∥Φbx (t2)− Φbx (t1)∥

= ∥
∫ t2

0
(t2 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds

−
∫ t1

0
(t1 − s)α−1 Sα (t1 − s) [AB]x(s− h)ds∥

≤ ∥
∫ t2

t1

(t2 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds∥

+ ∥
∫ t1

0
(t2 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds

−
∫ t1

0
(t1 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds∥

+ ∥
∫ t1

0
(t1 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds

−
∫ t1

0
(t1 − s)α−1 Sα (t1 − s) [AB]x(s− h)ds∥

≤ ∥
∫ t2

t1

(t2 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds∥

+ ∥
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
Sα (t2 − s) [AB]x(s− h)ds∥

+ ∥
∫ t1

0
(t1 − s)α−1 [Sα (t2 − s)− Sα (t1 − s)] [AB]x(s− h)ds∥

(31)

The previous relation in Eq. (31) can be rewritten
in terms of three integral denotes here by the
following form

∥Φbx (t2)− Φbx (t1)∥ ≤ I1 + I2 + I3, (32)
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we have the following relationships for the
simplification of our expressions, we have that

I1 =

∥∥∥∥∫ t2

t1

(t2 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds

∥∥∥∥
(33)

I2 =

∥∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
×Sα (t2 − s) [AB]x(s− h)ds

∥∥∥∥ (34)

I3 =

∥∥∥∥∫ t1

0
(t1 − s)α−1 [Sα (t2 − s)− Sα (t1 − s)]

× [AB]x(s− h)ds

∥∥∥∥
(35)

We now proceed to the calculations of the
expressions represented in Eq. (33), Eq. (34) and
Eq. (35), we have the following calculations

I1 =

∥∥∥∥∫ t2

t1

(t2 − s)α−1 Sα (t2 − s) [AB]x(s− h)ds

∥∥∥∥
≤

∫ t2

t1

(t2 − s)α−1
∣∣∣A1−βSα (t2 − s)AβBx(s− h)

∣∣∣ ds
=

∫ t2

t1

(t2 − s)α−1 αΓ (1 + β)C1−β

Γ (1 + αβ) (t− s)α(1−β)
k1(∥xt∥+ 1)ds

=
αΓ (1 + β)C1−β

Γ (1 + αβ)
k1(∥xt∥+ 1)

∫ t2

t1

(t2 − s)αβ−1 ds

=
Γ (1 + β)C1−β

Γ (1 + αβ)
k1(∥xt∥+ 1) (t2 − t1)

αβ

(36)

We continue with the second expression
represented by the variable I2 in Eq. (34), we
have the following calculations

I2 =

∥∥∥∥∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
Sα (t2 − s) [AB]x(s− h)ds

∥∥∥∥
≤

∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

] ∣∣∣A1−βSα (t2 − s)AβBx(s− h)
∣∣∣ ds

≤
αMC1−β

Γ (1 + α)

∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
k1(∥xt∥+ 1)ds

≤
αMC1−β

Γ (1 + α)
k1(∥xt∥+ 1)

∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
ds

≤
αMC1−β

Γ (1 + α)
k1(∥xt∥+ 1) [|(t2 − t1)

α|]

where we are assumed that
∣∣A1−β

∣∣ ≤ C1−β. We
continue with the third integral, we have the
following bound

I3 =

∥∥∥∥∫ t1

0
(t1 − s)α−1 [Sα (t2 − s)− Sα (t1 − s)] [AB]x(s− h)ds

∥∥∥∥
≤

∫ t1

0
(t1 − s)α−1

[∣∣∣A1−βSα (t2 − s)−A1−βSα (t1 − s)
∣∣∣] ∣∣∣[AβB

]
x(s− h)

∣∣∣ ds
≤

∫ t1

0
(t1 − s)α−1

[∣∣∣A1−βSα (t2 − s)−A1−βSα (t1 − s)
∣∣∣] k1(∥xt∥+ 1)ds

≤ tα1k1(∥xt∥+ 1)

α
sup

s∈[0,t1]

[∣∣∣A1−βSα (t2 − s)−A1−βSα (t1 − s)
∣∣∣]

(37)

Note that from the continuity of the resolvent
operator Sα, follows also the continuity of
the operator A1−βSα. Then from Eq.(36)
to Eq.(38), we observe that t2 → t1 thus
∥Φbx (t2)− Φbx (t1)∥X → 0. We finish this
sub-section with the term represented by

ϕcx =

∫ t

0
(t− s)α−1 Sα (t− s) [C]x(s− h)ds

(38)

Let x ∈ Br and t1 ≤ t2 ≤ T , to evaluate
the convergence as in the previous section, we
have the following relationships and referring
to the previous section we have the following
relationships

∥Φcx (t2)− Φcx (t1)∥X ≤ I1 + I2 + I3 (39)

where

I1 =

∥∥∥∥∫ t2

t1

(t2 − s)α−1 Sα (t2 − s)Cx(s− h)ds

∥∥∥∥
(40)

I2 =

∥∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
×Sα (t2 − s)Cx(s− h)ds

∥∥∥∥ (41)

I3 =

∥∥∥∥∫ t1

0
(t1 − s)α−1 [Sα (t2 − s)− Sα (t1 − s)]

×Cx(s− h)ds

∥∥∥∥
(42)

We do the same as the previous sub-section but
here the Holder inequality is used many times, we
begin with the expression represented by

I1 =

∥∥∥∥∫ t2

t1

(t2 − s)α−1 Sα (t2 − s)Cx(s− h)ds

∥∥∥∥
≤ αMρ (∥xt∥)

Γ (1 + α)

[∫ t2

t1

(t2 − s)
1−α
1−η ds

]1−η

∥m∥L1/η [t1,t2]
.

(43)



216 N. Sene, A. Ndiaye / IJOCTA, Vol.14, No.3, pp.208-219 (2024)

For simplification in the rest of the calculutaion
we take that L1 = ∥m∥L1/η [t1,t2]

and κ = 1−α
1−η , and

then we get the following relationship

I1 ≤
αMρ (∥xt∥)L1 (t2 − t1)

(1+κ)(1−η)

Γ (1 + α) (1 + κ)1−η
.

We now continue with the expression represented
by the I2 in Eq. (34), here also the Holder
inequality is used for the simplification of the
upbound, we have the following relationships

I2 =
∥∥∥∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
×Sα (t2 − s)Cx(s− h)ds

∥∥∥∥
≤ αMρ(∥xt∥)

Γ(1+α)

[∫ t1
0 (t1 − s)

1−α
1−η − (t2 − s)

1−α
1−η ds

]1−η

×∥m∥L1/η [t1,t2]

= αML1ρ(∥xt∥)
Γ(1+α)(1+κ)1−η

[
t1+κ
1 − t1+κ

2 + (t2 − t1)
1+κ

]1−η

≤ αML1ρ(∥xt∥)
Γ(1+α)(1+κ)1−η (t2 − t1)

(1+κ)(1−η)

(44)

We finish by repeating the same calculations
with the expression described in I3 at Eq. (35).
We have to do the following results after the
application of the Holder,

I1 =
∥∥∥∫ t1

0 (t1 − s)α−1 [Sα (t2 − s)− Sα (t1 − s)]

×Cx(s− h)ds

∥∥∥∥
≤ L1ρ(∥xt∥)t(1+κ)(1−η)

1

(1+κ)1−η

× sups∈[0,t1] [Sα (t2 − s)− Sα (t1 − s)] .

(45)

The first remark is that the resolvent
operator Sα, follows also the continuity of
the operator A1−βSα. Then from Eq.(43)
to Eq.(45), we observe that t2 → t1 thus
∥Φcx (t2)− Φcx (t1)∥X → 0. That ends the
proof of the third step by concluding that the
{ϕx : x ∈ Br} is relatively compact. □

4. Illustrative example

In this section we add an illustrative example to
illustrate the findings of our paper, we take the
partial neutral functional fractional differential
equation under Caputo derivative described by
the form that

Dα

[
x (t, z)−

∫ π

0
g(z, y)xt (θ, y) dy

]
=

∂2x (t, z)

∂z2
+ f (t, xt) (46)

x (t, 0) = x (t, π) = 0, 0 < t ≤ 1, (47)

x (θ, z) = ϕ (θ, z) , −r ≤ θ ≤ 0, (48)

where the function g is an continuous function and
measurable, xt (θ, z) = x (t+ θ, z), ϕ (θ, z) is also
assumed to be continuous and the function f is
specified later in the example. The next section
will be to write the previous equation in terms
of Eq. (1) representing our mean result. The
second step will be to verify all the assumptions
considered in this paper.

For the rest we suppose that X = L2 ([0, π]). We
define an operator A : D (A) ⊂ X → X such that
Av = v′′ where the considered domain is defined
by the set

D (A) = {v ∈ X : v; v′are absolutely continuous;
v′′ ∈ X : v(0) = v(π) = 0} .

(49)

Thus and the operator defined by A generates
a compact semigroup T (t) in X and it is
having some properties summarized as the
following properties. We have that T (t) v =∑∞

n=1 e
n2t (v, en) en where v ∈ X. The

second properties is that for each v ∈ X,
we have that A−1/2v =

∑∞
n=1

1
n (v, en) en.

The third properties is that the operator A1/2

can be obtained by the form that A1/2v =∑∞
n=1 n (v, en) en where where the set D

(
A1/2

)
=

{v ∈ X :
∑∞

n=1 n (v, en) en ∈ X}. Note that in
the previous part we works with en (z) =√

2
π sin (nz) where 0 ≤ z ≤ π. It is not hard to see

that the family {en} with n = 1, 2, 3, ... represent
an orthonormal base for our set X. Let consider
that Bx (t− h) (z) =

∫ π
0 g(z, y)xt (θ, y) dy. We

assume that g is continuously differentiable
and satisfies the condition that b(t, ., 0) =
b(t, ., π) = 0. Let the function f is Lipschitz
continuous according to the following properties
that ∥f (t, ξ1)− f (t, ξ2)∥ ≤ a ∥ξ1 − ξ1∥ where
ξ1, ξ2 ∈ R. Finally, the fractional differential
equation represented by Caputo derivative of
order α = 0.5 can be presented as the form
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Dα
t [x (t)−Bx (t− h)]

= Ax (t) + f (t, xt) t ≥ 0 (50)

x0 = φ ∈ CX (51)

where f (t, xt) = 1
t1/3

sinxt. we can see that
the function f is Lipchitz continuous, and
it is trivial to see the assumption (A2) is
satisfied. The verification of the last assumption
assumption (A3), the sketch of the proof can
be found in, we proceed as the following, let
that

∫ π
0

∫ π
0 g2(z, y)dydz < ∞, furthermore we

consider that ∂
∂zg(z, y) is measurable too and

satisfying the conditions that g(0, y) = g(π, y) =

0 and δ =
(∫ π

0

∫ π
0

[
∂
∂zg(z, y)

]2
dydz

) 1
2

< ∞.

For simplification in our calculations we let that∫ π
0 g(z, y)v(z)dy = Uhv (z). Using the fact

that
∫ π
0

∫ π
0 g2(z, y)dydz < ∞ generate that Uh

is bounded into the set X and we have that
Uhv ∈ D

(
A1/2

)
and

∥∥A1/2Uh

∥∥ < ∞. The second

assumption δ =
(∫ π

0

∫ π
0

[
∂
∂zg(z, y)

]2
dydz

) 1
2
< ∞

and using the definition of en, we get the following
relationship

(Uh(v), en) =

∫ π

0
en

(∫ π

0
g(z, y)xt (θ, y) dy

)
dz

=
1

n

√
2

π

(∫ π

0

∂

∂z
g(z, y)xtdy, cosnz

)
(52)

Thus
∥∥∫ π

0
∂
∂zg(z, y)v(z)dy

∥∥ ≤ δ and then we

get
∥∥A1/2Uh (v)

∥∥ ≤ δ, wchich generate the
satisfaction of the assumption (A3). The present
results can be compared with the results in the
same direction in [25, 32, 33]. The difference is
the used resolvent operators. The nature of the
resolvent depends on the used problem and the
used fractional operators. It is important to see
that the resolvent operators defined in this paper
for existence depend on the order of the fractional
operator. But in general, the works are in good
agreement.

5. Conclusion

In this paper, we have focussed on the
existence of the unique solution of the partial
neutral functional fractional differential equation
described by the Caputo derivative. The novelties
of this work were the use of the fractional
resolvents operators to arrive to prove existence
via fixed point theorem. The present investigation
can be made with the other operators by in
our idea it should depend on new fractional

resolvent operators. Their definitions should
differ according to the fractional operators.
This idea can be an open problem for future
investigations.
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1. Introduction

Consider the following FBVP

u′′ = −λu, t ∈ [a, b] (1)

which satisfy the conditions

âi1u (a) = âi2u
′ (a) (2)

b̂i1u (b) = b̂i2u
′ (b) (3)

where âi1, âi2, b̂i1, b̂i2 intuitionistic fuzzy num-

bers, λ > 0, at least one of the numbers âi1 and

âi2 and at least one of the numbers b̂i1 and b̂i2 are
nonzero.

The subject of fuzzy differential equations (FDEs)
was first introduced by Kaleva [1] and Seikkala [2]
and has been expended and studied by many re-
searchers for the purpose of modeling problems
in science and engineering [3–6]. Most practical
problems require the solution of an FDE satis-
fying fuzzy initial or boundary conditions., so a
fuzzy initial value problem (IVP) or boundary
value problem (BVP) should be solved. There are
several approaches to solve fuzzy problems such
as the Hukuhara derivative or Seikkala derivative,
the differential inclusion and the derivative based

on the Zadeh’s extension principle which is widely
used for FDEs [7–16].

Puri and Dan introduced the H-derivative [17],
and later it was further explored by Kaleva [1] and
Seikkala [2]. But in some cases the H-derivative
method has a disadvantage that a fuzzy differen-
tial equation may have only solutions with nonde-
creasing lengths of the diameter of the level sets
[1, 18]. This disadvantage was solved by Hüller-
meier [19], who interpreted a FDE as a family
of differential inclusions. Another approach to
solve fuzzy problem has been proposed, including
Zadeh’s extension principle expanding the ordi-
nary differential equations to the fuzzy cases [20].
Then the arithmetic operations are considered to
be operations on fuzzy numbers [21].

An effective concept of the differentiability
of fuzzy-valued functions is given as the
strongly generalized differentiability concept (gh-
differentiability) which was first introduced by
Bede et al [22]. The fuzzy solutions with gh-
differentiability have some not an interval solu-
tions which are associated with the existence of
switch points [23]. In addition, Gasilov et al. ar-
gued that the solutions obtained by the method of
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Khastan and Nieto [7] are difficult to evaluate, be-
cause the solutions to the four different problems
may not reflect the nature of the phenomenon be-
ing studied [9].

Recently, intutionistic fuzzy set theory (IFST) has
become very popular. It is used in various indus-
tries, robotics, in audiovisual systems etc. There-
fore, many researchers have dedicated their time
to the development of IFST. Atanassov [24] gen-
eralized the concept of fuzzy set theory by intu-
itionistic fuzzy set (IFS) which is an extension of
fuzzy set introduced by Zadeh [25]. The degree of
acceptance in fuzzy sets is only considered, other-
wise IFS is characterized by a membership func-
tion and a non-membership function so that the
sum of both values is less than one [26, 27]. The
concept of intuitionistic fuzzy metric space has
been introduced Melliani et al. [28] and differen-
tial and partial differential equations have been
discussed under intuitionistic fuzzy environment.

On the other hand, Melliani et al. [10] gave the
the existence and uniqueness theorem of a solu-
tion to the intuitionistic FDE. Numerical solution
of intuitionistic FDE by Runge-Kutta method has
been introduced with intuitionistic treatment in
[29] and by Euler method has been discussed by
Nirmala and Chenthur Pandian based on the α−
level [30].

In literature, although there are many approaches
to solve the FDEs, there are only few papers such
as [11–14, 31] in which the eigenvalues and the
eigenfunctions of the FBVP are examined by us-
ing different methods such as H-differentiabilty,
gH-differentiability and the Zadeh’s extension
principle.

The main aim of this research is to find eigen-
values of FBVP under the intuitionistic Zadeh’s
extension principle [32].

In this work, the solutions of the intuitionistic
fuzzy eigenvalue problem are studied. The rest
of this study is organized as follows, In Section 2,
consists of basic definitions related to intuitionis-
tic fuzzy set theory. In Section 3, intuitionistic
fuzzy problem and a numerical example is given.
Conclusion of the paper is in section 4.

2. Preliminaries

Before proceeding to the solution method, the no-
tations and definitions that will be used through-
out the paper are given. To denote an intuition-
istic fuzzy number, a bar of the form̂i is placed

over a letter. Also, ûi(t) is written for intuition-
istic fuzzy-valued functions defined over the real
numbers.

Definition 1. [26] Let A ⊆ X and let µA(t) :
X → [0, 1], ζA(t) : X → [0, 1] be two functions
such that 0 ≤ µA(t) + ζA(t) ≤ 1. The set

Âi = {(t, µA(t), ζA(t)) : t ∈ X,

µA(t), ζA(t) : X → [0, 1]}
is called an intuitionistic fuzzy set of X.

Here µA(t) is called membership function and
ζA(t) is called non-membership function and the
set of all intuitionistic fuzzy sets of X will be de-
noted by IF (X).

Definition 2. [26] Let Âi ∈ IF (X). The set

A(α, β) = {t ∈ X : α, β ∈ [0, 1] ;

µA(t) ≥ α, ζA(t) ≤ β, 0 ≤ α+ β ≤ 1}
is called the (α, β)-level of the intuitionistic fuzzy

set Âi.

Theorem 1. [26] Let Âi ∈ IF (X). Then
A(α, β) = A(α) ∩ A∗(β) holds.Here A(α) is
α−level set and A∗(β) is β−level set.

Definition 3. [26] An intuitionistic fuzzy set

Âi ∈ IF (Rn) satisfying the following properties
is called an intuitionistic fuzzy number in Rn

1) Âi is a normal set, i.e., ∃ t0 ∈ Rn such that
µA(t0) = 1 and vA(t0) = 0,

2) A(0) and A∗(1) are bounded sets in Rn,

3) µA : Rn → [0, 1] is an upper semi-continuous
function, i.e.,

∀ k ∈ [0, 1], ({t ∈ A : µA(t) < k}) is an open
set.

4) ζA : Rn → [0, 1] is a lower semi-continuous
function, i.e.,

∀ k ∈ [0, 1]({t ∈ A : ζA(t) > k}) is an open set.

5) The membership function µA(t) is quasi-
concave, i.e.,

∀ n ∈ [0, 1], ∀ x, y ∈ Rn

µA(nt+ (1− n)x) ≥ min(µA(t), µA(x)),

6) The non-membership function ζA(t) is quasi-
convex; i.e.,

∀ n ∈ [0, 1], ∀x, y ∈ Rn

ζA(nt+ (1− n)x) ≤ max(ζA(t), ζA(x)).

The set of all intuitionistic fuzzy numbers of Rn

will be denoted by IFN(Rn).

Definition 4. [10] A triangular intuitionistic

fuzzy number (TIFN) Âi ∈ IF (Rn) is defined with
the following membership and non-membership
functions:

µA(t) =


t−a1
a2−a1

; a1 ≤ t ≤ a2
a2−t
a3−a2

; a2 ≤ t ≤ a3
0; otherwise
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and

ζA(t) =


a2−t
a2−a∗1

; a∗1 ≤ t ≤ a2
t−a2
a∗3−a2

; a2 ≤ t ≤ a∗3
1; otherwise

.

Here a∗1 ≤ a1 ≤ a2 ≤ a3 ≤ a∗3 and it is denoted by

Âi = (a1, a2, a3; a
∗
1, a2, a

∗
3).

Remark 1. [33] Let Âi ∈ IFN(R). Then
[
Â
]α

and
[
Â∗

]β
are closed and bounded intervals such

that[
Â
]α

=
[
A−

α , A
+
α

]
= [(a2 − a1)α+ a1, a3 − (a3 − a2)α]

and

[
Â∗

]α
= [a2 − (a2 − a∗1)α, (a

∗
3 − a2)α+ a2] .

Definition 5. [32] Let X and Y be two sets and

g : X → Y be a function. Let Âi be an intuitionis-

tic fuzzy set in X. Then f(Âi) is an intuitionistic
fuzzy set in Y such that for every y ∈ Y

µ
g
(
Âi

)(y) =
{

sup {µA(x) : g (x) = y} ; y ∈ g (x)
0; y /∈ f (x) ,

and

ζ
g
(
Âi

)(y) =
{

inf {ζA(x) : g (x) = y} ; y ∈ g (x)
1; y /∈ g (x) ,

Definition 6. [33] The function

θ (x) =

{
1, x ≥ 0
0, x < 0

is called the Heaviside step function.

3. Numerical Method for the FBVP

Here, the eigenvalues and the fuzzy eigenfunctions
of the intuitionistic fuzzy problem (1)-(3) are in-
vestigated. Then, similar to the method applied
by Titchmarsh [34], we will use the solutions of
(1) that satisfy the fuzzy initial conditions instead
of the fuzzy boundary conditions. To solve intu-
itionistic fuzzy IVPs, the method created by Akin
and Bayeğ is used [33]. To do this, firstly the crisp
IVP will be solved.

Then, the solution of intuitionistic FIVPs will be
obtained from classical solutions using the intu-
itionistic Zadeh’s extension principle. The fuzzy
solutions do not require the analysis of existence
of switching endpoints of α and β levels, because
Heaviside (step) function will be applied during
the interval operations on α and β levels.

Now, let the linear and homogeneous differen-
tial equation (1) be considered separately with
intuitionistic fuzzy boundary conditions (2) and
(3),respectively.

{
χ′′ + λχ = 0

χ (a) = âi2, χ
′ (a) = âi1

(4)

and {
Ψ′′ + λΨ = 0

Ψ (b) = b̂i2, Ψ
′ (b) = b̂i1.

(5)

where âi1, âi2, b̂i1, b̂i2 intuitionistic triangular
fuzzy numbers, λ > 0.

Theorem 2. [33] Let χ̂i (t) and Ψ̂i (t) be
the solution of the intuitionistic IVP in (4)
and (5) obtained by intuitionistic Zadeh’s ex-

tension principle. Let α and β levels of χ̂i

(t) and Ψ̂i (t), âik and b̂ik (k = 1, 2) be given
by [χ−

α (t, λ) , χ+
α (t, λ)], [Ψ−

α (t, λ) ,Ψ+
α (t, λ)] and[

(χ∗)−α (t, λ) , (χ∗)+α (t, λ)
]
,
[
(Ψ∗)−α (t, λ) , (Ψ∗)+α (t, λ)

]
;[

(ak)
−
α , (ak)

+
α

]
,
[
(bk)

−
α , (bk)

+
α

]
and

[
(a∗k)

−
α , (a

∗
k)

+
α

]
,[

(b∗k)
−
α , (b

∗
k)

+
α

]
, respectively. Then the α and β

levels of the solution can be determined as fol-
lows:

χ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

χ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)−β =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)+β =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

and

Ψ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

Ψ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)−β =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)+β =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

Here K1k(t) and K2k(t) are Heaviside function.

χ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

χ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)−α =

2∑
k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)+α =

2∑
k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

First, let us look for the solution to the problem
in Equation (4). Then, by performing similar op-
erations, we find the solution to the problem (5).
First of all we solve the following crisp IVP re-
lated to the fuzzy IVP in Eq. (4) and then apply
intuitionistic Zadeh’s Extension Principle to the
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solution [33]:{
χ′′ + λχ = 0

χ (a) = a2, χ
′ (a) = a1

(6)

where a1, a2 and λ are real numbers. The gen-
eral solution of the differential equation (6) can
be written as:

χλ(t) = C1χ1(t) + C2χ2(t), (7)

where C1 and C2 are arbitrary constants; χ1(t)
and χ1(t) are linearly independent functions sat-
isfying the Eq. (6).

Let us substitute the initial conditions to find the
coefficients C1 and C2 in equation Eq. (7). There-
fore, the following system of equations is obtained:{

C1χ1(a) + C2χ2(a) = a2
C1χ

′
1(a) + C2χ

′
2(a) = a1

(8)

In Eq.(8) C and B are unknown coefficients and
the following notations are used for convenience.

W =

(
w11 w12

w21 w22

)
;

w11 = χ1(a), w12 = χ2(a), w21 = χ′
1(a), w22 = χ′

2(a);

−→
C =

(
C1

C2

)
, −→a =

(
a2
a1

)
.

According to these notations, (8) is written in the
matrix form:

W
−→
C = −→a .

Using Cramer’s method, C1 and C2 are obtained
as follows:

CJ =
|W1|
|W |

− |W2|
|W |

.

Here

|W | =

∣∣∣∣ w11 w12

w21 w22

∣∣∣∣ = w11w22 − w21w12,

|W1| =

∣∣∣∣ a2 w12

a1 w22

∣∣∣∣ = a2w22 − a1w12,

|W2| =

∣∣∣∣ w11 a2
w21 a1

∣∣∣∣ = a1w11 − a2w21.

Thus, C1 and C2 can be rewritten as

C1 =
|W1|
|W |

=
a2w22 − a1w12

|W |
,

C2 =
|W2|
|W |

=
a1w11 − a2w21

|W |
.

C1 and C2 can be rewritten as follows to simplify
the above results, respectively

C1 = a2f22 − a1f12,

C2 = a1f11 − a2f21

where fij =
wij

|W | ; i, j = 1, 2.

From the results for C1 and C2, the classical so-
lution of the given crisp IVP can be derived as
follows:

χλ(t) = C1χ1(t) + C2χ2(t),

= (a2f22 − a1f12)χ1(t)

+ (a1f11 − a2f21)χ2(t).

This solution can also be written as:

χλ(t) = a2 (f22χ1(t)− f21χ2(t))

+a1 (f11χ2(t)− f12χ1(t)) .

Next the following notations are used for the sake
of its comprehension:

K11 (t) = f22χ1(t)− f21χ2(t),

K12 (t) = f11χ2(t)− f12χ1(t). (9)

Thus the solution of the crisp IVP (6) can be writ-
ten as:

χλ(t) = a2K11 (t) + a1K12 (t) . (10)

It is easy to see that the solution in Eq. (10) is lin-
early dependent only on the initial values. Now,
Zadeh’s extension principle is applied to the intu-
itionistic fuzzy sets and the solution of the fuzzy
IVP as follows:

χ̂i
λ(t) = âi2K11 (t) + âi1K12 (t) (11)

In terms of α and β levels of the intuitionistic
fuzzy numbers it is obtained that


[χ−

α (t, λ) , χ+
α (t, λ)] =

2∑
k=1

[
(ak)

−
α , (ak)

+
α

]
K1k(t)[

(χ∗)−α (t, β) , (χ∗)+α (t, β)
]
=

2∑
k=1

[
(a∗k)

−
α , (a

∗
k)

+
α

]
K1k(t)

where χ−
α (t, λ), (ak)

−
α , ; (χ∗)−α (t, λ), (a∗k)

−
α are

lower bounds for α−levels and β−levels, respec-
tively and χ+

α (t, λ), (ak)
+
α , ; (χ∗)+α (t, λ), (a∗k)

+
α

are upper bounds for α−levels and β−levels, re-
spectively

Using the Heaviside function and interval arith-

metic the α and β levels of the solution χ̂i
λ(t)

can be written as follows:

χ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

χ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)−α =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(χ∗)+α =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K1k(t))

]
K1k(t)

(12)

For
[
Ψ̂i

λ(t)
]α

, a solution is found for the problem

(5) by doing similar operations. So the solution
of the crisp IVP Ψλ(t) can be written as:
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Ψλ(t) = b2K21 (t) + b1K22 (t) . (13)

Then Zadeh’s extension principle is applied and
the solution of the fuzzy IVP as follows:

Ψ̂i
λ(t) = âi2K21 (t) + âi1K22 (t) . (14)

By taking α−levels and β−levels, into account in
the solution (5) and using the Heaviside function,

the solution Ψ̂i
λ(t) can be written as follows:



Ψ−
α =

2∑
k=1

[
(ak)

+
α −

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

Ψ+
α =

2∑
k=1

[
(ak)

−
α +

(
(ak)

+
α − (ak)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)−α =
2∑

k=1

[
(a∗k)

+
α −

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

(Ψ∗)+α =
2∑

k=1

[
(a∗k)

−
α +

(
(a∗k)

+
α − (a∗k)

−
α

)
θ (K2k(t))

]
K2k(t)

(15)

Because the eigenvalues of the problem (1)-(3)
if and only if consist of the zeros of function
W (χ,Ψ) (t, λ) in [34], Wronskian function is
found from the classical solutions (10) and (13)
for classic eigenvalue λ as follows :

W (χ,Ψ) (t, λ) = χλ(t)Ψ
′
λ(t)− χ′

λ(t)Ψλ(t). (16)

Now we give the following numerical example to
demonstrate the proposed method.

Example 1. Consider the intuitionistic fuzzy
boundary value problem

−u′′ = λu (17)

2̂iu (0) = 1̂iu′ (0) (18)

4̂iu (1) = 3̂iu′ (1) (19)

where 1̂i = (0, 1, 2;−1, 1, 3), 2̂i = (1, 2, 3; 0, 2, 4),

3̂i = (2, 3, 4; 1, 3, 5) , 4̂i = (3, 4, 5; 2, 4, 6) intuition-
istic triangular fuzzy numbers and λ = p2, p > 0.

From problem (17)-(19) , we get two intuitionistic
FIVPs as follows:

χ′′ + p2χ = 0, χ (0) = 1̂i, χ′ (0) = 2̂i (20)

and

Ψ′′ + p2Ψ = 0, Ψ(1) = 3̂i, Ψ′ (1) = 4̂i. (21)

Let us first solve the crisp IVP:

χ′′ + p2χ = 0, χ (0) = 1, χ′ (0) = 2.

By solving the differential equation in the crisp
IVP, the general crisp solution is obtained as:

χ (t, λ) = C1 cos (pt) + C2 sin (pt) .

The functions K11(t) and K12(t) are obtained as
follows:

K11(t) = cos (pt)

K12(t) =
1

p
sin(pt). (22)

Thus the solution of the crisp IVP can be written
using (22) as:

χ (t, λ) = a2K11 (t) + a1K12 (t)

=
2

p
sin(pt) + cos (pt) (23)

Similarly, the solution Ψ(t, λ) is written as:

Ψ(t, λ) =
4

p
sin (pt− p) + 3 cos (pt− p) . (24)

0 5 10 15

p

-30

-20

-10

0

10

20

30

40

W

Figure 1. The function W (λ) =(
3p+ 8

p

)
sin (p) + (4− 6) cos (p) .

Then, Wronskian functions can be gotten from
Eq. (16) as:

W (λ) = W (χ,Ψ) (t, λ)

=

(
3p+

8

p

)
sin(p) + (−2) cos(p).

The classic eigenvalues of problem (17)-(19) con-
sist of the zeros of the W (λ) functions. For this
reason, an infinite number of eigenvalues satisfy-
ing the equation W (λ) = 0 can be obtained by
calculating p values in Matlab programme in Fig-
ure 1.

Table 1. Eigenvalues of the fuzzy problem.

pn λn
n = 1 3.30241 10.90581
n = 2 6.38091 40.71581
n = 3 9.49291 90.11511
n = 4 12.61831 159.22151
n = 5 15.74981 248.05621

n ≈ nπ (nπ)2
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The first five eigenvalues are found numerically
and then the approximation of the remaining
eigenvalues is written in tabl e 1.

From (12) and (15) α−levels and β−levels of the

solutions χ̂i
λ(t) and Ψ̂i

λ(t), respectively can be
found as follows:

χ−
α (t, λ) = [2− α− 2 (1− α) θ (K11(t))]K11(t)

+ [3− α− 2 (1− α) θ (K12(t))]K12(t),

χ+
α (t, λ) = [α+ 2 (1− α) θ (K11(t))]K11(t)

+ [α+ 1 + 2 (1− α) θ (K12(t))]K12(t),

(χ∗)−α (t, β) = [2β + 1− (4β) θ (K11(t))]K11(t)

+ [2 + 2β − (4β) θ (K12(t))]K12(t),

(χ∗)+α (t, β) = [1− 2β + (4β) θ (K11(t))]K11(t)

+ [2− 2β + (4β) θ (K12(t))]K12(t).

and

Ψ−
α = [4− α− 2 (1− α) θ (K21(t))]K21(t)

+ [5− α− 2 (1− α) θ (K22(t))]K22(t),

Ψ+
α = [2 + α+ 2 (1− α) θ (K21(t))]K21(t)

+ [3 + α+ 2 (1− α) θ (K22(t))]K22(t),

(Ψ∗)−α = [3 + 2β − (4β) θ (K21(t))]K21(t)

+ [4 + 2β − (4β) θ (K22(t))]K22(t),

(Ψ∗)+α = [3− 2β + (4β) θ (K11(t))]K21(t)

+ [4− 2β + (4β) θ (K22(t))]K22(t).

where θ(t) is the Heaviside function, K11(t) =
cos (pt), K12(t) =

1
p sin(pt), K21(t) = cos (pt− p)

and K22(t) =
1
p sin(pt− p).

In particular, p1 = 3.30241 in Table 1 and sub-
stitute (25) and (25) are selected. The α and β

levels of the solutions χ̂i
p1(t) and Ψ̂i

p1(t) are given
in Figures 2, 3 and Figures 4, 5.

Consider the FBVP given as in (17)-(19), using
gh-differentiabilty by converting the FDE into a
family of systems of classical differential equa-
tion [35]. Now we have that the graphical rep-
resentation of the endpoint functions χ−

α , χ
+
α in

Figure 6 and Ψ−
α , Ψ+

α in Figure 7 obtained of
(1,1)-system for every α ∈ [0, 1]. In Figure 6

and 7, it is seen that the χ̂ and Ψ̂ functions do
not fulfil the fuzzy solution properties duo to the
existence of switching points in the entire interval
[0, 3.5].

0 0.5 1 1.5 2 2.5 3 3.5 4

t
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1
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3
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 Φ
,

  

Figure 2. The χ̂i
λ(t) solution in Ex-

ample 1. The black line represents
the reel solution. The red and blue
lines represent upper solution for β =
1 and α = 0, respectively and the
dashed red and blue lines represent
lower solution for β = 1 and α = 0,
respectively
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Figure 3. The blue region of the in-
tersection of fuzzy solution [χ]

α
and

[χ∗]
α
of the intuitionistic fuzzy solu-

tion in Example 1
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Figure 4. The Ψ̂i
λ(t) solution in Ex-

ample 1. The black line represents
the crisp solution. The red and blue
lines represent upper solution for β =
1 and α = 0, respectively and the
dashed red and blue lines represent
lower solution for β = 1 and α = 0,
respectively
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Figure 5. The blue region of the in-
tersection of fuzzy solution [ψ]

α
and

[ψ∗]
α
of the intuitionistic fuzzy solu-

tion in Example 1
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Figure 6. The χ solution of the
(1,1)-system related to (17)-(19) in
the sense of gH-derivative.The blue
line and the red line represent respec-
tively the left and right end-points of
the 0-level of the solution the black
line represent the reel solution in Ex-
ample 1
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Figure 7. The ψ solution of (1,1)-
system related to (17)-(19) in the
sense of gH-derivative.The blue line
and the red line represent respectively
the left and right end-points of the 0-
level of the solution the black line rep-
resent the reel solution for Example 1

4. Conclusion

The main contribution of this article is the study
of intuitionistic fuzzy eigenvalue problem with
boundary values given by intuitionistic fuzzy
numbers. The eigenvalues of the fuzzy problem
are found mainly on the idea of the intuitionis-
tic Zadeh’s extension principle. To do this the
method proposed in Theorem 2 is used. Then one
of the obtained eigenvalues is arbitrarily selected
and substituted in the fuzzy solutions to obtain

the intuitionistic fuzzy eigenfunctions χ̂i
λ(t) and

Ψ̂i
λ(t) which are shown in Figures 2, 3, 4 and

5. To prevent switch-points as illustrated in Fig-
ure 6 and in Figure 7, Heaviside function is used
during the interval operations on α and β-levels.

The approach using the gH-derivative is equiv-
alent to the study of some systems of classical
differential equations, which can lead to an addi-
tional study of switching points as shown in Fig-
ures 6 and 7. Moreover from this approach, the
sign of the solution is considered itself and the
signs of its first and second derivatives.

By using the method in this paper, fuzzy eigen-
functions are obtained without dealing with these
unfavourable situations.
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1. Introduction

For convex functions the following double in-
equality has great significance in literature and
is known as Hermite-Hadamard’s inequality [1,2]:

Let τ : I −→ R, ∅ ≠ I ⊆ R, κ1,κ2 ∈ I with
κ1 < κ2, be a convex function, then

τ

(
κ1 + κ2

2

)
≤ 1

κ2 − κ1

∫ κ2

κ1

τ(ν)dν

≤ τ(κ1) + τ(κ2)

2
. (1)

The inequality (1) holds in reversed direction if τ
is concave.
Fejér [3], established the following double inequal-
ity as a weighted generalization of (1):

τ

(
κ1 + κ2

2

)∫ κ2

κ1

r(ν)dν

≤
∫ κ2

κ1

τ(ν)r(ν)dν

≤ τ(κ1) + τ(κ2)

2

∫ κ2

κ1

(ν)dν, (2)

where τ : I −→ R, ∅ ̸= I ⊆ R, κ1,κ2 ∈ I with
κ1 < κ2 is any convex function and r : [κ1,κ2] →
R is non-negative integrable and symmetric about
ν = κ1+κ2

2 .

These inequalities have many extensions and gen-
eralizations, see [4]- [50]. Dragomir et al. [7],
obtained the refinement of the first inequality in
(1). Yang and Hong [42], obtained the following
Hermite-Hadamard-type inequality which is a re-
finement of the second inequality in (1). Tseng
et al. [35], established the Fejér-type inequali-
ties that refined 2. Yang and Tseng [42] and

*Corresponding Author

229

http://creativecommons.org/licenses/by/4.0/


230 Latif et al. / IJOCTA, Vol.14, No.3, pp.229-248 (2024)

Tseng et al. [35] established the Fejér-type in-
equalities which are weighted generalizations of
results from [7] and [42]. Dragomir et al. [12] pro-
vided further Hermite-Hadamard-type inequality
related to (1) that refine the second inequality in
(1). Tseng et al. [36, 37], obtained some very fas-
cinating results related to Fejér’s result (2) which
are weighted generalizations of a result proven
in [12]. Tseng et al. [38] considered the follow-
ing mappings defined over an interval [0, 1] and
discussed important results that characterize the
properties of the those mappings and also proved
Fejér-type inequalities that provide refinements of
the Hermite-Hadamard’s (1) and Fejér’s inequal-
ity (2):

G(α) :=
1

2

[
τ

(
ακ1 + (1− α)

κ1 + κ2

2

)
+τ

(
ακ2 + (1− α)

κ1 + κ2

2

)]
,

Q(α) :=
1

2
[τ (ακ1 + (1− α)κ2)

+τ (ακ2 + (1− α)κ1)] ,

H(α) :=
1

κ2 − κ1

κ2∫
κ1

τ

(
αν + (1− α)

κ1 + κ2

2

)
dν,

Hr(α) :=

κ2∫
κ1

τ

(
αν + (1− α)

κ1 + κ2

2

)
r (ν) dν,

I (α) :=
1

2

κ2∫
κ1

[
τ

(
α
κ1 + ν

2
+ (1− α)

κ1 + κ2

2

)

+τ

(
α
κ2 + ν

2
+ (1− α)

κ1 + κ2

2

)]
r (ν) dν,

P (α) :=
1

2

κ2∫
κ1

[
τ

((
1 + α

2

)
κ1 +

(
1− α

2

)
ν

)

+τ

((
1 + α

2

)
κ2 +

(
1− α

2

)
ν

)]
dν,

Pr(α) :=
1

2 (κ2 − κ1)

×
∫ κ2

κ1

[
τ

((
1 + α

2

)
κ1 +

(
1− α

2

)
ν

)
r

(
κ1 + ν

2

)
+τ

((
1 + α

2

)
κ2 +

(
1− α

2

)
ν

)
r

(
ν + κ2

2

)]
dν,

N (α) :=
1

2

∫ κ2

κ1

[
τ

(
ακ1 + (1− α)

κ1 + ν

2

)
+τ

(
ακ2 + (1− α)

ν + κ2

2

)]
r (ν) dν,

L(α) :=
1

2 (κ2 − κ1)

×
∫ κ2

κ1

[τ (ακ1 + (1− α) ν) + τ (ακ2 + (1− α) ν)] dν,

Lr(α) :=
1

2

∫ κ2

κ1

[τ (ακ1 + (1− α) ν)

+τ (ακ2 + (1− α) ν)] r (ν) dν

and

Sr (α) :=
1

2

∫ κ2

κ1

[
τ

(
ακ1 + (1− α)

κ1 + ν

2

)
+ τ

(
ακ1 + (1− α)

ν + κ2

2

)
+ τ

(
ακ2 + (1− α)

κ1 + ν

2

)
+τ

(
ακ2 + (1− α)

ν + κ2

2

)]
r (ν) dν,

where τ : [κ1,κ2] → R is a convex function and
r : [κ1,κ2] → R is non-negative integrable and
symmetric about ν = κ1+κ2

2 .

Remark 1. It should be noted that H = Hr = I,
P = Pr = N and L = Lr = Sr on [0, 1] as
r (ν) = 1

κ2−κ1
, ν ∈ [κ1,κ2].

Tseng et al. [38], proved new Fejér-type inequali-
ties related to the mappings G, Q, Hr, Pr, I, N ,
Lr and Sr defined above. These results general-
ize known results obtained in connection to the
Hermite-Hadamard inequality and therefore are
useful in obtaining various results for means for
a given convex function τ and particular weight
function r.

Here we point out few important findings from
Tseng et al. [35, 39] that were used to prove re-
sults from [38].

Lemma 1. [35] Let τ : [κ1,κ2] → R be a convex
function and let κ1 ≤ κ1 ≤ ν1 ≤ ν2 ≤ κ2 ≤ κ2

with ν1 + ν2 = κ1 + κ2. Then

τ (ν1) + τ (ν2) ≤ τ (κ1) + τ (κ2) .

The assumptions in Lemma 1 can be weakened as
in the following lemma:

Lemma 2. [39] Let τ : [κ1,κ2] → R be a convex
function and let κ1 ≤ κ1 ≤ ν1 ≤ κ2 ≤ κ2 and
κ1 ≤ κ1 ≤ ν2 ≤ κ2 ≤ κ2 with ν1 + ν2 = κ1 + κ2.
Then

τ (ν1) + τ (ν2) ≤ τ (κ1) + τ (κ2) .

Lemma 3. [39] Let τ , G, Q be defined as above.
Then Q is symmetric about 1

2 , Q is decreasing on[
0, 12
]
and increasing on

[
1
2 , 1
]
,

G (2α) ≤ Q (α) , α ∈
[
0,

1

4

]
,
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G (2α) ≥ Q (α) , α ∈
[
1

4
,
1

2

]
,

G (2 (1− α)) ≥ Q (α) , α ∈
[
1

2
,
3

4

]
and

G (2 (1− α)) ≤ Q (α) , α ∈
[
3

4
, 1

]
.

Here we cite two important results form Tseng et
al. [38].

Theorem 1. [38] Let τ , r, H, Pr, Lr and Sr be
defined as above. Then

(i) The inequality∫ κ2

κ1

τ (ν) r (ν) dν

≤ 2

[∫ 3κ1+κ2
4

κ1

τ (ν) r (2ν − κ1) dν

+

∫ κ2

κ1+3κ2
4

τ (ν) r (κ2 − 2ν) dν

]

≤
∫ 1

0
Pr (α) dα ≤ 1

2

[∫ κ2

κ1

τ (ν) r (ν) dν

+
τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν) dν

]
(3)

holds.
(ii) The inequalities

Lr (α) ≤ Pr (α) ≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν) dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν) dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν) dν (4)

and

0 ≤ N (α)−G (α)

∫ κ2

κ1

r (ν) dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν) dν −N (α) (5)

hold for all α ∈ [0, 1].
(iii) If τ is differentiable on [κ1,κ2], then we

have the inequalities

0 ≤ α

[
1

κ2 − κ1

∫ κ2

κ1

τ (ν) dν

−τ

(
κ1 + κ2

2

)]
inf

ν∈[κ1,κ2]
r (ν)

≤ Pr (α)−
∫ κ2

κ1

τ (ν) r (ν) dν, (6)

0 ≤ Pr (α)− τ

(
κ1 + κ2

2

)∫ κ2

κ1

r (ν) dν

≤
(κ2 − κ1)

(
τ

′
(κ2)− τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν) dν, (7)

0 ≤ Lr (α)−Hr (α)

≤
(κ2 − κ1)

(
τ

′
(κ2)− τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν) dν, (8)

0 ≤ Pr (α)− Lr (α)

≤
(κ2 − κ1)

(
τ

′
(κ2)− τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν) dν, (9)

0 ≤ Pr (α)−Hr (α)

≤
(κ2 − κ1)

(
τ

′
(κ2)− τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν) dν, (10)

0 ≤ N (α)− I (α)

≤
(κ2 − κ1)

(
τ

′
(κ2)− τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν) dν (11)

and

0 ≤ Sr (α)− I (α)

≤
(κ2 − κ1)

(
τ

′
(κ2)− τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν) dν (12)

hold for all α ∈ [0, 1].

Theorem 2. [38] Let τ , r, G, Q, Hr, Pr and Sr

be defined as above. Then

(i) The inequalities

Hr (α) ≤ Q (α)

∫ κ2

κ1

r (ν) dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν) dν,

α ∈
[
0,

1

3

]
(13)
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and

τ

(
κ1 + κ2

2

)∫ κ2

κ1

r (ν) dν

≤ Q (α)

∫ κ2

κ1

r (ν) dν ≤ Pr (α) ,

α ∈
[
1

3
, 1

]
(14)

hold.
(ii) The inequality

0 ≤ Sr (α)−G (α)

∫ κ2

κ1

r (ν) dν

≤ 1

2

[
τ (κ1) + τ (κ2)

2
+Q (α)

]
×
∫ κ2

κ1

r (ν) dν − Sr (α) (15)

hold for all α ∈ [0, 1].

Convex functions are a fundamental concept
in mathematics, and geometrically-arithmetically
convex functions, or GA-convex functions, rep-
resent an exciting generalization of this concept
that offers new insights and applications.

Definition 1. [7] Suppose I ⊆ (0,∞) is an in-
terval of positive real numbers. A function τ :
I → R is considered to be GA-convex, if

τ
(
νακ1−α

)
≤ ατ (ν) + (1− α) τ (κ) (16)

for all ν, κ ∈ I and α ∈ [0, 1]. A function τ :
I → R is GA-concave if the inequality in (16)
reversed.

We have gathered crucial information regarding
GA-convex and convex functions, which we will
utilize to demonstrate our main findings.

Theorem 3. [7] If [κ1,κ2] ⊂ (0,∞) and the
function G : [lnκ1, lnκ2] → R is convex (concave)
on [lnκ1, lnκ2], then the function τ : [κ1,κ2] →
R, τ(α) = G(lnα) is GA-convex (concave) on
[κ1,κ2].

Remark 2. It is obvious from Theorem 3 that
if τ : [κ1,κ2] → R is GA-convex on [κ1,κ2] ⊂
(0,∞), then τ ◦ exp is convex on [lnκ1, lnκ2]. It
follows that τ ◦exp has finite lateral derivatives on
(lnκ1, lnκ2) and by gradient inequality for convex
functions, we have

τ ◦ exp(ν)− τ ◦ exp(κ)(ν − κ) ≥ φ(expκ) exp(κ),

where φ(expκ) ∈
[
τ

′
− (expκ) , τ

′
+ (expκ)

]
for any

ν, κ ∈ (lnκ1, lnκ2).

The following inequality of Hermite-Hadamard
type for GA-convex functions holds (see [31] for
an extension for GA h-convex functions):

Theorem 4. [31] Let τ : I ⊆ (0,∞) → R be a
GA-convex function and κ1,κ2 ∈ I with κ1 < κ2.
If τ ∈ L ([κ1,κ2]) , then the following inequalities
hold:

τ (
√
κ1κ2) ≤

1

lnκ2 − lnκ1

∫ κ1

κ2

τ (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2
. (17)

The notion of geometrically symmetric functions
was introduced in [25].

Definition 2. [25] A function r : [κ1,κ2] ⊆
(0,∞) → R is geometrically symmetric with re-
spect to (0,∞) , if

r (ν) = r
(κ1κ2

ν

)
holds for all ν ∈ [κ1,κ2].

Fejér type inequalities using GA-convex functions
using geometrically symmetric functions were pre-
sented in Latif et al. [25].

Theorem 5. [25] Let τ : I ⊆ (0,∞) → R be a
GA-convex function and κ1,κ2 ∈ I with κ1 < κ2.
If τ ∈ L ([κ1,κ2]) and r : [κ1,κ2] ⊆ (0,∞) → R
is nonnegative, integrable and geometrically sym-
metric with respect to

√κ1κ2, then

τ (
√
κ1κ2)

∫ κ1

κ2

r (ν)

ν
dν ≤

∫ κ1

κ2

τ (ν) r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ1

κ2

r (ν)

ν
dν. (18)

Suppose that τ : I ⊆ (0,∞) → R is GA-convex
on I and κ1,κ2 ∈ I, let H,F ,κ∈,Ir : [0, 1] → R
be defined by

H (α) :=
1

lnκ2 − lnκ1

∫ κ2

κ1

1

ν
τ
(
να (

√
κ1κ2)

1−α
)
dν,

F(α) :=
1

lnκ2 − lnκ1

∫ κ2

κ1

∫ κ2

κ1

1

νκ
τ
(
νακ1−α

)
dνdκ,

P(α) :=
1

2(lnκ2 − lnκ1)

×
∫ κ2

κ1

1

ν

[
τ

(
κ

1+α
2

2 ν
1−α
2

)
+ τ

(
κ

1+α
2

1 ν
1−α
2

)]
dν

and

Ir(α) :=
1

2

κ2∫
κ1

[
τ
(
(
√
κ1ν)

α (
√
κ1κ2)

1−α
)

+τ
(
(
√
νκ2)

α (
√
κ1κ2)

1−α
)] r (ν)

ν
dν,

where r : [κ1,κ2] ⊆ (0,∞) → R is nonnegative,
integrable and geometrically symmetric with re-
spect to

√κ1κ2.
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Latif et al. [21] obtained the following refinements
for the inequalities (17):

Theorem 6. [21] Let the function τ : I ⊆
(0,∞) → R be as above. Then

(i) H is GA-convex on [0, 1].
(ii) We have

inf
α∈[0,1]

H(α) = H(0) = τ (
√
κ1κ2)

and

sup
α∈[0,1]

H(α) = H(1) =
1

lnκ2 − lnκ1

∫ κ2

κ1

τ(ν)

ν
dν.

(iii) H increases monotonically on [0, 1].

The following theorem holds:

Theorem 7. [21] Let τ : [κ1,κ2] ⊆ (0,∞) → R
be as above. Then

(i) F(α+ 1
2) = F(12 − α) for all α in [0, 12 ].

(ii) F is GA-convex on [0, 1].
(iii) We have

sup
α∈[0,1]

F(α) = F(0) = F(1)

=
1

(lnκ2 − lnκ1)
2

∫ κ2

κ1

1

ν
τ (ν) dν

and

inf
α∈[0,1]

F(α) = F
(
1

2

)
=

1

lnκ2 − lnκ1

∫ κ2

κ1

∫ κ2

κ1

1

νκ
τ
(√

νκ
)
dνdκ.

(iv) The inequality

τ
(√

νκ
)
≤ F

(
1

2

)
is valid.

(v) F decreases monotonically on [0, 12 ] and

increases monotonically on
[
1
2 , 1
]
.

(vi) The inequality H(α) ≤ F(α) holds true
for all α ∈ [0, 1].

Theorem 8. [21] Let P : [0, 1] → R and
τ : [κ1,κ2] ⊂ (0,∞) → R be defined as above.
Then

(i) P is GA-convex on (0, 1].
(ii) The following hold:

inf
α∈[0,1]

P(α) = P(0) =
1

lnκ2 − lnκ1

∫ κ2

κ1

τ(ν)

ν
dν

and

sup
α∈[0,1]

P(α) = P(1) =
τ(κ1) + τ(κ2)

2
.

(iii) P increases monotonically on [0, 1].

Theorem 9. [27] Let τ, r, Ir be defined as above.
Then Ir is GA-convex, increasing on [0, 1] and for

all α ∈ [0, 1] , we have the following Fejér type in-
equalities:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Ir (0) ≤ Ir (α)

≤ Ir (1) =
1

2

∫ κ2

κ1

[τ (
√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν.

(19)

Mathematical inequalities are very useful tools in
establishing a number of important results in var-
ious branches of mathematical and physical sci-
ences. Later on, mathematicians observed that
the convexity plays an important role to prove
novel results in theory of inequalities. Moreover,
over the past three decades researchers are trying
to generalize the classical convexity notion and
convex functions so that they can prove new gen-
eralized and novel results in the field of mathe-
matical inequalities that can also serve as refine-
ments of previously proven results.

Indeed there are several generalizations of the
classical convexity and convex functions in
classical sense but one of them is know as
the geometrically-arithmetically convexity (GA-
covexity) and geometrically-arithmetically convex
functions (GA-covex functions). Using the no-
tion of GA-covexity, Noor et al. [31] and Latif et
al. [25] proved results of Hermite-Hadamard and
Féjer type.

The study explores a recent research study that
builds upon previous work and offers fresh in-
sights. Using their knowledge of studies con-
ducted in [10–15, 17, 18, 34–39, 41–45], we define
new mappings pertaining to two specific inequal-
ities, namely (17) and (18). We then utilize these
mappings to establish new Féjer type inequali-
ties for GA-convex functions, employing innova-
tive techniques and a variant of Lemma 4 for GA-
convex functions to achieve results that refine (17)
and (18) that are variants of inequalities given
in Theorems 1 and Theorem 2. The researchers
also highlight the implications of their findings
and suggest future research directions, underscor-
ing their commitment to advancing the field and
making meaningful contributions.

2. Main Results

Let τ : [κ1,κ2] ⊂ (0,∞) → R be a GA-convex
mapping and let G, Q, H, Hr, Ir, P, Pr, N ,
Sr : [0, 1] → R be defined by

G(α) := 1

2

[
τ
(
κα
1 (

√
κ1κ2)

1−α
)
+ τ

(
κα
2 (

√
κ1κ2)

1−α
)]

,

Q(α) :=
1

2

[
τ
(
κα
1 κ

1−α
2

)
+ τ

(
κ2κ1−α

1

)]
,
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H (α) :=
1

lnκ2 − lnκ1

∫ κ2

κ1

1

ν
τ
(
να (

√
κ1κ2)

1−α
)
dν,

Hr(α) :=

∫ κ2

κ1

τ
(
να (

√
κ1κ2)

1−α
) r (ν)

ν
dν,

Pr(α) :=
1

2

∫ κ2

κ1

[
τ
(
κ

1+α
2

1 ν
1−α
2

) r
(√κ1ν

)
ν

+τ
(
κ

1+α
2

2 ν
1−α
2

) r
(√

νκ2

)
ν2

]
dν,

N (α) :=
1

2

∫ κ2

κ1

[
τ
(
κα
1 (

√
κ1ν)

1−α
)

+τ
(
κα
2 (

√
νκ2)

1−α
)] r (ν)

ν
dν,

L(α) := 1

2 (lnκ2 − lnκ1)

×
∫ κ2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
2 ν

1−α
)] dν

ν
,

Lr(α) :=
1

2

∫ κ2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
2 ν

1−α
)] r (ν)

ν
dν

and

Sr (α) :=
1

2

∫ κ2

κ1

[
τ
(
κα
1 (

√
κ1ν)

1−α
)

+ τ
(
κα
1 (

√
νκ2)

1−α
)
+ τ

(
κα
2 (

√
κ1ν)

1−α
)

+τ
(
κα
2 (

√
νκ2)

1−α
)] r (ν)

ν
dν.

Remark 3. It should be noted that H = Hr = Ir,
P = Pr = N and L = Lr = Sr on [0, 1] when we
take r (ν) = 1

lnκ2−lnκ1
, ν ∈ [κ1,κ2].

In order to obtain the results of this section the
author proved the following important lemma:

Lemma 4. [27] Let τ : [κ1,κ2] ⊂ (0,∞) → R
be a GA-convex function and let κ1 ≤ κ1 ≤ ν1 ≤
ν2 ≤ κ2 ≤ κ2 with ν1ν2 = κ1κ2. Then

τ (ν1) + τ (ν2) ≤ τ (κ1) + τ (κ2) .

The assumptions in Lemma 4 can be weakened as
in the following lemma:

Lemma 5. Let τ : [κ1,κ2] ⊂ (0,∞) → R be
a GA-convex function and let κ1 ≤ κ1 ≤ ν1 ≤
κ2 ≤ κ2 and κ1 ≤ κ1 ≤ ν2 ≤ κ2 ≤ κ2 with
ν1ν2 = κ1κ2. Then

τ (ν1) + τ (ν2) ≤ τ (κ1) + τ (κ2) .

We also need the following new lemma to prove
our main results.

Lemma 6. Let τ , G, Q be defined as above. Then
Q is symmetric about 1

2 , Q is decreasing on
[
0, 12
]

and increasing on
[
1
2 , 1
]
. Moreover the following

inequalities hold:

G (2α) ≤ Q (α) , α ∈
[
0,

1

4

]
, (20)

G (2α) ≥ Q (α) , α ∈
[
1

4
,
1

2

]
, (21)

G (2 (1− α)) ≥ Q (α) , α ∈
[
1

2
,
3

4

]
(22)

and

G (2 (1− α)) ≤ Q (α) , α ∈
[
3

4
, 1

]
. (23)

Proof. The GA-convexity of Q(α) on (0, 1] fol-
lows from the GA-convexity of τ on [κ1,κ2]. It
is clear that Q(α) is symmetric about 1

2 . Let

0 < α1 < α2 ≤ 1
2 ≤ α3 < α4 ≤ 1, then according

to Lemma 4, the following inequalities hold:
The inequality

τ
(
κα2
2 κ1−α2

1

)
+ τ

(
κα2
1 κ1−α2

2

)
≤ τ

(
κα1
2 κ1−α1

1

)
+ τ

(
κα1
1 κ1−α1

2

)
holds for ν1 = κα2

2 κ1−α2
1 , ν2 = κα2

1 κ1−α2
2 , κ1 =

κα1
2 κ1−α1

1 , κ2 = κα1
1 κ1−α1

2 .
The inequality

τ
(
κα3
2 κ1−α3

1

)
+ τ

(
κα3
1 κ1−α3

2

)
≤ τ

(
κα4
2 κ1−α4

1

)
+ τ

(
κα4
1 κ1−α4

2

)
holds for ν1 = κα3

2 κ1−α3
1 , ν2 = κα3

1 κ1−α3
2 , κ1 =

κα4
2 κ1−α4

1 , κ2 = κα4
1 κ1−α4

2 .
Thus, Q is decreasing on

[
0, 12
]
and increasing on[

1
2 , 1
]
.

Now, we consider the following two cases:
Case 1. α ∈

[
0, 14
]

By choosing ν1 = κ2α
1

(√κ1κ2

)2α−1
, ν2 =

κ2α
2

(√κ1κ2

)2α−1
, κ1 = κα

2κ
1−α
1 , κ2 = κα

1κ
1−α
2

in Lemma 4, we get

τ
(
κ2α
1 (

√
κ1κ2)

2α−1
)
+ τ

(
κ2α
2 (

√
κ1κ2)

2α−1
)

≤ τ
(
κα
2κ1−α

1

)
+ τ

(
κα
1κ1−α

2

)
for all α ∈

[
0, 14
]
.

Case 2. α ∈
[
1
4 ,

1
2

]
By choosing ν1 = κα

2κ
1−α
1 , ν2 = κα

1κ
1−α
2 ,

κ1 = κ2α
1

(√κ1κ2

)2α−1
, κ2 = κ2α

2

(√κ1κ2

)2α−1

in Lemma 4, we get

τ
(
κα
2κ1−α

1

)
+ τ

(
κα
1κ1−α

2

)
≤ τ

(
κ2α
1 (

√
κ1κ2)

2α−1
)
+τ
(
κ2α
2 (

√
κ1κ2)

2α−1
)

for all α ∈
[
1
4 ,

1
2

]
.

Thus (20) and (21) are established. Using the
symmetricity of Q, (22) and (23) follow from (20)
and (21), respectively. □

The author skillfully utilized Lemma 4 to obtain
refined versions of Fejér type inequalities (18).
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These refined inequalities not only extend the
mappings related to (18), but also provide valu-
able insights into their properties. Overall, the
author’s work represents an important contribu-
tion to the field of inequalities.

Theorem 10. [28] Let τ , Hr, Pr and r be de-
fined as above. Then

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν = Hr (0) ≤ Hr (α)

≤ Hr (1) =

∫ κ2

κ1

τ (ν) r (ν)

ν
dν = Pr (0) ≤ Pr (α)

≤ Pr (1) =
τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (24)

Theorem 11. [27] Let τ , Ir, N and r be defined
as above. Then

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Ir (0) ≤ Ir (α)

≤ Ir (1) =
1

2

∫ κ2

κ1

[τ (
√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

= N (0) ≤ N (α) ≤ N (1)

=
τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (25)

Corollary 1. [27] Let τ , r be defined as above.
Then, we have

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤
τ

(
κ

1
4
1 κ

3
4
2

)
+ τ

(
κ

3
4
1 κ

1
4
2

)
2

∫ κ2

κ1

r (ν)

ν
dν

≤ 1

2

∫ κ2

κ1

[τ (
√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

≤ 1

2

[
τ (

√
κ1κ2) +

τ (κ1) + τ (κ2)

2

] ∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (26)

Theorem 12. [29] Let τ , r, G, Sr, Lr be defined
as above. Then, we have the following results:

(i) Lr is GA-convex on (0, 1].

(ii) The following inequalities hold for all α ∈
[0, 1]:

Hr (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Lr (α) ≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν, (27)

Sr (1− α) ≤ Lr (α) (28)

and

Sr (α) + Sr (1− α)

2
≤ Lr (α) . (29)

(iii) The following bound holds true:

sup
α∈[0,1]

Lr (α) =
τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν.

(30)

Theorem 13. [29] Let τ , r, G, Ir, Sr be defined
as above. Then, we have the following results:

(i) Sr is convex on [0, 1].
(ii) The following inequalities hold for all α ∈

[0, 1]:

Ir (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Sr (α)

≤ (1− α) · 1
2

∫ κ2

κ1

[τ (
√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν, (31)

Ir (1− α) ≤ Sr (α) (32)

and

Ir (α) + Ir (1− α)

2
≤ Sr (α) . (33)

(iii) The following identity holds true:

sup
α∈[0,1]

Sr (α) =
τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν.

(34)

Now, we can prove a new variant of Theorem 1
for GA-convex functions.

Theorem 14. Let τ , r, G, H, Pr, Lr and Sr be
defined as above. Then
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(i) The inequalities

∫ κ2

κ1

τ (ν) r (ν)

ν
dν ≤ 2

∫ κ
3
4
1 κ

1
4
2

κ1

τ (ν)
r
(

ν2

κ1

)
ν

dν

+

∫ κ2

κ
1
4
1 κ

3
4
2

τ (ν)
r
(

ν2

κ2

)
ν

dν


≤
∫ 1

0
Pr (α) dα ≤ 1

2

[∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+
τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

]
(35)

hold.
(ii) The inequalities

Lr (α) ≤ Pr (α) ≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (36)

and

0 ≤ N (α)− G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν −N (α) (37)

hold for all α ∈ [0, 1].
(iii) If τ is differentiable on [κ1,κ2] , then we

have the following inequalities:

0 ≤ α

[
1

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν − τ (

√
κ1κ2)

]
× inf

ν∈[κ1,κ2]
r (ν) ≤ Pr (α)−

∫ κ2

κ1

τ (ν) r (ν)

ν
dν,

(38)

0 ≤ Pr (α)− τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν, (39)

0 ≤ Lr (α)−Hr (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν, (40)

0 ≤ Pr (α)− Lr (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν, (41)

0 ≤ Pr (α)−Hr (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν, (42)

0 ≤ N (α)− Ir (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν (43)

and

0 ≤ Sr (α)− Ir (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν (44)

hold for all α ∈ [0, 1].

Proof. (i) By using integration techniques and
the assumptions on r, we get the following iden-
tities:∫ κ2

κ1

τ (ν) r (ν)

ν
dν

=

∫ √κ1κ2

κ1

∫ 1
2

0

[
τ (ν) + τ

(κ1κ2

ν

)]
× r (ν)

ν
dαdν, (45)

2

∫ κ
3
4
1 κ

1
4
2

κ1

τ (ν)
r
(

ν2

κ1

)
ν

dν +

∫ κ2

κ
1
4
1 κ

3
4
2

τ (ν)
r
(

ν2

κ2

)
ν

dν


= 2

∫ κ
3
4
1 κ

1
4
2

κ1

[
τ (ν) + τ

(κ1κ2

ν

)] r ( ν2

κ1

)
ν

dν

= 2

∫ √κ1κ2

κ1

∫ 1
2

0

[
τ (

√
κ1ν) + τ

(√
κ1κ2

2

ν

)]

× r (ν)

ν
dαdν, (46)
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∫ 1

0
Pr (α) dα =

∫ √κ1κ2

κ1

∫ 1

0
τ
(
κα
1 ν

1−α
) r (ν)

ν
dαdν

+

∫ κ2

√κ1κ2

∫ 1

0
τ
(
κα
2 ν

1−α
) r (ν)

ν
dαdν

=

∫ √κ1κ2

κ1

∫ 1

0
τ
(
κα
1 ν

1−α
) r (ν)

ν
dαdν

+

∫ √κ1κ2

κ1

∫ 1

0
τ

(
κα
2

(κ1κ2

ν

)1−α
)

r (ν)

ν
dαdν

=

∫ √κ1κ2

κ1

∫ 1
2

0

[
τ
(
κ1−α
1 να

)
+ τ

(
κα
1 ν

1−α
)] r (ν)

ν
dαdν

+

∫ √κ1κ2

κ1

∫ 1

0

[
τ

(
κα
2

(κ1κ2

ν

)1−α
)

+τ
(
κ1−α
2

(κ1κ2

ν

)α)] r (ν)
ν

dαdν

(47)

and

1

2

[∫ κ2

κ1

τ (ν) r (ν)

ν
dν +

τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

]
=

∫ √κ1κ2

κ1

∫ 1
2

0
[τ (κ1) + τ (ν)]

r (ν)

ν
dαdν

+

∫ √κ1κ2

κ1

∫ 1
2

0

[
τ (κ2) + τ

(κ1κ2

ν

)] r (ν)
ν

dαdν.

(48)

According to Lemma 4, the following inequalities
hold for all α ∈

[
0, 12
]
and ν ∈

[
κ1,

√κ1κ2

]
:

The inequality

τ (ν) + τ
(κ1κ2

ν

)
≤ τ (

√
κ1ν) + τ

(√
κ1κ2

2

ν

)
(49)

holds with the choices ν1 = ν, ν2 = κ1κ2
ν , κ1 =

√κ1ν and κ2 =

√
κ1κ2

2
ν .

The inequality

τ (
√
κ1ν) ≤

1

2

[
τ
(
κ1−α
1 να

)
+ τ

(
κα
1 ν

1−α
)]

(50)

holds with the choices ν1 = ν2 =
√κ1ν, κ1 =

κ1−α
1 να and κ2 = κα

1 ν
1−α.

The inequality

τ

(√
κ1κ2

2

ν

)

≤ 1

2

[
τ

(
κα
2

(κ1κ2

ν

)1−α
)
+ τ

(
κ1−α
2

(κ1κ2

ν

)α) ]
(51)

holds with the choices ν1 = ν2 =

√
κ1κ2

2
ν , κ1 =

κα
2

(κ1κ2
ν

)1−α
and κ2 = κ1−α

2

(κ1κ2
ν

)α
.

The inequality

1

2

[
τ
(
κ1−α
1 να

)
+ τ

(
κα
1 ν

1−α
)]

≤ τ (κ1) + τ (ν)

2
(52)

holds with the choices ν1 = κ1−α
1 να, ν2 =(

κα
1 ν

1−α
)
, κ1 = κ1 and κ2 = ν.

The inequality

1

2

[
τ

(
κα
2

(κ1κ2

ν

)1−α
)
+ τ

(
κ1−α
2

(κ1κ2

ν

)α)]
≤

τ (κ2) + τ
(κ1κ2

ν

)
2

(53)

holds with the choices ν1 = κα
2

(κ1κ2
ν

)1−α
, ν2 =

κ1−α
2

(κ1κ2
ν

)α
, κ1 =

κ1κ2
ν and κ2 = κ2.

Multiplying the inequalities (49)-(53) by r(ν)
ν and

integrating them over α on
[
0, 12
]
and over ν on[

κ1,
√κ1κ2

]
and using identities (45)-(48), we de-

rive (35).
(ii) Using substitution rules for integration and
the assumptions on r, we have the following iden-
tities:

Pr (α) =

∫ √κ1κ2

κ1

τ
(
κα
1 ν

1−α
) r (ν)

ν
dν

+

∫ κ2

√κ1κ2

τ
(
κα
2 ν

1−α
) r (ν)

ν
dν

=

∫ √κ1κ2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
2

(κ1κ2

ν

)1−α
)]

× r (ν)

ν
dν (54)

and

Lr (α) =
1

2

[∫ √κ1κ2

κ1

τ
(
κα
1 ν

1−α
) r (ν)

ν
dν

+

∫ κ2

√κ1κ2

τ
(
κα
2 ν

1−α
) r (ν)

ν2
dν

]

+
1

2

[∫ √κ1κ2

κ1

τ
(
κα
2 ν

1−α
) r (ν)

ν
dν

+

∫ κ2

√κ1κ2

τ
(
κα
1 ν

1−α
) r (ν)

ν
dν

]
=

1

2
Pr (α)

+
1

2

∫ √κ1κ2

κ1

[
τ

(
κα
1

(κ1κ2

ν

)1−α
)

+τ
(
κα
2 ν

1−α
)] r (ν)

ν
dν (55)

for all α ∈ [0, 1].

By choosing ν1 = κα
1

(κ1κ2
ν

)1−α
, ν2 = κα

2 ν
1−α,

κ1 = κα
1 ν

1−α, κ2 = κα
1

(κ1κ2
ν

)1−α
in Lemma 5,
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we observe that the inequality:

τ

(
κα
1

(κ1κ2

ν

)1−α
)
+ τ

(
κα
2 ν

1−α
)

≤ τ
(
κα
1 ν

1−α
)
+ τ

(
κα
1

(κ1κ2

ν

)1−α
)

(56)

holds for all α ∈ [0, 1] and ν ∈
[
κ1,

√κ1κ2

]
.

Multiplying the inequality (56) by r(ν)
ν , integrat-

ing both sides over ν on
[
κ1,

√κ1κ2

]
and using

identities (54) and (55), we derive the first in-
equality of (36). The second and third inequali-
ties of (36) can be obtained by the GA-convexity
of τ and (18).
Using substitution rules for integration and the
hypothesis of r, we have the following identity:

N (α) =
1

2

∫ κ2

κ1

[
τ
(
κα
1 (

√
κ1ν)

1−α
)

+τ

κα
2

(√
κ1κ2

2

ν

)1−α
 r (ν)

ν
dν

=

∫ √κ1κ2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
1

(κ1κ2

ν

)1−α
)]

×
r
(

ν2

κ1

)
ν

dν =

∫ κ
3
4
1 κ

1
4
2

κ1

[
τ
(
κα
1 ν

1−α
)

+τ

κα
1

(√
κ3
1κ2

ν

)1−α
+τ

(
κα
2

(
ν

√
κ2

κ1

)1−α
)

+τ

(
κα
2

(κ1κ2

ν

)1−α
)] r ( ν2

κ1

)
ν

dν (57)

for all α ∈ [0, 1].

By Lemma 4, the following inequalities hold for

all α ∈ [0, 1] and ν ∈
[
κ1,κ

3
4
1 κ

1
4
2

]
:

The inequality

τ
(
κα
1 ν

1−α
)
+ τ

κα
1

(√
κ3
1κ2

ν

)1−α


≤ τ (κ1) + τ
(
κα
1 (

√
κ1κ2)

1−α
)

(58)

holds for ν1 = κα
1 ν

1−α, ν2 = κα
1

(√
κ3
1κ2

ν

)1−α

,

κ1 = κ2 and κ2 = κα
1

(√κ1κ2

)1−α
.

The inequality

τ

(
κα
2

(
ν

√
κ2

κ1

)1−α
)

+ τ

(
κα
2

(κ1κ2

ν

)1−α
)

≤ τ (κ2) + τ
(
κα
2 (

√
κ1κ2)

1−α
)

(59)

holds for ν1 = κα
2

(
ν
√

κ2
κ1

)1−α
, ν2 =

κα
2

(κ1κ2
ν

)1−α
, κ1 = κ2 and κ2 = κα

2

(√κ1κ2

)1−α
.

Multiplying the inequalities (58)-(59) by
r
(

ν2

κ1

)
ν

and integrating them over ν on

[
κ1,κ

3
4
1 κ

1
4
2

]
and

using (57), we have

N (α) ≤ 1

2

[
τ (κ1) + τ (κ2)

2
+ G (α)

]
×
∫ κ2

κ1

r (ν)

ν
dν (60)

for all α ∈ [0, 1]. The second inequality in (37) is
a consequence of (60).
Applying Lemma 4, we observe that the inequal-
ity:

τ
(
κα
1 (

√
κ1ν)

1−α
)
+ τ

(
κα
2 (

√
κ1κ2)

1−α
)

≤ τ
(
κα
1 ν

1−α
)
+ τ

(
κα
2

(κ1κ2

ν

)1−α
)

(61)

holds for all α ∈ [0, 1] and ν ∈
[
κ1,

√κ1κ2

]
when ν1 = κα

1

(√κ1ν
)
, ν2 = κα

2

(√κ1κ2

)1−α
,

κ1 = κα
1 ν

1−α and κ2 =
α
(κ1κ2

ν

)1−α
.

Multiplying the inequalities (61) by
r
(

ν2

κ1

)
ν and in-

tegrating them over ν on
[
κ1,

√κ1κ2

]
and using

the first part of the identity (57), we get (37).

(iii) Integrating by parts, we have

1

lnκ2 − lnκ1

∫ √κ1κ2

κ1

1

ν
(lnκ1 − ln ν)

×
[
ντ

′
(ν)− κ1κ2

ν
τ

′
(κ1κ2

ν

)]
dν

=
1

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν

− τ (
√
κ1κ2) . (62)

Using substitution rules for integration, we have
the following identity:

1

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν =

1

lnκ2 − lnκ1

×
∫ √κ1κ2

κ1

1

ν

[
τ (ν) + τ

(κ1κ2

ν

)]
dν. (63)

Since τ : [κ1,κ2] → R is harmonic convex on
[κ1,κ2], hence g : [lnκ1, lnκ2] defined by g (ν) :=
τ ◦ exp (ν) is convex on [lnκ1, lnκ2].
Using the convexity of g and the fact that r (ν) ≥
0 on [lnκ1, lnκ2], the inequality
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[g (α lnκ1 + (1− α) ν)− g (ν)] r (ln ν)

+ [g (α lnκ2 + (1− α) (lnκ1 + lnκ2 − ν))

−g (lnκ1 + lnκ2 − ν)] r (ln ν)

≥ α (lnκ1 − ν) g
′
(ν) r (ln ν)

+ α (ν − lnκ1) g
′
(lnκ1 + lnκ2 − ν) r (ln ν)

= α (ν − lnκ1)

×
[
g
′
(lnκ1 + lnκ2 − ν)− g

′
(ν)
]
r (ln ν) (64)

holds for all α ∈ [0, 1] and ν ∈
[
lnκ1,

lnκ1+lnκ2
2

]
.

The inequality (64) can be re-written as

[
τ
(
κα
1 ν

1−α
)
− τ (ν)

] r (ν)
ν

+

[
τ

(
κα
2

(κ1κ2

ν

)1−α
)
− τ

(κ1κ2

ν

)] r (ν)
ν

≥ να (ln ν − lnκ1) τ
′
(ν)

r (ν)

ν

− α (ln ν − lnκ1)
κ1κ2

ν
τ

′
(κ1κ2

ν

) r (ν)

ν
= α (ln ν − lnκ1)

×
[
ντ

′
(ν)− κ1κ2

ν
τ

′
(κ1κ2

ν

)] r (ν)
ν

≥ α (ln ν − lnκ1)

×
[
ντ

′
(ν)− κ1κ2

ν
τ

′
(κ1κ2

ν

)]
× 1

ν
inf

ν∈[κ1,κ2]
r (ν) (65)

for all α ∈ [0, 1] and ν ∈
[
κ1,

√κ1κ2

]
.

Integrating the above inequality over ν on[
κ1,

√κ1κ2

]
, multiplying both sides by 1

lnκ2−lnκ1

and using (17), (54), (63) and (65), we derive (38).
We also observe that

g (lnκ1)− g
(
lnκ1+lnκ2

2

)
2

∫ lnκ2

lnκ1

r (ln ν) dν

≤ 1

2

(
lnκ1 −

lnκ1 + lnκ2

2

)
× g

′
(lnκ1)

∫ lnκ2

lnκ1

r (ln ν) dν

=

(
lnκ1 − lnκ2

4

)
g
′
(lnκ1)

∫ lnκ2

lnκ1

r (ln ν) dν

(66)

and

g (lnκ2)− g
(
lnκ1+lnκ2

2

)
2

∫ lnκ2

lnκ1

r (ln ν) dν

≤ 1

2

(
lnκ2 −

lnκ1 + lnκ2

2

)
× g

′
(lnκ2)

∫ lnκ2

lnκ1

r (ln ν) dν

=

(
lnκ2 − lnκ1

4

)
g
′
(lnκ2)

∫ lnκ2

lnκ1

r (ln ν) dν.

(67)

Adding (66) and (67), we get

g (lnκ1) + g (lnκ2)

2

∫ lnκ2

lnκ1

r (ln ν) dν

− g

(
lnκ1 + lnκ2

2

)∫ lnκ2

lnκ1

r (ln ν) dν

≤
(lnκ2 − lnκ1)

(
g
′
(lnκ2)− g

′
(lnκ1)

)
4

×
∫ lnκ2

lnκ1

r (ln ν) dν. (68)

The inequality (68) is equivalent to

τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

− τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

×
∫ κ2

κ1

r (ν)

ν
dν. (69)

Finally, inequalities (39)-(44) follow from inequal-
ities (24), (25), (27), (31), (36) and (69). □

Corollary 2. If r (ν) = 1
lnκ2−lnκ1

, ν ∈ [κ1,κ2],
then Hermite-Hadamard-type inequalities, that
are obvious consequences of Theorem 14, are
given as follows:

(i) The inequalities

1

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν

≤ 2

lnκ2 − lnκ1
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×

∫ κ
3
4
1 κ

1
4
2

κ1

τ (ν)

ν
dν +

∫ κ2

κ
1
4
1 κ

3
4
2

τ (ν)

ν
dν


≤
∫ 1

0
P (α) dα

≤ 1

2

[
1

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν

+
τ (κ1) + τ (κ2)

2

]
(70)

hold.
(ii) The inequalities

L (α) ≤ P (α)

≤ 1− α

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(71)

and

0 ≤ P (α)−G (α) ≤ τ (κ1) + τ (κ2)

2
−P (α) (72)

hold for all α ∈ [0, 1].
(iii) If τ is differentiable on [κ1,κ2], then we

have the inequalities:

0 ≤ α
1

lnκ2 − lnκ1

[
1

lnκ2 − lnκ1

×
∫ κ2

κ1

τ (ν)

ν
dν − τ (

√
κ1κ2)

]
≤ P (α)

− 1

lnκ2 − lnκ1

∫ κ2

κ1

τ (ν)

ν
dν, (73)

0 ≤ P (α)− τ (
√
κ1κ2)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

, (74)

0 ≤ L (α)−H (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

, (75)

0 ≤ P (α)− L (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

(76)

and

0 ≤ P (α)−H (α)

≤
(lnκ2 − lnκ1)

(
κ2τ

′
(κ2)− κ1τ

′
(κ1)

)
4

, (77)

hold for all α ∈ [0, 1].

Remark 4. The inequality (35) gives a new re-
finement of the Fejér’s inequality (18).

Remark 5. The inequality (36) refines the Fejér-
type inequality (27).

In the next theorem, we point out some inequali-
ties for the functions G, Q, Hr, Pr, Sr considered
above.

Theorem 15. Let τ , r, G, Q, Hr, Pr, Sr be de-
fined as above. Then the following Fejér type in-
equalities hold true:

(i) The inequalities

Hr (α) ≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν, (78)

hold for α ∈
[
0, 13
]
and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Pr (α) , (79)

hold for α ∈
[
1
3 , 1
]
.

(ii) The inequalities

0 ≤ Sr (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ 1

2

[
τ (κ1) + τ (κ2)

2
+Q (α)

]
×
∫ κ2

κ1

r (ν)

ν
dν + Sr (α) , (80)

hold for all α ∈ [0, 1].

Proof. (i) Here we consider the following two
cases:

Case 1. α ∈
[
0, 13
]
.

Using substitution rules for integration and the
hypothesis of r, we have the following identity:

Hr (α) =

∫ √κ1κ2

κ1

[
τ
(
να (

√
κ1κ2)

1−α
)

+τ
((κ1κ2

ν

)α
(
√
κ1κ2)

1−α
)] r (ν)

ν
dν. (81)
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We observe that the following inequality is a re-
sult of application of Lemma 4:

The inequality

τ
(
να (

√
κ1κ2)

1−α
)
+τ
((κ1κ2

ν

)α
(
√
κ1κ2)

1−α
)

≤ τ
(
κ1−α
1 κα

2

)
+ τ

(
κα
1κ1−α

2

)
(82)

holds for ν1 = να
(√κ1κ2

)1−α
, ν2 =(κ1κ2

ν

)α (√κ1κ2

)1−α
, κ1 = κ1−α

1 κα
2 , κ2 =

κα
1κ

1−α
2 in Lemma 4, where α ∈

[
0, 13
]

and

ν ∈
[
κ1,

√κ1κ2

]
.

Multiplying the inequality (82) by r(ν)
ν , integrat-

ing both sides over ν on
[
κ1,

√κ1κ2

]
and using

identity (81), we derive the first inequality of (78).
From Lemma 6, we get that

sup
α∈[0, 12 ]

Q (α) =
τ (κ1) + τ (κ2)

2
.

Thus the second inequality in (78) is established.
Case 2. α ∈

[
1
3 , 1
]
.

By choosing ν1 = κα
1κ

1−α
2 , ν2 = κ1−α

1 κα
2 , κ1 =

κα
1 ν

1−α, κ2 = κα
2

(κ1κ2
ν

)1−α
in Lemma 6, where

α ∈
[
1
3 , 1
]
and ν ∈

[
κ1,

√κ1κ2

]
, we get

τ
(
κα
1κ1−α

2

)
+ τ

(
κ1−α
1 κα

2

)
≤ τ

(
κα
1 ν

1−α
)
+ τ

(
κα
2

(κ1κ2

ν

)1−α
)
. (83)

Multiplying the inequality (83) by r(ν)
ν , integrat-

ing both sides over ν on
[
κ1,

√κ1κ2

]
and using

identity (54), we derive the second inequality of
(79). From Lemma 6, we get that

inf
α∈[ 12 ,1]

Q (α) = τ (
√
κ1κ2) .

Thus the first inequality in (79) is also achieved.
(ii) Using substitution rules for integration and
the hypothesis of r, we have the following iden-
tity:

2Sr =

∫ √κ1κ2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
2 ν

1−α
)]

×
r
(

ν2

κ1

)
ν

dν +

∫ κ2

√κ1κ2

[
τ
(
κα
1 ν

1−α
)

+τ
(
κα
2 ν

1−α
)] r ( ν2

κ2

)
ν

dν

=

∫ √κ1κ2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
2 ν

1−α
)

+ τ

(
κα
1

(κ1κ2

ν

)1−α
)

+τ

(
κα
2

(κ1κ2

ν

)1−α
)] r ( ν2

κ1

)
ν

dν

=

∫ κ
3
4
1 κ

1
4
2

κ1

[
τ
(
κα
1 ν

1−α
)
+ τ

(
κα
1

(
ν

√
κ2

κ1

)1−α
)

+ τ

κα
1

(√
κ3
1κ2

ν

)1−α


+ τ

(
κα
1

(κ1κ2

ν

)1−α
)
+ τ

(
κα
2 ν

1−α
)

+τ

κα
2

(√
κ3
1κ2

ν

)1−α
+τ

(
κα
2

(
ν

√
κ2

κ1

)1−α
)

+τ

(
κα
2

(κ1κ2

ν

)1−α
)] r ( ν2

κ1

)
ν

dν. (84)

By using Lemma 4, we observe that the follow-
ing inequality holds for all α ∈ [0, 1] and ν ∈[
κ1,κ

3
4
1 κ

1
4
2

]
:

The inequality

τ
(
κα
1 ν

1−α
)
+ τ

κα
1

(√
κ3
1κ2

ν

)1−α


≤ τ (κ1) + τ
(
κα
1 (

√
κ1κ2)

1−α
)

(85)

holds for ν1 = κα
1 ν

1−α, ν2 = κα
1

(√
κ3
1κ2

ν

)1−α

,

κ1 = κ1 and κ2 = κα
1

(√κ1κ2

)1−α
.

The inequality

τ

(
κα
1

(
ν

√
κ2

κ1

)1−α
)

+ τ

(
κα
1

(κ1κ2

ν

)1−α
)

≤ τ
(
κα
1 (

√
κ1κ2)

1−α
)
+ τ

(
κα
1κ1−α

2

)
(86)

holds for ν1 =,κα
1

(
ν
√

κ2
κ1

)1−α
, ν2 =

κα
1

(κ1κ2
ν

)1−α
, κ1 = κα

1

(√κ1κ2

)1−α
and κ2 =

κα
1κ

1−α
2 .

The inequality
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τ
(
κα
2 ν

1−α
)
+ τ

κα
2

(√
κ3
1κ2

ν

)1−α


≤ τ
(
κα
2κ1−α

1

)
+ τ

(
κα
2 (

√
κ1κ2)

1−α
)

(87)

holds for ν1 = κα
2 ν

1−α, ν2 = κα
2

(√
κ3
1κ2

ν

)1−α

,

κ1 = κα
2κ

1−α
1 and κ2 = κα

2

(√κ1κ2

)1−α
.

The inequality

τ

(
κα
2

(
ν

√
κ2

κ1

)1−α
)

+ τ

(
κα
2

(κ1κ2

ν

)1−α
)

≤ τ
(
κα
2 (

√
κ1κ2)

1−α
)
+ τ (κ2) (88)

holds for ν1 = κα
2

(
ν
√

κ2
κ1

)1−α
, ν2 =

κα
2

(κ1κ2
ν

)1−α
, κ1 = κα

2

(√κ1κ2

)1−α
and κ2 = κ2.

Multiplying the inequalities (85)-(88) by
r
(

ν2

κ1

)
ν

and integrating them over ν on
[
κ1,

√κ1κ2

]
and

using identity (84), we get

2Sr (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ 1

2

[
τ (κ1) + τ (κ2)

2
+Q (α)

]
×
∫ κ2

κ1

r (ν)

ν
dν, (89)

for all α ∈ [0, 1]. Using (31) and (89), we derive
(80). □

Corollary 3. Let r (ν) = 1
lnκ2−lnκ1

, ν ∈ [κ1,κ2]

in Theorem 15. Then Ir (α) = H (α), α ∈ [0, 1]
and therefore we observe that:

(i) The inequalities

H (α) ≤ Q (α) ≤ τ (κ1) + τ (κ2)

2
, (90)

hold for α ∈
[
0, 13
]
and

τ (
√
κ1κ2) ≤ Q (α) ≤ P (α) , (91)

hold for α ∈
[
1
3 , 1
]
.

(ii) The inequalities

0 ≤ L (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ 1

2

[
τ (κ1) + τ (κ2)

2
+Q (α)

]
+ L (α) , (92)

hold for all α ∈ [0, 1].

The following Fejér-type inequalities can be de-
duced from Theorems 5, 10, 12, 13, 14, 15, Corol-
lary 1 and Lemma 6 and we omit their proofs.

Theorem 16. Let τ , r, Hr, Pr, G, Ir, Lr, Sr be
defined as above. Then, the following inequalities
hold for all α ∈ [0, 1]:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Hr (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Sr (α) ≤ (1− α)

×
∫ κ2

κ1

[τ (
√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (93)

and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Ir (α) ≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Lr (α) ≤ Pr (α)

≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (94)

Theorem 17. Let τ , r, Hr, G, Ir, Q be defined
as above. Then, the following inequalities hold for
all α ∈

[
0, 14
]
:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Hr (α)

≤ Hr (2α) ≤ G (2α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (95)

and
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τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Ir (α)

≤ Ir (2α) ≤ Ir (2α)
∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (96)

Theorem 18. Let τ , r, Hr, Pr, G, Q, Lr, Sr be
defined as above. Then, the following inequalities
hold for all α ∈

[
1
4 ,

1
3

]
:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Hr (α) ≤ Q (α)

∫ κ2

κ1

r (ν)

ν2
dν

≤ G (2α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Lr (2α)

≤ Pr (2α) ≤ (1− 2α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (97)

and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Hr (α) ≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ G (2α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Sr (2α) ≤ (1− 2α)

×
∫ κ2

κ1

1

2
[τ (

√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (98)

Theorem 19. Let τ , r, Hr, Pr, G, Q, Lr, Sr be
defined as above. Then, the following inequalities
hold for all α ∈

[
1
3 ,

1
2

]
:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ G (2α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Lr (2α)

≤ Pr (2α) ≤ (1− 2α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν, (99)

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ G (2α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Sr (2α) ≤ (1− 2α)

×
∫ κ2

κ1

1

2
[τ (

√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (100)

and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ G (2α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Pr (α) ≤ Pr (2α)

≤ (1− 2α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (101)

Theorem 20. Let τ , r, Hr, Pr, G, Q, Lr, Sr be
defined as above. Then, the following inequalities
hold for all α ∈

[
1
2 ,

2
3

]
:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ G (2 (1− α))

∫ κ2

κ1

r (ν)

ν
dν
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≤ Lr (2 (1− α)) ≤ Pr (2 (1− α))

≤ (2α− 1)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ 2 (1− α) · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (102)

and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ G (2 (1− α))

∫ κ2

κ1

r (ν)

ν
dν

≤ Sr (2 (1− α)) ≤ (2α− 1)

×
∫ κ2

κ1

1

2
[τ (

√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

+ 2 (1− α) · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (103)

Theorem 21. Let τ , r, Hr, Pr, G, Q, Lr, Sr be
defined as above. Then, the following inequalities
hold for all α ∈

[
2
3 ,

3
4

]
:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ G (2 (1− α))

∫ κ2

κ1

r (ν)

ν
dν

≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Lr (α) ≤ Pr (α)

≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (104)

and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ G (2 (1− α))

∫ κ2

κ1

r (ν)

ν
dν

≤ G (α)

∫ κ2

κ1

r (ν)

ν
dν ≤ Sr (α) ≤ (1− α)

×
∫ κ2

κ1

1

2
[τ (

√
κ1ν) + τ (

√
νκ2)]

r (ν)

ν
dν

≤ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (105)

Theorem 22. Let τ , r, Hr, Pr, G, Q, Lr, Sr be
defined as above. Then, the following inequalities
hold for all α ∈

[
3
4 , 1
]
:

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν ≤ Hr (2 (1− α))

≤ G (2 (1− α))

∫ κ2

κ1

r (ν)

ν
dν ≤ Q (α)

∫ κ2

κ1

r (ν)

ν
dν

≤ Pr (α) ≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν (106)

and

τ (
√
κ1κ2)

∫ κ2

κ1

r (ν)

ν
dν

≤ Ir (2 (1− α)) ≤ G (2 (1− α))

∫ κ2

κ1

r (ν)

ν
dν

≤ Q (α)

∫ κ2

κ1

r (ν)

ν2
dν ≤ Pr (α)

≤ (1− α)

∫ κ2

κ1

τ (ν) r (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν

≤ τ (κ1) + τ (κ2)

2

∫ κ2

κ1

r (ν)

ν
dν. (107)

Corollary 4. Let τ , Q, G, H, P, L be defined as
above and r (ν) = 1

lnκ2−lnκ1
, then we have:

(i) The inequalities

τ (
√
κ1κ2) ≤ H (α) ≤ H (2α)

≤ G (2α) ≤ Q (α) ≤ τ (κ1) + τ (κ2)

2
(108)

hold for all α ∈
[
0, 14
]
.
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(ii) The inequalities

τ (
√
κ1κ2) ≤ H (α) ≤ Q (α)

≤ G (2α) ≤ L (2α) ≤ P (2α)

≤
(

1− 2α

lnκ2 − lnκ1

)∫ κ2

κ1

τ (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(109)

hold for all α ∈
[
1
4 ,

1
3

]
.

(iii) The inequalities

τ (
√
κ1κ2) ≤ Q (α) ≤ G (2α)

≤ L (2α) ≤ P (2α)

≤
(

1− 2α

lnκ2 − lnκ1

)∫ κ2

κ1

τ (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(110)

and

τ (
√
κ1κ2) ≤ Q (α) ≤ P (α)

≤ P (2α) ≤
(

1− 2α

lnκ2 − lnκ1

)∫ κ2

κ1

τ (ν)

ν
dν

+ 2α · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(111)

hold for all α ∈
[
1
3 ,

1
2

]
.

(iv) The inequalities

τ (
√
κ1κ2) ≤ Q (α) ≤ G (2 (1− α))

≤ L (2 (1− α)) ≤ P (2 (1− α))

≤
(

2α− 1

lnκ2 − lnκ1

)∫ κ2

κ1

τ (ν)

ν
dν

+ 2 (1− α) · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(112)

hold for all α ∈
[
1
2 ,

2
3

]
.

(v) The inequalities

τ (
√
κ1κ2) ≤ Q (α) ≤ G (2 (1− α))

≤ G (α) ≤ L (α) ≤ P (α)

≤
(

1− α

lnκ2 − lnκ1

)∫ κ2

κ1

τ (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(113)

hold for all α ∈
[
2
3 ,

3
4

]
.

(vi) The inequalities

τ (
√
κ1κ2) ≤ H (2 (1− α))

≤ G (2 (1− α)) ≤ Q (α) ≤ P (α)

≤
(

1− α

lnκ2 − lnκ1

)∫ κ2

κ1

τ (ν)

ν
dν

+ α · τ (κ1) + τ (κ2)

2

≤ τ (κ1) + τ (κ2)

2
(114)

hold for all α ∈
[
3
4 , 1
]
.

3. Conclusions

Overall, this paper aimed to introduce some new
mappings in connection with Hermite-Hadamard
and Fejér type integral inequalities which have
been proved using the GA-convex functions. As
a consequence, we obtained certain new inequali-
ties of the Fejér type that provided refinements
of the Hermite-Hadamard and Fejér type inte-
gral inequalities that have already been obtained.
We believe that these new techniques will be im-
portant tools for interested researcher for inves-
tigating various variational problems for differ-
ent types of convexities. We hope that this re-
search can motivate the researchers to demon-
strate new results for functions of two or more
variables by considering the GA-convexity and
coordinated GA-convex functions on a rectangle
from a plane.
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fonctions entiéres en particulier d’une function
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proximations in each iteration. The suggested design implemented to converts
the original problem into a minimization problem using feed forward type to
solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the
parameters of learning with highly precise. Examples are provided to portray
the efficiency and applicability of this technique. Comparisons with other de-
signs are also conducted to demonstrate the accuracy of the proposed design.

Keywords:
PDEs
Neural networks
BP-training algorithm
Unconstrained optimization
LM training algorithm
Convergence analysis

AMS Classification 2010:
78M32; 78M50; 68U99

1. Introduction

Partial differential equations (PDEs) based math-
ematical models can be used to describe a wide
variety of physical issues. The PDEs govern a
wide range of physical, chemical, and biological
events [1, 2]. A mathematical model is a con-
densed, mathematically stated depiction of phys-
ical reality. Nonlinear PDEs are also crucial for
study in a wide range of domains, including hy-
drodynamics, engineering, quantum field theory,
optics, plasma physics, etc [3–5]. Since they fre-
quently do not have exact solutions, numerical
techniques are used to approximate them.

In addition, many researchers have been solve
nonlinear PDEs by using homotopy analy-
sis method (HAM) [6], Homotopy perturba-
tion method (HPM) [7, 8], Variational Iteration
method (VIM) [9], and Adomain decomposition
methods (ADM) [10–17]. Moreover, a number of
methods, including numerical approach used to

solve different type of PDEs for more details see
[18–22], iterations, differential, and Laplace trans-
formation approaches, have been utilized to nu-
merically and analytically solve comparable types
of the wave-like and also heat-like problems. It
is important to use a suitable method for solv-
ing any equation or problem. In recent years
some authors used neural networks as an impor-
tant method to solve many of real-world prob-
lems because of their specification. Some authors
used ANNs for solving different types of differen-
tial equations such that Oraibi et. al. [23] first
gave the concept of solving ordinary differential
equations using a neural network by formulating
a trial solution of the differential equation. The
authors tested the applicability and accuracy of
their developed method not only for ordinary dif-
ferential equations but also for systems of cou-
pled differential equations. Further, the authors
compared their results with the results obtained
by using other numerical methods, and reported
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that developed ANN method is superior in terms
of memory requirements and accuracy.

Several attempts have been made to solve dif-
ferent types of differential equations using feed-
forward neural networks. Hussein and Mo-
hammed [24] reported a hybrid method by com-
bining optimization techniques with neural net-
works to solve high-order ordinary differential
equations. In a related work, Tawfiq and Hus-
sein [25] introduced a novel method for solving
boundary value problems using artificial neural
networks. They also implemented the method
for irregular domain boundaries with Dirichlet
as well as Neumann boundary conditions and
used for processing face recognition. Tawfiq [26]

solved initial and boundary value problems us-
ing a single-layer finite element neural network
and investigated the accuracy of the method for
nonlinear forward and inverse problem, and also
for a system of ordinary differential equations.
Salih and Tawfiq [27] presented a functionally
weighted neural network (FWNN) a new class of
artificial neural networks incorporating an infinite
number of nodes and showed that their new net-
work has superior extrapolation capability over
other networks then used to solve Troesch’s prob-
lem. Hussien et. al. [28] proposed an artifi-
cial neural networks-based deep neural network
and dropout to solve time dependent differen-
tial equations. The authors showed that artificial
neural network-based deep is very well approx-
imating dynamic systems represented by time-
dependent differential equations. Ali and Taw-

fiq [29] in their paper used artificial neural net-
works to approximate the solution of unsteady
state confined aquifer problem. The authors used
linear and non-linear terms in different types of
unsteady sate differential equations to illustrate
the accuracy of the method. Ali et. al. [30] pro-
posed feed forward neural network design for solv-
ing nonlinear second order, eigenvalue problem for
partial differential equation. They presented ex-
ample to show speed, accuracy and effectiveness
of applying neural network technique and found
their results more precise than other numerical
methods. The proposed neural network based
on new modification of BFGS update algorithm.
Gupta and Batra [31] developed a vectorized al-
gorithm and impleme-nted it in Python code us-
ing a deep artificial neural network to solve the
system of ordinary differential equations. Fur-
ther, to show the effectiveness of the proposed
method he compared his results with the fourth-
order Runge-Kutta method and showed the high
accuracy of his proposed method. Hussien and

Dhannoon [28] presented a meshless parameter
estimation method for solving a system of par-
tial differential equations using an artificial neu-
ral network. The authors demonstrated that the
deep learning ANN-based approach is very effec-
tive in solving differential equations in reasonable
computing times. They illustrated their method
for linear and non-linear partial differential equa-
tions with Dirichlet and Neumann boundary con-
ditions for both regular and irregular boundaries.
Khamas et. al. [32] design suitable neural net-
work to solve singular initial and boundary value
problems. The proposed design used to determine
the effect hookah smoking on health with different
types of tobacco. Tawfiq et. al. [33] in their pa-

per discussed pitfalls for solving differential equa-
tions with neural networks. They considered ex-
amples and counter-examples for numerical tests
to substantiate their findings. ANNs have a lot of

advantages including high learning ability, adap-
tiveness, parallel processing, fault-tolerance, er-
ror computation, and machine training making
this method the preferred choice to solve ordi-
nary, partial and singular differential equations
with initial or/and boundary conditions [34]. The
researchers used different design of ANNs depend-
ing on type of problems; number of given data
or samples. While, the ANN reliability has been
assessed in this research. The new approach of
training based on the LM training algorithm has
been proposed. The objective function for this
research include the minimizing.

This article has been consisting as follows: In
next section, define and gives a background of the
ANNs. In section 3, LM training algorithm is pre-
sented. In section 4, modification for LM training
algorithm will be given. In section 5, 3D equa-
tion Linear & non PDE presented then we design
optimal ANN for solving this equation with im-
plementation and discussions for the result will be
given. Finally, the conclusions are given in section
6.

2. Neural networks

A neural network is a structure of parallel pro-
cessing for distributing information in the form of
connected layers consist of a set of nodes called
neurons (also are called processing elements) is
the basic processor in ANNs, along with directed
line segments between them called links (also are
called connections). All nodes can be taken any
number of arrival connections and can have any
number of coming out connections, but the signs
must be the same [31]. In effect, all nodes have a
one coming out connection that can branch out to
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form multiple output connections, each of which
carries the same sign. Each node possesses a
transfer (activation) function which can use in-
put signs, and which produces the node’s out-
put sign. Generally, ANNs have been general-
izations of mathematical models of human brain,
based on the processing of information occurs at
many connections nodes; signs are passed between
nodes over connection links which has an associ-
ated weight; each node applies an transfer func-
tion to its weighted input net to determine its sign
of output.

Thus for a given input vector x, the input to this
neuron is W T

j x . We assume that each of the hid-
den neurons has identical transfer function σ, but
that bias bj. So the output from the j-th hidden
neuron is σ(W T

j x+ bj).

Now we denote the weight connecting the jth hid-
den node to the output by 0j . The output func-
tion g(x) of the ANN is therefore [35]:

g (x) =
k∑

j=1

0jσ(W T
j x+ bj) (1)

Note that σ must be sigmoidal functions, so we
choice suitable σ herein defined as [32]:

σ (ni) =
2

e−2ni + 1
− 1 (2)

Then, the ANN input-output equation is:

Ŷ = Φ(xTW T + bT )0T

where WϵRn×r;0ϵR1×n and bϵRn×1 are the ad-
justable input weights, output weights and bias
respectively.

The structure of interconnections ANN can be
classified to different classes of ANNs architecture
such feed forward neural network (FFNN): orga-
nized of nodes are in the form of layers and ar-
rival input from the previous layer then feed their
output to the next layer, in a strictly the data
goes from the input node to the output node as
feed-forward way i.e., forward loops. Feedback
neural network (FBNN): all possible connections
are allowed between layers and neurons. The data
transfer in the network as back loops. Herein we
choose FFNN.

3. LM Training algorithm

Here’s a simplified mathematical breakdown of
the ”trainlm” algorithm:

(1) Initialization:
• Initialize weights (W) and biases (b)
randomly.

• Set the learning rate (η = 0.001) for
the Levenberg-Marquardt algorithm.

(2) Forward Propagation:
• For each input sample xi:
• Calculate the weighted sum and ap-
ply the activation function for each
neuron in the hidden layer:

aij =

n∑
k=1

wijkxik + bij (3)

uij = σ(aij)

• Propagate the activations to the out-
put layer using a similar process:

aik =

m∑
j=1

wijkaij + bik (4)

uik = σ(aik)

(3) Calculate Error:
Compute the error (Ei) between predicted
(neural) output (uik) and target (exact)
output (u̇ik)

Ei =
1

2

K∑
k=1

(u̇ik − uik)
2 (5)

(4) Backpropagation:
• Compute the gradient of the error
with respect to weights and biases in
the output layer:

gik = − ˙(uik − uik) σ́(aik) (6)

∂Ei

∂wijk
= gikaij

∂Ei

∂bik
= gik

• Propagate the error gradient back to
the hidden layer and compute gradi-
ents there

gij = σ́(aij)

K∑
k=1

wijkgik (7)

∂Ei

∂wijk
= gijxik

∂Ei

∂bij
= gij

(5) Update Weights and Biases Using
Levenberg-Marquardt:

• The Update the weights and biases
using the Levenberg-Marquardt up-
date rule:

w
(t+1)
ijk = w

(t)
ijk − η ρ
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w
(t+1)
ijk = w

(t)
ijk −

(
JTJ + λI

)−1
JT
k e (8)

b
(t+1)
ijk = b

(t)
ijk − η ρ (9)

Where, ρ is search direction.
(6) Repeat:

• Iterate through the dataset multiple
times, adjusting weights and biases
after each iteration.

• Stop when the error converges or
a predefined number of iterations is
reached.

Based on its speed, the algorithm seems to be the
most efficient way to train feedforward neural net-
works of moderate size (with up to several hun-
dred weights). Additionally, it has a streamlined
implementation in MATLAB software, as the ma-
trix equation solution is built-in. These attributes
make it particularly effective in a MATLAB envi-
ronment [28].

4. Suggested modification for LM
training algorithm

In this section we will present suggested modified
for LM training algorithm denoted by MLM as
follow:

Algorithm 1.
Step 1: Given point x0 ∈ Rn and constants
d0, d1, d2, µ0 and m such that µ0 > m > 0;
0 < d0 < d1 < d2 < 1.σ ∈ (0, 2], θ ∈ [0, 1] Let
k = 0.
Step 2: If

∥∥JT
k Ek

∥∥ < ϵ, then stop. otherwise
Solve

λk = µk

(
θ ∥Ek∥σ

1 + ∥Ek∥σ
)
+

(1− θ)
∥∥JT

k Ek

∥∥σ
1 +

∥∥JT
k Ek

∥∥σ (10)

Step 2. Compute the search direction pk

pk =
(
JT
k Jk + λkI

)−1
JT
k Ek. (11)

Step 3: Calculate rk = Aredk/Predk, where Aredk
is an actual reduction which equal to:

Aredk = ∥Ek∥2 − ∥E (xk + pk)∥2 (12)

and Predk is a predicted reduction which equal to:

Predk = ∥Ek∥2 − ∥Ek + Jkpk∥2 (13)

set

xk+1 =

{
xk + pk if rk ≥ d0

xk otherwise

Step 4: Choose µk+1 as

µk+1 =


4µk if rk < d1

µk if rk ∈ [d1, d2]

max
{µk

4 ,m
}

ifrk > d2

Step 5: Take k := k + 1 and go to Step 2.

5. Design optimal ANN to solve 3D-
differential equations

In this section we suggest optimal design ANN
to solve 3D- PDEs. The optimum based on suit-
able choice of number of neurons in the hidden
layer depending on trial and error. That is design
ANN requires fully interconnection three layers;
1st layer is input layer consist 4 neurons in the
input layer (x, y, z&t); 3rd layer is output layer
consist one neuron with linsig. transfer function
which represents the solution of the network and
2nd layer is hidden layer with tanhsig. transfer
function consist 9 neurons in 1st trial then 10
neurons in 2nd trial then 13 neurons in 3rd trial
and 15 neurons in 4th trial. So, we comparing

between the number of neurons in hidden layer in
the training ANN, for solving non- linear PDE we
see that in case solving the linear equation when
the number of neurans large (15 neurons) that
make a good design for ANN to solve it according
to time 00:00:08 with performance 4.7370e-07 and
best epoch 726, see Figures 2, 3, 4 and 5. But Fig-
ure 1, illustrat the implementation and accuracy
of suggested design in different values of time t.
Whereas, in nonlinear equation the lower number
of neurons (9 nodes) in the hidden layer give the
better value according to time 00:00:00 with per-
formance of the network solution unet (x, y, z, t; θ)
is 8.7805e-30 and best epoch 8, see Figures 7, 8,
9 and 10. The preformance of the network solu-
tion unet (x, y, z, t; θ) is 8.7470e-10 which is best
from archticher of ANN with one hidden layer.
But Figure 6, illustrat the implementation and
accuracy of suggested design in different values
of time t. While in the case solving nonlinear
equation take long time 00:02:21 in ANN consist
9 nodes in 1st hidden layers and 3 nodes in 2nd
hidden layers in 1000 epoch and the value of pre-
formance is 1.8910e-11. However, this value is not
good when comparing with one hidden layer net-
work. In other words the best archticher is one
hidden layer ANN with 9 nodes in hidden layer
since it is sufficient to give good result for solving
nonlinear equation.

Training suggested ANN by back propagation rule
and using unconstrain optimazation methods new
LM algorithm. For every input data x, y, z and t,
the process from input layer to the hidden layer
described as follows:

ni =
9∑

i=1

( Wxix+Wyiy +Wziz +Wtit) + b1
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where Wxi ,Wyi,Wzi and Wti are the weights in-
terrelate of the inputs x, y, z and t to the hidden
layer respectively, and b1 is the biases of hidden
layer. Hence, it is activated by the log. sig. func-
tion as Eq.(2). The next step is the process of the

interrelate of the hidden layer to the output layer
which is based on the following formula:

hi =
9∑

j=1

0ijσ (ni) + b2 (14)

where 0ij are the weights of the hidden layer with
output, and b2 is the biases. When Eq.(6) became

to output layer, it turned into the form

unet (x, y, z, t; θ) =
9∑

j=1

0iσ (hi)

where 0j are the weights of the hidden layers to
the output layers.

Then, it is also easy to express the k-th derivatives
of unet (x, y, z, t; θ) in terms:

∂kunet (x, y, z, t; θ)

∂xk
=

n∑
j=1

∂k0jf(h2)

∂xk
(15)

∂kunet (x, y, z, t; θ)

∂yk
=

n∑
j=1

∂k0jf(h2)

∂yk
(16)

∂kunet (x, y, z, t; θ)

∂zk
=

n∑
j=1

∂k0jf(h2)

∂zk

∂kunet (x, y, z, t; θ)

∂tk
=

n∑
j=1

∂k0jf(h2)

∂tk
(17)

For k = 1, . . . , n.

The mean square error (mse) will be computed to
check the accuracy of the approximate solutions
that obtained in these cases for different values
of the epochs. Moreover, illustrates the target of
output in each case and the behavior of gradient
in the validation case at epoch 1000. Target val-
ues of training is 70, validation 15 and testing 15.
The learning rate (η) = 0.001.

Example 1. Consider the 2nd order, 3D linear
homogeneous hyperbolic PDE :

u(x, y, z, t) =uxx + uyy + uzz + ut for 0 < x, y

and z < 1

IC: u(x, y, z, 0) = sin (πx) sin (πy) sin (πz)
BCs:u(0, y, z, t) = 0, u(1, y, z, t) = 0, u(x, 0, z, t) =
0, u(x, 1, z, t) = 0, u(x, y, 0, t) = 0, u(x, y, 1, t) =
0, u(x, y, 0, t) = 0, u(x, y, 1, t) = 0
The exact solution [19] is u (x, y, z, t) =

sin (πx) sin (πy) sin (πz)exyzt .

We solve this equation by suggested design of
ANN and implemented in MATLAB vol. 2023a,
after training suggested ANN we see below the
result of the equation at different time in Fig-
ures 1-7 and the value of neural network Table
1 with using sigmoidal functions as in eq.2 be-
tween the first and the hidden layer while be-
tween the hidden and last layer purlin function.
Figure 8 show the performances of ANN, Figures
9-12 explain the performances of test, validation
& training, Figure 13 show the valued of gradi-
ent, Mu & validation, finally in Figure 14 explain
the errors between exact & suggested solution.

Figure 1. Results of suggested de-
sign for zero time of Example 1.

Figure 2. Results of suggested de-
sign for time 0.1 of Example 1.

Figure 3. Results of suggested de-
sign for Example 1when time t= 0.2.
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Figure 4. Results of suggested de-
sign when time t= 0.3 for Example 1.

Figure 5. Results of suggested de-
sign when time t= 0.4 for Example 1.

Figure 6. Results of suggested de-
sign when time t= 0.6 for Example 1.

Figure 7. Results of suggested de-
sign when time t= 1 for Example 1.

Figure 8. Comparison of Perfor-
mances of ANN for Example 1, be-
tween train, test & validation in case
15 neurons in hidden layer.

Figure 9. Performances of training
for Example 1, in case 15 neurons in
hidden layer.

Table 1. Results of suggested design in different cases for Example 1

No. Layer & Nodes Best epoch Time Best-perf. Best-Vperf. Best-tperf. Gradient lr.
1 9 1000 00:00:08 7.5071e-06 7.4696e-06 8.5628e-06 0.000104 0.001
2 10 538 00:00:06 6.6823e-06 6.7689e-06 6.7437e-06 0.000121 0.001
3 13 314 00:00:05 1.5217e-06 1.5500e-06 1.2775e-06 0.000241 0.001
4 15 726 00:00:08 4.7370e-07 6.1617e-07 1.2674e-06 0.00012 0.001
5 [9 3] 1000 00:00:11 4.7538e-08 5.2877e-08 4.8976e-08 0.00031 0.001
6 [9 9] 1000 00:00:17 6.4486e-09 6.4733e-09 6.3662e-09 1.98e-06 0.001
7 [9 19] 1000 00:00:33 8.7470e-10 9.0352e-10 1.2115e-09 9.35e-06 0.001
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Figure 10. Performances of valida-
tion for Example 1, in case 15 neurons
in hidden layer.

Figure 11. Performances of test for
Example 1, in case 15 neurons in hid-
den layer.

Figure 12. Comparison between ex-
act & ANN results for Example 1, in
case 15 neurons in hidden layer .

Figure 13. Gradient, Mu & valida-
tion for Example 1, in case 15 neurons
in hidden layer.

Figure 14. Errors between exact &
suggested solution for Example 1, in
case 15 neurons in hidden layer .

Example 2. Consider the following 4th order 3D
nonlinear Jimbo-miwa equation

uxxxy + 3uxyux + 3uyuxx + 2uyt − 3uxz = 0

With ICs: uy(x, y, z, 0) =
9
2 sech2

(
3
2(x+ y + z)

)
Exact solution in [33, 34]: u(x, y, z, t) =
3 tanh

(
3
2(x+ y + z − 3t)

)
We solve that equation by suggested ANN and
implemented in MATLAB vol. 2023a suggested
design consist three layers: 1st layer (input layer)
consist of 4 nodes represent {x, y, z & t}. In the
hidden layer, we take the different case depend-
ing on number of neurons and 3rd layer (output
layer) gives the solution of the network. Other
design illustrate the results for different values of
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Table 2. The value of parameters for suggested ANN in different cases for Example 2.

No. Layer & Nodes Best epoch Time Best-perf. Best-Vperf. Best-tperf. Gradient lr.
1 9 8 00:00:00 8.7805e-30 8.6926e-30 8.8637e-30 5.24e-15 0.001
2 10 11 00:00:09 3.2411e-31 3.2205e-31 3.2382e-31 1.41e-15 0.001
3 13 8 00:00:14 7.4300e-28 7.4141e-28 7.3858e-28 5.59e-14 0.001
4 15 8 00:00:22 1.0665e-23 1.0648e-23 1.0641e-23 3.06e-11 0.001
5 [9 3] 1000 00:02:21 1.8910e-11 1.8696e-11 1.8787e-11 7.22e-07 0.001
6 [9 9] 1000 00:03:35 3.863 6e-09 3.8756e-09 3.8627e-09 2.98e-06 0.001
7 [9 19] 1000 00:06:03 3.3635e-09 3.3775e-09 3.3723e-09 1.84e-06 0.001

time see Figures 15-21 and the value of parame-
ters given in Table 2. Figure 22 shows the perfor-
mances of ANN. Figures 23-26 illustrate the per-
formances of training, test & validation case. Fig-
ure 27 illustrate the value of gradient, Mu & vali-
dation, finally in Figure 28, the errors between ex-
act and neural solution in each case are presented.

Figure 15. Results of suggested de-
sign for zero time of Example 2.

Figure 16. Results of suggested de-
sign when time t = 0.1 for Example
2.

Figure 17. Results of suggested de-
sign when time t= 0.2 of Example 2.

Figure 18. Results of suggested de-
sign when time t= 0.3 for Example 2.

Figure 19. Results of suggested de-
sign when time t= 0.6 for Example 2.

Figure 20. Results of suggested de-
sign when time t= 0.8 for Example 2.
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Figure 21. Results of suggested de-
sign when time t= 1 for Example 2.

Figure 22. Performances of ANN
for Example 2, in the case of 9 neu-
rons in hidden layer.

Figure 23. Performances of training
ANN for Example 2, in the case 9 neu-
rons in hidden layer.

Figure 24. Performances of valida-
tion for Example 2, in the case 9 neu-
rons in hidden layer.

Figure 25. Performances of test for
Example 2, in the case 9 neurons in
hidden layer.

Figure 26. Comparison between ex-
act & ANN result for 2, in the case 9
neurons in hidden layer.

Figure 27. Gradient, Mu & valida-
tion for Example 2, in case 9 neurons
in hidden layer.
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Figure 28. Errors between exact &
neural solution for Example 2, in the
case 9 neurons in hidden layer.

6. Conclusion

In this article, we suggest ANNs with different
architecture based on number of layers and num-
ber of nodes in each layers. Suggested design
trained by unconstrained optimization especially
new LM training algorithm then used to solve 3D
linear and nonlinear differential equations. The
comparison between different design depending
on the number of nodes in hidden layer has been
presented. We see that in Example 1 (linear
case) when the number of nodes large (15 neu-
rons) we get good results and represent optimal
design for ANN to solve this type of equations
according to the time 00:00:08 with performance
4.7370e-07 and best epoch 726, whereas in Ex-
ample 2, (nonlinear case) we see that the lower
number of neurons (9 nodes) in the hidden layer
gives the better results according to the time
00:00:00 with performance of the network solu-
tion unet(x, y, z, t; θ) is 8.7805e-30 and best epoch
8. Also in the case of two hidden layers, the best
archticher of ANN that gives good result in lin-
ear case is as [9 19] nodes, the best epoch is 1000
with long time 00:00:33 when comparing with one
hidden layer but the preformance of the network
solution unet(x, y, z, t; θ) is 8.7470e-10 is best com-
paring with one hidden layer this means that the
two hidden layer with the [9 19] nodes gives bet-
ter result for linear case. While in the nonlinear
case take long time 00:02:21 in [9 3] nodes with
the best epoch is 1000 and the value of prefor-
mance is 1.8910e-11. However, that results is not
good when we comparing with one hidden layer.
This means that the one hidden layer ANN with
9 nodes in hidden layer is sufficient to get good

result for solving nonlinear problems. Also, we
conclude that many important article used origi-
nal LM for training ANN such [38–41] can be re-
solve by training with new LM training algorithm
to get best results
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1. Introduction

In the realm of infectious diseases, mathematical
modeling stands as a pivotal tool, offering
insights into the spread and control mechanisms.
The foundations of this discipline were laid
in 1927 by Kermack and Mc Kendric, who
introduced a fundamental compartment model
for complex epidemic studies in epidemiology
[1]. In the contemporary world, heightened
attention has been directed towards research on
an array of epidemic diseases like HIV, Malaria,
Dengue, HBV, posing significant challenges in
containment and prevention of disease within
the human population. As the world grapples
with these pre-existing health concerns, a new,

unprecedented threat emerged on the horizon
in late 2019, named COVID-19, originating
in Wuhan, China. This novel coronavirus
rapidly escalated into a pandemic, challenging
our understanding of disease transmission and
intervention strategies. Although, the exact
origins of the virus remains elusive, it is believed
to have originated from animals and potentially
transmitted to humans through intermediaries
such as SARS-CoV and MERS-CoV. COVID-19
manifests with a range of symptoms, from
the typical fever, dry cough, and fatigue to
severe respiratory distress with some cases
being asymptomatic. During the pandemic,
individuals infected with the coronavirus could
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spread it even without displaying the symptoms,
constituting an incubation period of ranging
from 2 to 14 days [2]. In the absence
of a specific treatment for the first year of
its emergence, non-pharmaceutical interventions
took precedence such as isolation, mask-wearing,
sanitization, and stringent restrictions on public
gatherings. Governments around the world
imposed lockdowns, constituting one of the
largest quarantines in history, to curb the virus’s
spread. Consequently, understanding the role of
different intervention strategies in transmission
control remains a vital research focus. Several
compartmental models analyzing the effect of
various intervention strategies for COVID-19 have
been proposed. In the study conducted by
[3], a model was introduced to analyze the
COVID-19 outbreak in China (Shanxi province).
The researchers investigated the impact of the
city lockdown date on the ultimate case count.
They discovered that an earlier lockdown in the
city could significantly reduce the number of
infectious cases. Another study by [4], focused on
the COVID-19 pandemic in the U.S.A, analyzing
the impacts of non-pharmaceutical strategies.
Additionally, [5] formulated a mathematical
model to analyze the spread of COVID-19 in
India. Their findings highlighted the significance
of strict isolation measures for susceptible
individuals, which could effectively bring down
the rate of contact between susceptible and
infected persons.

Nowadays, Fractional calculus is emerging
as a vital branch of mathematics, extending
traditional calculus by including integrals and
derivatives with non-integer orders, enabling a
more nuanced analysis of epidemic dynamics,
originating from Leibniz’s inquiry in 1695 [6].
Over the past three decades, researchers have
delved into a range of fractional derivatives, such
as Riemann-Liouville, Caputo, Caputo-Fabrizio,
Atangana-Baleanu and more, captivated by
their usage in diverse domains, including
science, biology, economics, and engineering.
Unlike traditional integer-order models focusing
solely on the current state, fractional order
models incorporate memory and hereditary
effects, integrating past information to make
more accurate epidemic predictions. Current
advancements in epidemiological research
emphasize the significance of utilizing models
incorporating fractional order derivatives. A
study investigated the behavior of HCV
(Hepatitis C virus) disease, employing a
mathematical model incorporating differential
equations (DEs) of fractional-order. This

model accounted for two crucial transmission
components: interactions between the virus and
cells, and the rate at which infected cells are
cured, as presented in [7]. Also, in a study
[8] researchers investigated the dynamics of
COVID-19 transmission in Ethiopia, emphasizing
on different age classes of infected population.
The researchers employed Chebyshev polynomials
to transform a fractional system into a set of
algebraic equations. Additionally, [9] introduced
an epidemic model of fractional order, integrating
the classical Atangana-Baleanu-Caputo operator
and Caputo operator, to investigate COVID-19
transmission. Considering these instances, it
becomes apparent that employing fractional
order derivatives in modeling real-life situations
produces more precise outcomes than integer
order scenarios. This statement finds support
by a multitude of research investigations
[10–16] in the field. In particular, Caputo
fractional derivative (CFD) has found widespread
application in various epidemic models,
underscoring its utility. This significance is
particularly evident when dealing with constant
functions, as the Caputo derivative of such
functions yields zero. The Caputo operator plays
a pivotal role in solving ordinary differential
equations, involving a subsequent fractional
integral to achieve the desired order of fractional
derivative. Notably, the Caputo fractional
differential equation allows for the inclusion of
local initial conditions in the model derivation
process. Numerous researchers have successfully
employed the Caputo operator to model diverse
real-life scenarios, as evidenced by the literature
[17–21].

Consequently, we emphasize the continued
application of the Caputo operator in our
current work, building upon the successful
endeavors of previous researchers. This study
investigates the dynamics of COVID-19 model
considering the effect of intervention strategies
introduced by [22]. By utilizing the CFD, our
objective is to grasp the memory effect and
non-local behavior essential for understanding the
dynamics of COVID-19 infection. The choice of
CFD lies in its capability to incorporate local
primary conditions and enhance the accuracy
of the model. The paper is structured in
the described manner: Section 2 delves into
fundamental mathematical concepts essential for
the subsequent discussions. Section 3 describe the
formulation and examination of the extension of
COVID-19 model utilizing the CFD. In Section
4, we explore the non-negativity and boundedness
of the model, accompanied by an exploration of
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the existence and uniqueness of solution for the
given model. Section 5 determines the basic
reproduction number and conducts a sensitivity
analysis concerning each parameter. Section
6, presents a numerical simulation employing
a two-step Lagrange interpolation method to
validate the theoretical findings. Section 7,
showcases the results and discussion. Finally, in
Section 8, we draw conclusions from the entire
study.

2. Preliminaries

Within this part, we will define some basic
notations and definitions related to fractional
calculus, that will be extensively utilized in this
paper.

Definition 1. Let ϕ : (0,∞) → R be a function,
then the Riemann-Liouville fractional integral
operator [6] with order α > 0 is expressed as:

C
0I

α
t ϕ(t) =

1

Γ(α)

∫ t

0

ϕ(s)

(t− s)α−1
ds; t ≥ 0, (1)

here, Γ(.) referred as a well-known Gamma
function.

Definition 2. Let ϕ : (0,∞) → R be a function,
then the CFD [6] with order α > 0 is represented
as

C
0D

α
t ϕ(t) =



1

Γ(n− α)

∫ t
0

ϕn(s)

(t− s)α+1−n
ds;

α ∈ (n− 1, n),

Dn
tϕ(t) ; α = n,

(2)

where, t ≥ 0 and n is any positive integer. When
α ∈ (0, 1),

C
0D

α
t ϕ(t) =

1

Γ(n− α)

∫ t

0

ϕ
′
(s)

(t− s)α
ds. (3)

Also, the corresponding fractional integral with
order (α > 0) is described as

C
0I

α
t ϕ(t) =

1

Γ(α)

∫ t

0

ϕ(s)

(t− s)α−1
ds; ℜ(α) > 0.

(4)

Definition 3. The Laplace transform(LT) [9] of
the CFD with order α > 0 is expressed as:

L
[
C
0D

α
t ϕ(t)

]
(s) = sαL [ϕ(t)]

−
n−1∑
m=0

ϕ(m)(0)sα−m−1,
(5)

where, α ∈ (n− 1, n] and n ∈ N.

Definition 4. The Mittag-Leffler function [23]
characterized by two parameters is expressed as

Ea,b(S ) =

∞∑
r=0

S r

Γ(r a + b)
, (6)

where, a, b > 0 and also, Ea,1(S ) = Ea(S ). The
LT of one parameter Mittag-Leffler function can
be expressed as follows:

L [1− Ea(−kta)] =
k

s(sa + k)
,

L [Eα(−kta)] =
sa

s(sa + k)
.

(7)

3. Formulation of Mathematical Model

Within this part, we develop a fractional-order
epidemic model by applying the CFD operator to
the classical integer-order model of COVID-19, as
described in [22]. The COVID-19 integer-order
model is defined by the given set of nonlinear
ordinary DEs:

dS(t)

dt
= (1− ρ)Ω− βS(A+ I)− (µ+ λ)S + ζQ1,

dQ1(t)

dt
= ρΩ− σβQ1(A+ I) + λS − (µ+ ζ)Q1,

dA(t)

dt
= βS(A+ I) + σβQ1(A+ I)

− (q1 + q2 + µ)A,

dQ2(t)

dt
= q1A− (q3 + q4 + µ)Q2,

dI(t)

dt
= q3Q2 + q2A+ (δ + µ+ γ)I,

dT (t)

dt
= γI − (µ+ η)T,

dR(t)

dt
= q4Q2 + ηT − µR,

(8)
with initial conditions

S(0) = S0 > 0, Q1(0) = Q1,0 ≥ 0, A(0) = A0 ≥ 0,

Q2(0) = Q2,0 ≥ 0, I(0) = I0 ≥ 0,

T (0) = T0 ≥ 0, R(0) = R0 ≥ 0. (9)

Here, the entire population P(t) is segmented
to seven sub-population compartments, say S(t),
A(t), Q1(t), Q2(t), T (t), I(t), andR(t) where the
total population is sum of these compartments as:

P(t) = S(t) +Q1(t) +A(t) +Q2(t) + I(t)

+ T (t) +R(t). (10)

When an individual is in good health but
can contract the infection is susceptible (S),
Susceptible individuals under quarantine due to
lockdown measures are comprising in (Q1), those
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in the community who exhibit no symptoms
yet are in incubation period are categorized
as Asymptomatic (A), those asymptomatic
individuals who are self-quarantined (Q2), those
individuals who are seriously ill (I), those
individuals who are isolated for treatment (T )
and recovered population (R). The parameters
mentioned in the model (8) are thoroughly defined
and their corresponding values are presented in
Table 1. In system (8) individuals in (Q1)
compartment, representing susceptible people
under quarantine due to lockdown, interact to
infected people with a reduced rate compare to
individuals in the susceptible (S) compartment.
This concept is governed by multiplying a scaling
factor σ with the contact rate β, where 0 ≤ σ ≤ 1
and 1−σ represents the effectiveness of lockdown
i.e., σ = 0 describe the scenario of complete
lockdown and σ = 1 describe the situation of no
lockdown.

The above classical-integer order model of
COVID-19 (8)-(9) is expanded into a fractional
order system with an order α (0 < α ≤ 1). As,
the model represented by equations (8) can be
expressed in integral form as:

dS(t)

dt
=

∫ t

0
κ(t− s)[(1− ρ)Ω− βS(A+ I)

− (µ+ λ)S + ζQ1]ds,

dQ1(t)

dt
=

∫ t

0
κ(t− s)[ρΩ− σβQ1(A+ I) + λS

− (µ+ ζ)Q1]ds,

dA(t)

dt
=

∫ t

0
κ(t− s)[βS(A+ I) + σβQ1(A+ I)

− (q1 + q2 + µ)A]ds,

dQ2(t)

dt
=

∫ t

0
κ(t− s)[q1A− (q3 + q4 + µ)Q2]ds,

dI(t)

dt
=

∫ t

0
κ(t− s)[q3Q2 + q2A

+ (δ + γ + µ)I]ds,

dT (t)

dt
=

∫ t

0
κ(t− s)[γI − (η + µ)T ]ds,

dR(t)

dt
=

∫ t

0
κ(t− s)[q4Q2 + ηT − µR]ds.

(11)
In this context, κ(t − s) represents the kernel
function. On employing the power law of the
kernel function as described in [24], we obtain:

κ(t− s) =
1

Γ(α− 1)
(t− s)α−2. (12)

Now, on replacing the value of kernel from
equation (12) into equation (11) and subsequently
using the CFD with order α− 1, we obtain:

c
0D

α−1
t

[
dS(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [(1− ρ)Ω

− βS(A+ I)− (µ+ λ)S + ζQ1],

c
0D

α−1
t

[
dQ1(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [ρΩ

− σβQ1(A+ I) + λS − (µ+ ζ)Q1],

c
0D

α−1
t

[
dA(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [βS(A+ I)

+ σβQ1(A+ I)− (q1 + q2 + µ)A],

c
0D

α−1
t

[
dQ2(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [q1A

− (q3 + q4 + µ)Q2],

c
0D

α−1
t

[
dI(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [q3Q2 + q2A

+ (δ + γ + µ)I],

c
0D

α−1
t

[
dT (t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [γI − (η + µ)T ],

c
0D

α−1
t

[
dR(t)

dt

]
= c

0D
α−1
t

c
0I

α−1
t [q4Q2 + ηT − µR].

(13)

Since, c
0D

α−1
t , c

0I
α−1
t are inverse operators to

each other. Therefore, the COVID-19 model with
fractional order of α (0 < α ≤ 1) is formulated as:

c
0D

α
t S(t) = (1− ρ)Ω− βS(A+ I)

− (µ+ λ)S + ζQ1,
c
0D

α
t Q1(t) = ρΩ− σβQ1(A+ I) + λS − (µ+ ζ)Q1,

c
0D

α
t A(t) = βS(A+ I) + σβQ1(A+ I)

− (q1 + q2 + µ)A,
c
0D

α
t Q2(t) = q1A− (q3 + q4 + µ)Q2,

c
0D

α
t I(t) = q3Q2 + q2A+ (δ + γ + µ)I,

c
0D

α
t T (t) = γI − (η + µ)T,

c
0D

α
t R(t) = q4Q2 + ηT − µR,

(14)

In the fractional order systems, maintaining
dimensional consistency plays a pivotal role,
ensuring that the units of measurement on both
sides of the equations align smoothly. To achieve
this consistency, a practical approach involves
adjusting the parameters on the right-hand side
of the equations, typically by raising their power
to α, as discussed in [25–27]. In this context,
our proposed fractional-order model takes the
following form:
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c
0D

α
t S(t) = (1− ρα)Ωα − βαS(A+ I)

− (µα + λα)S + ζαQ1,
c
0D

α
t Q1(t) = ραΩα − σαβαQ1(A+ I) + λαS

− (µα + ζα)Q1,
c
0D

α
t A(t) = βαS(A+ I) + σαβαQ1(A+ I)

− (qα1 + qα2 + µα)A,
c
0D

α
t Q2(t) = qα1A− (qα3 + qα4 + µα)Q2,

c
0D

α
t I(t) = qα3Q2 + qα2A+ (δα + γα + µα)I,

c
0D

α
t T (t) = γαI − (ηα + µα)T,

c
0D

α
t R(t) = qα4Q2 + ηαT − µαR,

(15)

with the initial conditions:

S(0) = S0 > 0, Q1(0) = Q1,0 ≥ 0, A(0) = A0 ≥ 0,

Q2(0) = Q2,0 ≥ 0, I(0) = I0 ≥ 0,

T (0) = T0 ≥ 0, R(0) = R0 ≥ 0. (16)

4. Analytical Study of the Model

In this segment, we discuss certain key properties
for the COVID-19 fractional order model(15).

4.1. Non-negativity and boundedness

To prove the positivity of solutions for fractional
order model (15), we first discuss the subsequent
lemma.

Lemma 1. (Generalized Mean Value Theorem
[28]). Let ϕ(t) is continuous on interval [a, b] and
c
0D

α
t ∈ C(a, b] with 0 < α ≤ 1, then

ϕ(t) = ϕ(a) +
1

Γ(α)
(0D

α
t ϕ)(z)(t− a)α, (17)

where, a ≤ z ≤ t,∀ t ∈ (a, b].

Thus, if 0D
α
t ϕ(t) ≥ 0, ∀ t ∈ (a, b), then ϕ is a

non-decreasing function and if 0D
α
t ϕ(t) ≤ 0, ∀

t ∈ (a, b), then ϕ is a non-increasing function.

Theorem 1. (Positivity). All solutions of
the system (15)-(16) are non-negative and are
remains in

R7
+ = {Q(t);Q(t) = (S(t), Q1(t), A(t), Q2(t), I(t),

T (t), R(t)) ∈ R7,Q(t) ≥ 0}.

Proof. We will prove the non-negativity of
solutions for our system (15) by using the Lemma
1. Since,

c
0D

α
t S|S=0 = (1− ρα)Ωα + ζαQ1 ≥ 0,

c
0D

α
t Q1|Q1=0 = ραΩα + λαS ≥ 0,

c
0D

α
t A|A=0 = βαSI + σαβαQ1I ≥ 0,

c
0D

α
t Q2|Q2=0 = qα1A ≥ 0,

c
0D

α
t I|I=0 = qα3Q2 + qα2A ≥ 0,

c
0D

α
t T |T=0 = γαI ≥ 0,

c
0D

α
t R|R=0 = qα4Q2 + ηαT ≥ 0.

(18)

As, a result ∀ t > 0, the solutions of the system
remain positive and they will remain within
R7
+. Also, the vector field consistently directs

towards R7
+ on each hyperplane encompassing the

non-negativity orthant. □

Theorem 2. (Boundedness). All solutions of the
system (15)-(16) starting in R7

+ is bounded.

Proof. To establish the theorem, we derive the
subsequent result from equations (15) as follows:

c
0D

α
t P(t) = c

0D
α
t S(t) +

c
0D

α
t Q1(t) +

c
0D

α
t A(t)

+ c
0D

α
t Q2(t) +

c
0D

α
t I(t)

+ c
0D

α
t T (t) +

c
0D

α
t R(t),

= Ωα − µαP(t)− δαI,

≤ Ωα − µαP(t).

Utilizing the LT of CFD, as discussed in
Definition 3, on the above equation, result in

sαL
[
P(t)

]
− sα−1 P(0) ≤ Ωα

s
− µαL

[
P(t)

]
,

L
[
P(t)

][
sα + µα

]
≤ Ωα

s
+ sα−1P(0),

L
[
P(t)

]
≤ Ωα

s(sα + µα)
+

sα−1

sα + µα
P(0),

P(t) ≤ Ωα

µα
L −1

[ µα

s(sα + µα)

]
+ P(0)L −1

[ sα−1

sα + µα

]
.

By using the Definition 4, we get

P(t) ≤ Ωα

µα

[
1− Eα(−µαtα)

]
+ P(0)

[
Eα(−µαtα)

]
≤ Ωα

µα
−
(Ωα

µα
− P(0)

)
Eα(−µαtα)

≤ Ωα

µα
− cEα(−µαtα),where c =

Ωα

µα
− P(0).

This indicates that 0 ≤ P(t) ≤ Ωα

µα
, as t → ∞.

Therefore, as a consequence the total population
and the sub populations all are bounded. Thus,



266 S. Bhatter et al. / IJOCTA, Vol.14, No.3, pp.261-275 (2024)

every solution of the model (15)-(16) starts in
region R7

+ and remains in the region:

A = {(S,Q1, A,Q2, I, T,R) ∈ R7
+ : S +Q1 + A+

Q2 + I + T +R ≤ Ωα

µα
}.

□

4.2. Existence and uniqueness of solution

We discuss the existence and uniqueness of the
solution for the CFD model (15) by utilizing the
Banach fixed point theory [29] in this segment.

Let B(J ) denote a Banach space consisting of
continuous real-valued functions defined on the
interval J = [0, b], with the norm specified as:

∥(S,Q1, A,Q2, I, T,R)∥ = ∥S∥+ ∥Q1∥+ ∥A∥
+ ∥Q2∥+ ∥I∥+ ∥T∥+ ∥R∥,

where,

∥S∥ = Sup
t∈J

|S(t)|, ∥Q1∥ = Sup
t∈J

|Q1(t)|,

∥A∥ = Sup
t∈J

|A(t)|, ∥Q2∥ = Sup
t∈J

|Q2(t)|,

∥I∥ = Sup
t∈J

|I(t)|, ∥T∥ = Sup
t∈J

|T (t)|,

∥R∥ = Sup
t∈J

|R(t)|.

Now, consider the DE,
C
0D

α
t Q(t) = G (t,Q(t)) ; t ∈ J , 0 < α ≤ 1,

Q(0) = Q0 ≥ 0, (19)

where,

Q(t) = (S(t), Q1(t), A(t), Q2(t), I(t), T (t), R(t))
′
,

Q(0) = (S0, Q1,0, A0, Q2,0, I0, T0, R0)
′
,

G (t,Q(t)) = (G1,G2,G3,G4,G5,G6,G7)
′
,

and

G1(t,Q(t)) = Ωα(1− ρα)− βαS(A+ I)

− (µα + λα)S + ζαQ1,

G2(t,Q(t)) = ραΩα − σαβαQ1(A+ I) + λαS

− (µα + ζα)Q1,

G3(t,Q(t)) = βαS(A+ I) + σαβαQ1(A+ I)

− (qα1 + qα2 + µα)A,

G4(t,Q(t)) = qα1A− (qα3 + qα4 + µα)Q2,

G5(t,Q(t)) = qα3Q2 + qα2A+ (δα + µα + γα)I,

G6(t,Q(t)) = γαI − (ηα + µα)T,

G7(t,Q(t)) = qα4Q2 + ηαT − µαR.

Theorem 3. All the kernels Gj, where j =
1, 2, 3, · · · , 7 fulfills the Lipschitz condition within
the Banach space B(J ).

Proof. Consider, Q(t), Q(t) be two functions,
then

∥G1(t,Q(t))− G1(t,Q(t))∥
= ∥(1− ρα)Ωα − βαS(A+ I)− (µα + λα)S

+ ζαQ1 − (1− ρα)Ωα + βαS(A+ I)

+ (µα + λα)S − ζαQ1∥

= ∥−βα(A+ I)(S − S)− (µα + λα)(S − S)∥
≤ |K1| ∥S − S∥,
where, K1 = −(βα(d3 + d5) + µα + λα)

and ∥A∥ ≤ d3, ∥I∥ ≤ d5.

||G2(t,Q(t))− G2(t,Q(t))||
= ||ραΩα − σαβαQ1(A+ I) + λαS

− (µα + ζα)Q1 − ραΩα + σαβαQ1(A+ I)

− λαS + (µα + ζα)Q1||
= || − σαβα(A+ I)(Q1 −Q1)

− (µα + ζα)(Q1 −Q1)||
= || − (σαβα(A+ I) + (µα + ζα))(Q1 −Q1)||
≤ |K2| ||Q1 −Q1||,
where, K2 = −(σαβα(d3 + d5) + (µα + ζα))

and ||A|| ≤ d3, ||I|| ≤ d5.

||G3(t,Q(t))− G3(t,Q(t))||
= ||βαS(A+ I) + σαβαQ1(A+ I)

− (qα1 + qα2 + µα)A− βαS(A+ I)

− σαβαQ1(A+ I) + (qα1 + qα2 + µα)A||
= ||βαS(A−A) + σαβαQ1(A−A)

− (qα1 + qα2 + µα)(A−A)||
≤ |βα ||S||+ σαβα ||Q1||+ (qα1 + qα2 + µα)| ||A−A||
≤ |K3| ||A−A||,
where, K3 = (βαd1 + σαβαd2 + qα1 + qα2 + µα)

and ||S|| ≤ d1, ||Q1|| ≤ d2.

||G4(t,Q(t))− G4(t,Q(t))||
= ||qα1A− (qα3 + qα4 + µα)Q2 − qα1A

+ (qα3 + qα4 + µα)Q2||
= || − (qα3 + qα4 + µα)(Q2 −Q2)||
≤ |K4| ||Q2 −Q2||,
where, K4 = −(qα3 + qα4 + µα).
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||G5(t,Q(t))− G5(t,Q(t))||
= ||qα3Q2 + qα2A+ (δα + µα + γα)I − qα3Q2 − qα2A

− (δα + µα + γα)I||
= || − (δα + µα + γα)(I − I)||
≤ |K5| ||I − I||,
where, K5 = −(δα + µα + γα).

||G6(t,Q(t))− G6(t,Q(t))||
= ||γαI − (ηα + µα)T − γαI + (ηα + µα)T ||
= || − (ζα + µα)(T − T )||
≤ |K6| ||T − T ||,
where, K6 = −(ζα + µα).

||G7(t,Q(t))− G7(t,Q(t))||
= ||qα4Q2 + ηαT − µαR− qα4Q2 − ηαT − µαR||
= || − µα(R−R)||
≤ |K7| ||R−R||,
where, K7 = −µα.

After adding all the aforementioned equations, we
get

∥G (t,Q(t))− G (t,Q(t))∥

≤ ∥G1(t,Q(t))− G1(t,Q(t))∥

+ ∥G2(t,Q(t))− G2(t,Q(t))∥

+ ∥G3(t,Q(t))− G3(t,Q(t))∥

+ ∥G4(t,Q(t))− G4(t,Q(t))∥

+ ∥G5(t,Q(t))− G5(t,Q(t))∥

+ ∥G6(t,Q(t))− G6(t,Q(t))∥

+ ∥G7(t,Q(t))− G7(t,Q(t))∥
≤ |K1| ∥S − S∥+ |K2| ∥Q1 −Q1∥+ |K3| ∥A−A∥

+ |K4| ∥Q2 −Q2∥+ |K5| ∥I − I∥
+ |K6| ∥T − T∥+ |K7| ∥R−R∥

≤ K∥Q(t)− Q(t)∥,
where, K = Max{|Ki|; i = 1, 2, 3, · · · , 7} is
the Lipschitz constant of the kernel G (t,Q(t)).
Hence, G (t,Q(t)) satisfies the Lipschitz
condition. □

Theorem 4. If
K

Γ(α+ 1)
≤ 1, then the model

(15) possesses a unique solution.

Proof. Consider, Ψ : B → B be a linear map
represented by,

Ψ(Q(t)) = Q0(t) +
1

Γ(α)

∫ t

0

1

(t− s)1−α

× G (s,Q(s))ds,

and, Q(t),Q(t) ∈ B then, we have

∥Ψ(Q(t))−Ψ(Q(t))∥

=

∣∣∣∣∣∣∣∣ 1

Γ(α)

∫ t

0
(t− s)α−1(G (s,Q(s))

− G (s,Q(s)))ds

∣∣∣∣∣∣∣∣
≤ 1

Γ(α)

∫ t

0
(t− s)α−1

∣∣∣∣G (s,Q(s))

− G (s,Q(s))
∣∣∣∣ ds

≤ K ∥Q(s)− Q(s)∥
Γ(α)

∫ t

0
(t− s)α−1 ds

≤ Ktα

αΓ(α)
∥Q(s)− Q(s)∥.

Thus, Ψ is a contraction, if
K

Γ(α+ 1)
≤ 1.

Hence, from Banach contraction principle, the
fractional order system (15) possesses a unique
solution. □

5. The Reproduction Number and it’s
Sensitivity Analysis

5.1. Reproduction number

Epidemiologically, the basic reproduction number
often denoted as R0 indicates the average
count of new infections originating from one
infected individual within a vulnerable population
throughout their infectious period. It is
a fundamental concept used to measure the
potential for disease transmission in a population.
If R0 < 1 then eventually disease will die out
from population and if R0 > 1, the disease
will persist and potentially lead to an outbreak.
To calculate R0 we first determine the Disease
Free Equilibrium point (DFE) denoted by (E∗

0 ).
Since, Equilibrium points represent the solutions
to equation describing the system, at which
the variable experiences zero rate of change.
Specifically, the disease free equilibrium (DFE)
signifies a state where the disease does not persist
within the population. By setting

c
0D

α
t S = c

0D
α
t Q1 =

c
0D

α
t A = c

0D
α
t Q2

= c
0D

α
t I = c

0D
α
t T = c

0D
α
t R = 0,

we calculate the equilibrium points based on the
system. Now, applying the necessary conditions
involves setting all infectious compartments of the
model to zero i.e. A = Q2 = I = T = R = 0.

We obtained the DFE point of the model as
follows:
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E∗
0 = (S∗

0 , Q
∗
1,0, A

∗
0, Q

∗
2,0, I

∗
0 , T

∗
0 , R

∗
0)

=

(
Ωα(µα(1− ρα) + ζα)

µα(λα + µα + ζα)
,

Ωα(µαρα + λα)

µα(λα + µα + ζα)
,

0, 0, 0, 0, 0

)
.

We then apply the next-generation matrix
method [30, 31] to evaluate the R0 of the model
(15). This involves determining the spectral
radius of the next generation matrix (FV−1),
in which F represent the Jacobian of matrix
F (transmission compartment, signifying the
appearance of new infections) and V express the
Jacobian of matrix V (transition compartment)
at the DFE point:

F =


βα(S∗

0 + σαQ∗
0) 0 βα(S∗

0 + σαQ∗
0) 0

0 0 0 0
0 0 0 0
0 0 0 0



V =


b2 0 0 0
−qα1 b3 0 0
−qα2 −qα3 b4 0
0 0 −γα b5



R0 = ϱ(FV−1)

=
βαΩα[σα(ραµα + λα) + (ζα + µα(1− ρα))]

µα b1 b3 b22
× [b3b2 + qα2 b2 + qα3 q

α
1 ], (20)

where, b1 = µα + ζα + λα, b2 = qα1 + qα2 + µα,
b3 = qα3 + qα4 + µα, b4 = δα + γα + µα and
b5 = ηα + µα.

5.2. Sensitivity analysis

Sensitivity analysis is crucial for assessing
the robustness of model predictions and
understanding how the output variable changes
concerning variations in input parameters.
Within this part, we delve into the sensitivity
analysis of R0 and the model parameters by
utilizing the Normalized Sensitivity Index as
discussed in [32]. This method identifies the most
influential parameter for R0 and their impacts
on disease transmission. The normalized forward
sensitivity index of a variable to a parameter is
the ratio of the relative change in the variable to
the relative change in the parameter. as discussed
in [33].

Specifically, for the R0 concerning the parameter
p, it is calculated as:

℘R0
p =

∂R0

∂ p
× p

R0
. (21)

Where, the sensitivity index of R0 w.r.t
parameter p is positive, if R0 increases concerning
p and negative if R0 decreases concerning p.

Table 1. Parameter description and
their corresponding values sourced
from the relevant literature [22].

Parameters Biological meaning Values
Ω Recruitment rate of susceptible peoples 0.0000421
ρ Fraction of individuals under 0.5

quarantine due to the implemented lockdown
λ Transmission rate at which Susceptible 0.5

people moving to Quarantine class(Q1)
β Rate of transmission of infection between 0.07

individuals
µ Mortality rate 0.0000421
ζ Transmission rate of Quarantine people 0.0715

moving to Susceptible class
σ efficacy factor of lockdown 0.5
q1 Rate by which Asymptomatic individual 0.2

move into self-Quarantine class Q1

q2 Rate by which Asymptomatic individual 0.1428
showing the symptoms

q3 Rate at which Self-Quarantine people 0.21
enters into Infected class

q4 Rate by which self-Quarantine people 0.08
recovers

γ Rate by which infected individuals are 0.11
treated

η Rate by which infected people are 0.0917
recovered with medical treatment

δ Disease induced death rate 0.05

Table 2. Sensitivity indices of R0.

parameters indices
Ω +1
ρ -3.27412e-05
β +1
µ -1.00031
ζ +0.0972096
σ +0.777734
q1 -0.25982
q2 -0.09752
q3 +0.08925
q4 -0.0892
δ -0.200737
γ -0.4416
λ -0.0972096

However, calculating the sensitivity indices of
R0 explicitly in terms of the model’s parameters
proves challenging due to the intricate nature
of R0. Consequently, we assess the sensitivity
indices using the values of parameters provided
in Table 1. We obtained sensitivity indices for
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R0 concerning the thirteen distinct parameters
in the model that are displayed in Table 2.
Additionally, a visual representation of these
numerical sensitivity indices is provided in Figure
1. According to the computed sensitivity indices,
a 10% increment in the recruitment rate (Ω),
lockdown efficacy factor (σ), and the transmission
rate (β) results in a 10%, 7.7%, and 10% increase
in the value of R0, respectively. On the contrary,
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Figure 1. Sensitivity of the R0

concerning all thirteen parameters.

when it comes to parameters such as the natural
death rate (µ), the treatment rate (γ), the
rate at which symptomatic individuals enter
self-quarantine (q1) and disease-induced death
rate (δ), an increase of 10% in their values results
in a decrease of R0 by 4.4%, 2.5%, 2.1%, and 10%
respectively.

Therefore, the findings indicate that a 10% rise
in the transmission rate β and recruitment rate
Ω, significantly increases R0, with a notable
impact. Additionally, the lockdown scaling factor
σ also demonstrates a substantial effect on R0.
While, the remaining parameters exhibit low
perturbation, exerting minimal influence on R0.
This analysis is depicted in Figure 1, illustrating
the high sensitivity of the transmission rate, and
the significant impact of the lockdown scaling
factor on R0.

6. Numerical Algorithm

We utilize numerical technique to approximate
the solutions for nonlinear ordinary and partial
differential equations that cannot be resolved
through standard analytical techniques. In this
study, the numerical approach is based on the

two-step Lagrange interpolation approach, as
detailed in [34–36] to address the fractional order
COVID-19 model (15).

From equation (19), we have

C
0D

α
t Q(t) = G (t,Q(t)) , t ∈ [0, b] , 0 < α ≤ 1,

Q(0) = Q0, (22)

and its solution is

Q(t) = Q(0) +
1

Γ(α)

∫ t

0
(t− s)α−1 G (s,Q(s)) ds.

(23)

Let, h =
T

n
, tϑ = ϑh, ϑ = 0, 1, 2 · · · , n ∈ Z+,

then at point t = tϑ+1, equation (23) becomes

Q(tϑ+1) = Q(0) +
1

Γ(α)

∫ tϑ+1

0
(tϑ+1 − s)α−1

× G (s,Q(s)) ds,

which can be expressed as,

Q(tϑ+1) = Q(0) +
1

Γ(α)

ϑ∑
ς=0

∫ tς+1

tς

(tϑ+1 − s)α−1

× G (s,Q(s))ds. (24)

By approximating the function G (s,Q(s))
over interval [tς , tς+1] by using the Lagrange
polynomial,

G (s,Q(s)) =
s− tς−1

tς − tς−1
G (tς ,Q(tς))

− s− tς
tς − tς−1

G (tς−1,Q(tς−1)). (25)

Using equation (25) in (24) and then simplifying
the integral, we get

Qϑ+1 = Q(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G (tς ,Q(tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G (tς−1,Q(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
.
(26)

Using the aforementioned scheme (26) for
numerical solution of our proposed model (15),
we get
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Sϑ+1 = S(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G1 (tς , S(tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G1(tς−1, S(tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(27)

Q1,ϑ+1 = Q1(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G2 (tς , Q1(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G2(tς−1, Q1(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(28)

Aϑ+1 = A(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G3 (tς , A(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G3 (tς−1, A(tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(29)

Q2,ϑ+1 = Q2(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G4 (tς , Q2(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G4 (tς−1, Q2(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(30)

Iϑ+1 = I(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G5(tς , I(tς))(

(2 + ϑ− ς − α)(1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G5 (tς−1, I(tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(31)

Tϑ+1 = T (0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G6(tς , T (tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G6(tς−1, T (tς−1))(

(1 + ϑ− ς + α)(ϑ− ς)α − (1 + ϑ− ς)α+1
)]
,
(32)

Rϑ+1 = R(0) +
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G7(tς , R(tς))(

(2 + ϑ− ς − α) (1 + ϑ− ς)α − (ϑ− ς)α(2 + ϑ

− ς + 2α)
)]

+
hα

Γ(α+ 2)

ϑ∑
ς=0

[
G7(tς−1, R(tς−1))(

(1 + ϑ− ς + α) (ϑ− ς)α − (1 + ϑ− ς)α+1
)]
.
(33)

7. Results and Discussion

We utilized the numerical method outlined in
preceding subsection, and employed baseline
values for parameters (as detailed in Table 1)
and the initial conditions of the model from
pertinent literature [22]. The initial conditions
were specified as follows:

S(0) = 0.69× 109, Q1(0) = 0.7× 109,

A(0) = 3800, Q2(0) = 800, I(0) = 601,

T (0) = 825, R(0) = 566. (34)

To illustrate the dynamics of the formulated
COVID-19 model (15), we provide graphical
visualizations in Figures 2, 3, 4 and 5. These
visualizations enable us to analyze the influence
of the CFD on the dynamics of population by
altering key model parameters and exploring
different values of fractional order. We used
MATLAB software for simulating numerical
results, and our discussed numerical approach
provided approximate solutions, which are
visually depicted in the referenced figures. Figure
2 displays the population dynamics of the
discussed model, utilizing the CFD within a
time sequence framework, measured in weeks.
In Figure 2, the behaviors of I(t), Q2(t), T (t),
and R(t) are portrayed for fractional order values
α = 0.80, 0.85, 0.90, 0.95 and 1.

Figure 2a demonstrates that infection increase
and decrease rapidly as the fractional order rises.
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(a) (b)

(c) (d)

Figure 2. Solution behavior of I(t), Q2(t), T(t), R(t).

Similar patterns can be observed in Figures
2b and 2c, respectively. During this critical
period, medical treatment plays a pivotal role
in controlling infections, ensuring suitable care
for individuals and facilitating their recovery, as
indicated in Figure 2d. The recovered population
increases over time, with variations observed for
different fractional order values. It is noteworthy
that, as α approach to 1, the fractional order
model solution converges toward the solution
obtained from the conventional integer-order
model.The convergence becomes faster as the
fractional order α approaches one. This behavior
can be attributed to fractional order derivatives
retaining the population dynamics of previous
time instants, which effectively slows down the
rate of reaching stability.

Figures 3, 4 and 5 illustrate the impact of highly
sensitive parameters such as β (transmission
rate), σ (lockdown scaling factor), and γ
(rate of exposure to treatment class) on R0

and simultaneously explores the impact of the
transmission rate, lockdown scaling factor and
recovery rate on the presented model. We
investigate how these governing factors influence
the dynamics and behavior of the system.
The strategies for managing the spread of
the disease primarily revolve around minimizing

the transmission of the covid-19 infection from
individuals who are infected to those who are
susceptible, and enhancing the rate of recovery.
These measures are crucial in managing and
preventing the continued dissemination of the
disease. On the left side of the figures, pattern
of the (R0) is displayed, while the right side
illustrates the behavior of the infected population
for distinct values of the specified parameters.

Figure 3, illustrates the dynamical behavior of R0

and COVID-19-infected individuals under various
transmission rates (β), while the remaining
parameters remain the same as in Table 1, with
considering a fractional order α = 1.

It reveals that β leads to a rapid and
substantial increase in R0, and as its value
escalates from 0.10 to 0.50, result in a
corresponding rise in the infection. Figure
4, illustrates the dynamical behavior of R0

and COVID-19-infected individuals under various
transmission rates (γ), while the remaining
parameters remain the same as in Table 1, with
considering a fractional order α = 1. The
variation of R0 concerning γ demonstrates an
inverse relation. Increasing the value of γ
significantly reduces the cases of infected
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Figure 3. (a) Variation of R0

with β. (b) Variation of infected
population.
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Figure 4. (a) Variation of R0

with γ. (b) Variation of Infected
Population.

individuals, as depicted in Figure 4. Additionally,
Figure 5 illustrates the dynamical behavior of R0

and COVID-19-infected individuals under various
transmission rates (β), while the remaining

parameters remain the same as in Table 1, with
considering a fractional order α = 1, where, σ =
0 corresponds to a state of complete lockdown,
σ = 0.5 to a partial lockdown and, σ = 1 to a
no lockdown scenario. It depicts the impact of
the parameter σ on the R0 and on the infected
population, ranging from 0 to 1. It is evident
that without imposing a lockdown, infection levels
would inevitably rise.

8. Conclusions

In our study, we investigated the mathematical
model involving CFD to determine the
transmission dynamics of COVID-19. Our
analysis included fundamental assessments of
the formulated model, ensuring boundedness and
non-negativity within the feasible region. These
analyses ensure that the model offers valuable
and realistic perspective into the dynamics of
COVID-19 outbreak. With addition to this,
we established the existence and uniqueness of
proposed model solutions with the help of Banach
fixed
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Figure 5. (a) Variation of R0

with σ. (b) Variation of Infected
Population.

point theorem. We computed the basic
reproduction number R0 by employing the
next-generation matrix technique, serving as
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a threshold parameter in the evolution of
infection. This parameter is pivotal in
identifying whether the disease endures or
dissipates within the population. Furthermore,
we employed the normalized sensitivity index to
conduct a sensitivity analysis of R0 for several
model parameters. The impact of different
parameters on the R0 has been analyzed as
well. This analysis enabled us to pinpoint the
control parameters significantly impacting the
progression of infection.

Moreover, we utilized the two-step Lagrange
interpolation method to perform numerical
simulations across various fractional order values
(α) in the proposed fractional model. This
numerical approach not only validated our
theoretical results but also provided significant
insights into the dynamical behavior of the
model influenced by fractional order. Our
numerical results highlighted the substantial
impact of increasing the lockdown scaling factor
σ and decreasing the transmission rate β on
reducing the number of COVID-19 infections.
Furthermore, these findings offer crucial insights
for intervention strategies, especially concerning
lockdown measures, effectively managing
COVID-19 transmission, and reducing the
transmission rate. Implementing isolation and
quarantining susceptible also emerged as effective
strategies to curtail transmission.

While the fractional order COVID-19 model has
furnished valuable insights into the epidemic
transmission process and identified critical
factors for its spread, a more detailed analysis
requires extending the model along with some
additional factors. Future research work should
incorporate various fractional derivatives, such
as fractal-fractional, Atangana-Beta derivative,
Caputo-Fabrizio, and more. These extensions
will pave the way for more comprehensive and
in-depth studies in the field.
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A novel fractional order model of SARS-CoV-2
and Cholera disease with real data. Journal of
Computational and Applied Mathematics, 423,
114969. https://doi.org/10.1016/j.cam.20
22.114969

[28] Odibat, Z. M., & Shawagfeh, N. T. (2007).
Generalized Taylor’s formula. Applied
Mathematics and Computation, 186(1), 286-293.
https://doi.org/10.1016/j.amc.2006.07.10

2

[29] Lin, W. (2007). Global existence theory
and chaos control of fractional differential
equations. Journal of Mathematical Analysis
and Applications, 332(1), 709-726. h t t p s :

//doi.org/10.1016/j.jmaa.2006.10.040

[30] Van den Driessche, P., & Watmough, J.
(2002). Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of
disease transmission. Mathematical Biosciences,
180(1-2), 29-48. https://doi.org/10.1016/S0
025-5564(02)00108-6

[31] Martcheva, M. (2015). An introduction to
mathematical epidemiology, Springer, 61. https:
//doi.org/10.1007/978-1-4899-7612-3_1

[32] Chitnis, N., Hyman, J. M., & Cushing, J. M.
(2008). Determining important parameters in
the spread of malaria through the sensitivity
analysis of a mathematical model. Bulletin of
Mathematical Biology, 70, 1272-1296. https://
doi.org/10.1007/s11538-008-9299-0

[33] Mishra, A. M., Purohit, S. D., Owolabi, K.
M., & Sharma, Y. D. (2020). A nonlinear
epidemiological model considering asymptotic
and quarantine classes for SARS CoV-2 virus.
Chaos, Solitons & Fractals, 138, 109953 https:

//doi.org/10.1016/j.chaos.2020.109953

[34] Diethelm, K., & Freed, A. D. (1998). The
FracPECE subroutine for the numerical solution
of differential equations of fractional order.

https://doi.org/10.32604/cmc.2020.011623
https://doi.org/10.32604/cmc.2020.011623
https://doi.org/10.1016/j.chaos.2022.112810
https://doi.org/10.1016/j.chaos.2022.112810
https://doi.org/10.1016/j.aej.2021.04.032
https://doi.org/10.1016/j.aej.2021.04.032
https://doi.org/10.11121/ijocta.01.2019.00643
https://doi.org/10.11121/ijocta.01.2019.00643
https://doi.org/10.11121/ijocta.01.2018.00532
https://doi.org/10.11121/ijocta.01.2018.00532
https://doi.org/10.1016/j.dajour.2022.100156
https://doi.org/10.1016/j.dajour.2022.100156
https://doi.org/10.1016/j.health.2022.100111
https://doi.org/10.1016/j.health.2022.100111
https://doi.org/10.1142/S1756973721500062
https://doi.org/10.1142/S1756973721500062
https://doi.org/10.1016/j.rinp.2020.103772
https://doi.org/10.1016/j.rinp.2020.103772
https://doi.org/10.11121/ijocta.01.2019.00657
https://doi.org/10.11121/ijocta.01.2019.00657
https://doi.org/10.3934/mbe.2020318
https://doi.org/10.3934/mbe.2020318
https://doi.org/10.1016/j.camwa.2011.04.028
https://doi.org/10.1016/j.camwa.2011.04.028
https://doi.org/10.1016/j.compbiomed.2023.107791
https://doi.org/10.1016/j.compbiomed.2023.107791
https://doi.org/10.3390/fractalfract7100719
https://doi.org/10.3390/fractalfract7100719
https://doi.org/10.1016/j.cam.2022.114969
https://doi.org/10.1016/j.cam.2022.114969
https://doi.org/10.1016/j.amc.2006.07.102
https://doi.org/10.1016/j.amc.2006.07.102
https://doi.org/10.1016/j.jmaa.2006.10.040
https://doi.org/10.1016/j.jmaa.2006.10.040
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.1007/978-1-4899-7612-3_1
https://doi.org/10.1007/978-1-4899-7612-3_1
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.1016/j.chaos.2020.109953
https://doi.org/10.1016/j.chaos.2020.109953


Analysis of COVID-19 epidemic with intervention impacts by a fractional operator 275

Forschung und wissenschaftliches Rechnen, 1999,
57-71.

[35] Diethelm, K., Ford, N. J., & Freed, A. D. (2004).
Detailed error analysis for a fractional Adams
method. Numerical Algorithms, 36, 31-52. https:
//doi.org/10.1023/B:NUMA.0000027736.8507

8.be

[36] Atangana, A., & Owolabi, K. M. (2018). New
numerical approach for fractional differential
equations. Mathematical Modelling of Natural
Phenomena, 13(1), 3. https://doi.org/10.1
051/mmnp/2018010

Sanjay Bhatter is an assistant professor of
mathematics in the Department of Mathematics,
Malaviya National Institute of Technology, Jaipur,
Rajasthan, India. His research interests include
Special Functions, Fractional Calculus, Mathematical
Modeling, Integral Transforms, and Integral
Inequalities.

https://orcid.org/0000-0003-1717-2178

Sangeeta Kumawat received graduation degree from
S.S. Jain Subodh P.G. Autonomous College, Jaipur,
India and M.Sc. degree from Central University
of Rajasthan, India. Currently, She is a research
scholar at Department of Mathematics, Malaviya
National Institute of Technology, Jaipur, India. Her
research interests include Mathematical Modelling and
Fractional Calculus.

https://orcid.org/0009-0002-2434-6930

Bhamini Bhatia received graduation degree from
Tagore Aadarsh P.G. College, Jaipur, India and

M.Sc. degree from JECRC University, Jaipur,
India. Currently, She is a research scholar
at Department of Mathematics, Malaviya National
Institute of Technology, Jaipur, India. Her
research interests include Mathematical Modelling and
Fractional Calculus.

https://orcid.org/0009-0004-6068-2733

Sunil Dutt Purohit obtained his M.Sc. (Gold
Medalist) and Ph.D. degree from the faculty of science
at Jai Narayan Vyas University, Jodhpur, India. He
also had a Joiner and Senior Research Fellowship of
Council of Scientific and Industrial Research (CSIR)
and then worked in the Department of Mathematics
and Statistics, Jai Narayan Vyas University, Jodhpur.
After that he joint as Assistant Professor and Head,
Department of Basic Sciences, Maharana Pratap
University of Agriculture & Technology, Udaipur,
India. Currently, he is Associate Professor of
Mathematics, Department of HEAS (Mathematics),
Rajasthan Technical University, Kota. His research
interest includes Special functions, Fractional
Calculus, Integral transforms, Basic Hypergeometric
Series, Geometric Function Theory and Mathematical
Physics. He has published more than 120 research
papers in international esteemed journals. He is
reviewer for Mathematical Reviews, USA (American
Mathematical Society) and Zentralblatt MATH, Berlin
since last six years. He is member, Editorial
Board for number of international mathematical and
interdisciplinary journals.

https://orcid.org/0000-0002-1098-5961

An International Journal of Optimization and Control: Theories & Applications (http://www.ijocta.org)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1051/mmnp/2018010
https://doi.org/10.1051/mmnp/2018010
https://orcid.org/0000-0003-1717-2178
https://orcid.org/0009-0002-2434-6930
https://orcid.org/0009-0004-6068-2733
https://orcid.org/0000-0002-1098-5961
http://creativecommons.org/licenses/by/4.0/


An International Journal of Optimization and Control: Theories & Applications
ISSN:2146-0957 eISSN:2146-5703
Vol.14, No.3, pp.276-293 (2024)
http://doi.org/10.11121/ijocta.1520

RESEARCH ARTICLE

The effect of a psychological scare on the dynamics of the
tumor-immune interaction with optimal control strategy

Rafel Ibrahim Salih a, Shireen Jawad a*, Kaushik Dehingia b, Anusmita Das c

aDepartment of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq
bDepartment of Mathematics, Sonari College, Sonari 785690, Assam, India
cDepartment of Mathematics, Udalguri College, Udalguri 784509, Assam, India
rafel.rabiaa90@gmail.com, Shireen.jawad@sc.uobaghdad.edu.iq, kaushikdehingia17@gmail.com,

anusmitadas87@gmail.com

ARTICLE INFO ABSTRACT

Article History:
Received 4 January 2024
Accepted 12 March 2024
Available Online 24 July 2024

Contracting cancer typically induces a state of terror among the individuals
who are affected. Exploring how chemotherapy and anxiety work together
to affect the speed at which cancer cells multiply and the immune system’s
response model is necessary to come up with ways to stop the spread of
cancer. This paper proposes a mathematical model to investigate the impact
of psychological scare and chemotherapy on the interaction of cancer and
immunity. The proposed model is accurately described. The focus of the
model’s dynamic analysis is to identify the potential equilibrium locations.
According to the analysis, it is possible to establish three equilibrium positions.
The stability analysis reveals that all equilibrium points consistently exhibit
stability under the defined conditions. The bifurcations occurring at the
equilibrium sites are derived. Specifically, we obtained transcritical, pitchfork,
and saddle-node bifurcation. Numerical simulations are employed to validate
the theoretical study and ascertain the minimum therapy dosage necessary for
eradicating cancer in the presence of psychological distress, thereby mitigating
harm to patients. Fear could be a significant contributor to the spread of
tumors and weakness of immune functionality.
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1. Introduction

Models are instruments utilized in medicine
and science to interpret results, develop
hypotheses, and plan experiments to verify
them [1]. For instance, mathematical
models of population dynamics are frequently
represented by differences or differential equations
that characterize the temporal evolution of
populations [2–9]. Throughout history, ecology
has predominantly employed mathematical
models to offer qualitative explanations for
natural patterns. An exemplary illustration
of this methodology was the endeavour to
elucidate species diversity through competition
models [10–16]. Mathematicsematical modeling

is a highly versatile instrument in the field of
infectious disease epidemiology, enabling the
detection of epidemic patterns, extrapolation of
epidemic behaviors, and evaluation of the impact
of interventions, including pharmacological
treatment, immunization, quarantine, social
distance, and hygiene practices, among others
[17–22]. An example of a disease model is cancer,
which is characterized by the proliferation of
malignant cells that infiltrate other anatomical
structures and currently ranks as the second most
prevalent cause of mortality globally, surpassed
only by cardiovascular disease. Developing
novel treatment options is a burgeoning study
field for scientists seeking to manage cancer
effectively. Nevertheless, comprehending the
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intricacies of tumor cell proliferation and their
intricate interplay with the immune system is
crucial in order to devise novel therapeutic
approaches. To accomplish this, researchers
extensively depended on mathematical models
[23–27]. Several scientists have extensively
researched the mathematical modeling of tumor
evolution, its interaction with different cells, and
the process of tumor growth. They have achieved
this by creating multiple models over the past few
decades [28–33]. Cancer is amenable to a variety
of treatment modalities, including chemotherapy,
radiotherapy, and surgery. Chemotherapy, one of
the cancer treatments, is a systematic approach
that targets and eliminates cancer cells at the
site of the tumor while minimizing its impact
on effector-normal cells. This eliminates the
ability of the tumor cells to metastasize to
other anatomical sites [34–36]. For instance,
De Pillis and his associates examined multiple
mathematical models to quantify the effects of
chemotherapy [37]. In addition, Pillis et al.
devised a cancer treatment model in which they
discovered that combining chemotherapy and
immunotherapy can completely eradicate the
tumor instead of using either therapy alone [38].
On the other hand, The initial mathematical
model that incorporated the influence of fear
in a predator-prey system involving two species
was presented by Wang et al. in 2016 [39].
Prey animals may alter their grazing location
to a more secure area and relinquish their most
productive feeding sites due to predator-induced
anxiety. The user’s text is incomplete and
lacks information [40–43]. Further, There has
been a recent increase in research focusing on
the importance of mathematical models for
studying how fear-induced behavioral changes
impact the spread of diseases [44–48]. A medical
study has demonstrated that psychological
stress contributes to the dissemination of
cancer cells throughout the patient’s body.
Psychological stress causes significant dilation
and intensification of blood vessels, hence
promoting the migration of cancer cells and
facilitating the metastasis of the disease [49].
Researchers have discovered that stress-induced
hormones exacerbate the proliferation of cancer
cells inside the “lymphatic system,” thus
facilitating their dissemination to other locations,
thereby promoting the metastasis of the disease
throughout the human body [50].

The present study proposes a psychological
scare-cancer-immune-normal-chemotherapy
model (PSCINC) regulated by systems
of ordinary differential equations, drawing

inspiration from the model presented in [51].
We have enhanced the model of De Pillis et al.
by replacing the linear functional response with
the Holling type II functional response. This
modification allows us to accurately depict the
eradication of tumor cells by the immune system,
considering the possibility of a weakened immune
system due to the presence of psychological scare
of cancer. Further, there is a lack of study about
the influence of fear on the immune-cancer model.
Hence, we deem it imperative to examine this
phenomenon, as it contributes to reducing the
occurrence of catastrophic circumstances.
Further, there is a lack of study about the
influence of fear on the immune-cancer model.
Hence, we deem it imperative to examine
this phenomenon, as it contributes to reducing
the occurrence of catastrophic circumstances.
Therefore, this study is dedicated to discussing
the impact of anxiety on immune cancer patients,
which could be a significant contributor to
the spread of tumors and weakness of immune
functionality. The subsequent sections of this
document are organized as follows: section 2
examines the assumptions of the proposed model.
The presence of potential equilibrium points is
determined in section 3. Next, section 4 discusses
the stability conditions of the steady states. The
discussion in section 5 focuses on the global
stability of equilibriums. In addition, section 6
acknowledges the local bifurcation conditions in
close proximity to the fixed points. In section 7,
numerical examinations are conducted to validate
our analytical findings.

2. Assumptions of the model

Let’s examine a system of differential equations
(PSCINC) that involves immune cells I (t), tumor
cells C(t), normal cells N(t), and chemotherapy
treatment H(t) represented as
dI

dt
= α

1 + eC
+ p1IC

β1 + C
− p2IC − d1I − d2IH

= h1(I, C, H)
dC

dt
= m1C (1 − k1C) − p3IC

β2 + C
− γ1CN − d3HC

= h2(I, C, N, H)
dN

dt
= m2N (1 − k2N) − γ2CN = h3(C, N)

dH

dt
= ν − d4H = h4(H)

(1)
In the first equation of the PSCINC model, the
term α

1+eC stands for the regular production of
immune cells in the body, which is affected by
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the presence of cancer cells by the psychological
scare factor e. Therefore,e the birth-term
changes by producing fear function. The
fear function is incorporated by the decreasing
function φ (e, C) = 1

1+eC , which was initially
introduced by Wang et al. [46]. From the
biological point of view, φ (e, C) is appropriate
since

ϕ(0, C) = 1, ϕ(e, 0) = 1,

lime→∞ϕ(e, C) = 0,

limC→∞ϕ(e, C) = 0,

∂ϕ(e, C)
∂e

< 0,
∂ϕ(e, C)

∂C
< 0.

The Michaelis–Menten term p1 IC
β1+C signifies the

existence of tumor cells that provoke the immune
system’s response. p2IC indicates the immune
cells’ decay rate due to tumor cells. d1I
denotes the effector cells’ death rate. d2IH
designates the decay rate of effector cells due
to chemo-drug. In the second equation, the
(m1C (1 − k1C)) represents the tumor growth
term. The term p3IC

β2+C stands for the eradication

of cancerous cells by the body’s immune system.
γ1CN indicates the tumor cells’ decay rate due
to effector cells. d3HC designates the decay
rate of cancer cells due to chemo-drug. In
the third equation, m2N (1 − k2N) denotes the
normal cells’ growth. γ2CN represents the rate
of disintegration of normal cells caused by the
presence of tumor cells. In the last equation, ν
is the infusion of chemotherapy drugs externally,
and d4H is the decay rate of the chemo-drug.
All parameters were considered non-negative and
visibly described in Table 1. Further, Figure 1
illustrates the schematic sketch of the (PSCINC)
model.
The subsequent theorem establishes the positivity
of all solutions of the (PSCINC) model in the
positive orthant of R4

+.

Theorem 1. All of the solutions of
the (PSCINC) model I (t) , C (t) , N (t)
and H (t) with the initial conditions
(I (0) , C (0) , N(0), H(0))∈ R4

+ are positively
invariant.

(a) Before treatment

(b) After treatment

Figure 1. Schematic diagram of the (PSCINC) model.
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Table 1. Description of (PSCINC) system’s parameters.

Parameters Denotation Values Source
α A constant rate of immune cells 0.05 [47]
e Psychological scare rate from cancer 0.1 Estimated
p1 Maximum immune cell recruitment by tumor cells 0.1 [53]
β1 Half-life of effector cells 0.4 [53]
p2 Efficient elimination rate of malignant cells from effector cells 0.2 [47]
d1 Effector cells’ death rate 0.2 [53]
d2 Decay rate of effector cells due to chemo-drug 0.09 [53]
m1 Tumor’s intrinsic growth rate 0.4 [53]
k1 Tumor cells’ carrying capacity 1.5 [53]
p3 Maximum rate of killing the tumor cells by effector cells 0.3 [47]
β2 Half-life of cancer cells. 0.4 [53]
γ1 Tumor cell decay rate due to normal cells 0.2 [53]
d3 Decay rate of cancer cells due to chemo-drug 0.05 [53]
m2 Normal cell’s intrinsic growth rate 0.35 [53]
k2 Normal cells’ carrying capacity 1 [53]
γ2 Normal cell decay rate due to tumor cells 0.25 [53]
ν Infusion rate of chemotherapy drugs 0.019 [53]
d4 Decay rate of the chemo-drug 0.05 [53]

Proof. By integrating the second and third
functions of the (PSCINC) model for C (t)
and N (t) with a positive initial condition
(I (0) , C (0) , N(0), H(0)), we obtain
C (t) =

C (0) exp
{∫ t

0

[
m1 − m1k1C(s) − p3I(s)

β2 + C(s)

− γ1N(s) − d3H(s)
]
ds
}

= QC > 0

N (t) = N (0) exp
{∫ t

0

[
m2 − m2k2N (s)

− γ2C (s)
]
ds
}

= QN > 0

From the first equation of the (PSCINC) model,
we have

dI =
(

α

1 + eC
+ p1IC

β1 + C
− p2IC − d1I − d2IH

)
dt

dI ≥
[ α

1 + eQC
+ I

( p1QC

β1 + QC
− p2QC − d1

− d2ν

d4

)]
dt

Therefore, after eliminating the non-negative
terms, this produces 0000-0003-4022-8053

dI ≥
[
I
( p1QC

β1 + QC
− p2QC − d1

− d2ν

d4

)]
dt

Consequently, by integrating the equation shown
above for I(t), these yields

I(t) ≥ I (0) exp
{∫ t

0

[( p1QC

β1 + QC
− p2QC

− d1 − d2ν

d4

)]
ds
}

Similarly, from the last equation of the (PSCINC)
model, we get

dH = (ν − d4H) dt =⇒ dH ≥ −d4Hdt

By integrating the above equation, we get

H(t) ≥ H (0) exp

{∫ t

0
−d4ds

}
Thus, H(t) > 0 as t → ∞.
As a result of the exponential function’s
definition, any solution (I (t) , C (t) , N(t), H(t))
that starts inside of R4

+ with positive initial
conditions (I (0) , C (0) , N(0), H(0)) will remain
in R4

+. □

Theorem 2. All the solutions of the (PSCINC)
model are uniformly bounded if the following
condition is hold

Proof. let (I (0) , C (0) , N(0), H(0))∈ R4
+ be an

initial condition for the (PSCINC), then, by using
the Bernoulli method, we get
dN

dt
= m2N (1 − k2N) − γ2CN ≤ m2N (1 − k2N)

=⇒ N (t) ≤ 1
k2 + N (0) e−m2t

Thus, limt→∞ sup [N (t)] ≤ 1
k2

.
Similarly, we get
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lim
t→∞

sup [C (t)] ≤ 1
k1

,

Now, by using the standard comparison theory
[48] and the above bound for the cancer cells, we
get

dI

dt
= α

1 + eC
+ p1 IC

β1 + C
− p2IC − d1I − d2IH

≤ α − d1I =⇒ lim
t→∞

sup [I (t)] ≤ α

d1

and

lim
t→∞

sup [H (t)] ≤ ν

d4
.

Therefore, the corresponding domain region for
the (PSCINC) model is

φ =
{

(I, C, N, H) ∈ R4
+ : I (t) ≤ α

d1
,

C (t) ≤ 1
k1

, N (t) ≤ 1
k2

, H(t) ≤ ν

d4

}
.

□

3. Equilibria analysis

This section will delve into finding the possible
equilibrium and analyzing the system’s stability,
specifically its stability in the vicinity of
equilibrium. To accomplish this, we compute
dI
dt = dC

dt = dN
dt = dH

dt = 0 and get the following
equilibrium in two cases:

(1) No treatment case: in this case, we have
two equilibrium points given by
(a) The cancer-free or healthy point

A0 = (I0, 0, N0), where I0 = α
d1

and
N0 = 1

k2
.

(b) The endemic or treatment-free
equilibrium point A1 = (I1, C1, N1)
here N1 = m2−γ2C1

m2k2
, I1 =

−α(β1+C1)
r1C1+r2C2

1 −r3C3
1 −r4

where

r1 = p1 − p2β1 − d1 − ed1β1,

r2 = ep1 − p2 − eβ1p2 − ed1,

r3 = ep2,

r4 = d1β1,

r5 = m1k1 − γ1γ2
m2k2

,

r6 = m1 − γ1
k2

,

and C1 is the root of the following
equation

f1 (C) = a1C5+a2C4+a3C3+a4C2+a5C+a6, = 0,

where,

a1 = r3r5,

a2 = (r5 (β2r3 − r2) − r3r6)
a3 = − (r5 (r1 + r2β2) + r6 (β2r3 − r2)) .

a4 = (r5 (r4 + r1β2) + r6 (r1 + β2r2)) .

a5 = (αp3 − r6 (r4 + r1β2) + β2r4r5) .

a6 = (αβ1p3 − β2r4r6) .

Clearly, f1 (0) = (αβ1p3 − β2r4r6), and

f1 (k1) = r3r5k5
1 + (r5 (β2r3 − r2) − r3r6) k4

1

− ( r5 (r1 + r2β2) + r6 (β2r3 − r2)) k3
1

+
(

r5
(
r4 − r1β2

)
+r6 (r1 + β2r2)

)
k2

1

+ (αp3 − r6 (r4 − r1β2) + β2r4r5) k1

+ αβ1p3 − β2r4r6.

Therefore, by the intermediate value
theorem [55], f1 (C) has a positive root,
say C1 in the interval (0, k1) if one of the
following conditions is satisfied

f1 (0) < 0 and f1 (k1) > 0,
f1 (0) > 0 and f1 (k1) < 0.

Now, for I1 and N1 to be positive, the
following two conditions must be satisfied:

m2 > γ2 C1

r1C1 + r2C2
1 < r3C3

1 + r4
(2)

(2) After treatment case: in this case, we
have one positive equilibrium point A2 =
(I2, C2, N2, H2) here

H2 = ν

d4
, N2 = m2 − γ2C2

m2k2
, I2

= −α(β1 + C2)
−z0C3

2 − z1C2
2 + z2C2 − z3

where

z0 = ep2, z1 = p2 − ep1 + eβ1p2 + ed1 + eνd2
d4

,

z2 = p1 − p2β1 − d1 − ed1β1 − νd2
d4

− eνd2β1
d4

,

z3= d1β1 + νd2β1
d4

,
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z4 = m1k1 − γ1γ2
m2k2

,

z5 = γ1
k2

− m1 + νd3
d4

,

and C2 is the root of the following
equation

f2 (C) = b1C5 + b2C4 + b3C3

+ b4C2 + b5C + b6 = 0,

where
b1 = z0z4,

b2 = ( z4 (z1 + z0β2) + z0z5) .

b3 = (z4 (z1β2 − z2) + z5 (z1 + z0β2)) .

b4 = ( z4 (z3 − β2z2) + z5 (z1β2 − z2)) .

b5 = (β2z3z4 + z5 (z3 − β2z2) + αp3) .

b6 = β2z3z5 + αβ1p3.

Clearly,
f2 (0) = β2z3z5 + αp3β1

and
f2 (k1) = z0z4k5

1

+ ( z4 (z1 + z0β2) + z0z5) k4
1

+ (z4 (z1β2 − z2 ) + z5 (z1 + z0β2)) k3
1

+ (z4 (z3 − β2z2) + z5 (z1β2 − z2)) k2
1

+ (β2z3z4 + z5 (z3 − β2z2) + αp3) k1

+ β2z3z5 + αβ1p3.

Therefore, by the intermediate value theorem,
f2 (C) has a positive root, say C2 in the interval
(0, k1) if one of the following conditions is satisfied

f2 (0) < 0 and f2 (k1) > 0,
f2 (0) > 0 and f2 (k1) < 0.

For I2 and N2 to be positive, the following two
conditions must be satisfied:

m2 > γ2C2

z2C2 < z0C3
2 + z1C2

2 + z3
(3)

Since N = 0 indicates that the patients are
deceased, we exclude cases where N = 0 from
consideration. In order to analyze the linear
stability of the system at the three equilibrium
points mentioned above, it is necessary to
calculate the Jacobian matrix of the system, and
the Jacobian is

J =


j11 j12 0 j14
j21 j22 j23 j24
0 j32 j33 0
0 0 0 j44

 (4)

here.

j11 = p1C

β1 + C
− p2C − d1 − d2H,

j12 = −eα

(1 + eC)2 + p1β1I

(β1 + C)2 − p2I,

j14 = −d2I,

j21 = −p3C

β2 + C
,

j22 = m1(1 − 2k1C) − p3β2I

(β2 + C)2 − γ1N − d3H,

j23 = −γ1C, j24 = d3C,

j32 = −γ2N, j33 = m2 − 2m2k2N − γ2C,

j44 = −d4.

• The Jacobian matrix at A0 = (I0, 0, N0)
is given as:

J (A0) =

−d1 −eα − p1α
β1d1

− p2α
d1

0
0 m1 − p3α

β2d1
− γ1

k2
0

0 −γ2
k2

−m2

 (5)

Then, the eigenvalues of J (A0) are
λ0

1 = −d1 < 0, λ0
2 = m1 − p3α

β2d1
− γ1

k2

and λ0
3 < 0. Therefore, A0 is asymptotic

stable whenever if

m1 <
p3α

β2d1
+ γ1

k2
• The Jacobian matrix at A1 = (I1, C1, N1)

is given as:

J (A1) =

a
[1]
11 a

[1]
12 0

a
[1]
21 a

[1]
22 a

[1]
23

0 a
[1]
32 a

[1]
33

 (6)

where

a
[1]
11 = p1C1

β1 + C1
− p2C1 − d1,

a
[1]
12 = −eα

(1 + eC1)2 + p1β1I1

(β1 + C1)2 − p2I1,

a
[1]
21 = −p3C1

β2 + C1
,

a
[1]
22 = m1 − 2m1k1C1 − p3β2I1

(β2 + C1)2 − γ1N1,

a
[1]
23 = −γ1C1,

a
[1]
32 = −γ2N1,

a
[1]
33 = m2 − 2m2k2N1 − γ2C1.

So, the eigenvalues of J (A2) are the
roots of the following equation

(
λ3 + U1λ2 + U2λ + U3

)
= 0 (7)
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where:
U1 = −

(
a

[1]
11 + a

[1]
22 + a

[1]
33

)
U2 = −

(
−a

[1]
11

(
a

[1]
22 + a

[1]
33

)
− a

[1]
22a

[1]
33

+ a
[1]
23a

[1]
32 + a

[1]
12a

[1]
21

)
U3 =

(
a

[1]
11

(
a

[1]
23a

[1]
32 − a

[1]
22a

[1]
33

)
+ a

[1]
12a

[1]
21a

[1]
33

)
U1U2 − U3 =

((
a

[1]
11 + a

[1]
22 + a

[1]
33

) (
−a

[1]
11(

a
[1]
22 + a

[1]
33

)
− a

[1]
22a

[1]
33 + a

[1]
23a

[1]
32 + a

[1]
12a

[1]
21

))
−
(

a
[1]
11

(
a

[1]
23a

[1]
32 − a

[1]
22a

[1]
33

)
+ a

[1]
12a

[1]
21a

[1]
33

)
Thus, according to the Routh-Hurwitz
rule [56], A1 will be asymptotically stable
if U1 > 0, U3 > 0 and U1U2 > U3.

• The Jacobian matrix at A2 =
(I2, C2, N2, H2) is given as:

J (A2) =



a
[2]
11 a

[2]
12 0 a

[2]
14

a
[2]
21 a

[2]
22 a

[2]
23 a

[2]
24

0 a
[2]
32 a

[2]
33 0

0 0 0 a
[2]
44


(8)

where,

a
[2]
11 = p1C2

β1 + C2
− p2C2 − d1 − d2H2,

a
[2]
12 = −eα

(1 + eC2)2 + p1β1I2

(β1 + C2)2

− p2I2, a
[2]
14 = −d2I2,

a
[2]
21 = −p3C2

β2 + C2
,

a
[2]
22 = m1 − 2m1k1C2 − p3β2I2

(β2 + C2)2

− γ1N2 − d3H2,

a
[2]
23 = −γ1C2, a

[2]
24 = −d3C2,

a
[2]
32 = −γ2N2,

a
[2]
33 = m2 − 2m2k2N2 − γ2C2,

a
[2]
44 = −d4.

So, the eigenvalues of J (A2) are the roots
of the following equation

(−d4 − λ)
(
λ3 + D1λ2 + D2λ + D3

)
= 0 (9)

where,

D1 = −
(
a

[2]
11 + a

[2]
22 + a

[2]
33

)
D2 = −

(
−a

[2]
11

(
a

[2]
22 + a

[2]
33

)
− a

[2]
22a

[2]
33 + a

[2]
23a

[2]
32 + a

[2]
12a

[2]
21

)
D3 =

(
a

[2]
11

(
a

[2]
23a

[2]
32 − a

[2]
22a

[2]
33

)
+ a

[2]
12a

[2]
21a

[2]
33

)
D1D2 − D3 =

((
a

[2]
11 + a

[2]
22 + a

[2]
33

)
(
−a

[2]
11

(
a

[2]
22 + a

[2]
33

)
− a

[2]
22a

[2]
33

+ a
[2]
23a

[2]
32 + a

[2]
12a

[2]
21

))
−
(
a

[2]
11

(
a

[2]
23a

[2]
32 − a

[2]
22a

[2]
33

)
+ a

[2]
12a

[2]
21a

[2]
33

)
.

Thus, according to the Routh-Hurwitz
rule, A2 will be asymptotically stable on
the condition that D1 > 0, D3 > 0 and
D1D2 > D3.

4. Global stability at the cancer-free
steady state

To reach a healthy state, in this section, we will
examine the global stability surrounding A0 to
explore the dynamics of the (PSCINC) system at
regions far from the equilibrium point A0.

Theorem 3. A0 is a GAS provided the following
conditions hold:

m1k1 ≥ max

{
2
d1

(
−αe

1+eC + p1 I
β1+C − p2I

)2
, 2γ22

m2k2

}
m1 < p3I

β2+C + γ1N


(10)

Proof. Let’s define a Lyapunov function [57] for
the (PSCINC) model at A0 as follows: L(t) =
(I−I0)2

2 + C +
(
N − N0 − N0ln N

N0

)
, where L(t) is

a positive definite about A0. Thus,
dL

dt
= (I − I0) dI

dt
+ dC

dt
+
(

N − N0
N

)
dN

dt

= (I − I0)
( α

1 + eC
+ p1 IC

β1 + C

− p2IC − d1I − α+d1I0
)

+
(

m1C − m1k1C2 − p3IC

β2 + C
− γ1CN

)
+ (N − N0) (m2 (1 − k2N) − γ2C) .
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Therefore,
dL

dt
= (I − I0)( −αeC

1 + eC
+ p1 IC

β1 + C
− p2IC − d1 (I − I0)

)
+
(

m1C − m1k1C2 − p3IC

β2 + C
− γ1CN

)
+ (N − N0) (−m2k2 (N − N0) − γ2C) .

i.e.,
dL

dt
= C (I − I0)

( −αe

1 + eC
+ p1 I

β1 + C
− p2I

)
− d1 (I − I0)2

+
(

m1C − m1k1C2 − p3IC

β2 + C
− γ1CN

)
− m2k2 (N − N0)2 − γ2C (N − N0) .

=⇒ dL

dt
= −m1k1

2 C2 + C (I − I0)( −αe

1 + eC
+ p1 I

β1 + C
− p2I

)
− d1 (I − I0)2 − m1k1

2 C2 − γ2C (N − N0)

− m2k2 (N − N0)2

+ C

(
m1 − p3I

β2 + C
− γ1N

)

=⇒ dL

dt
≤ −

√m1k1
2 C +

√
d1 (I − I0)

2

−

√m1k1
2 C +

√
m2k2 (N − N0)

2

+ C

(
m1 − p3I

β2 + C
− γ1N

)

Therefore, dL/dt < 0, and hence L(t) is a Lyapunov
function under condition 10. □

Thus, the cancer-free steady state A0 fulfills
the requirements for local stability, rendering
the point globally stable. From a biological
perspective, chemotherapy refers to the process
of selectively eliminating tumor cells if conditions
(10) are met.

5. Local bifurcation

This section examines the local bifurcation
conditions close to steady states by applying
Sotomayor’s rule for local bifurcation [58,59].

Theorem 4. For m1
∗ = p3α

β2d1
+ γ1

k2
, the (PSCINC)

model, at A0 has

(1) No saddle-node bifurcation (SNB).
(2) A transcritical bifurcation (TB) if(

T [0]
)T [

D2hm1 (A0, m1
∗)
(
S[0], S[0]

)]
̸= 0. (11)

(3) A pitchfork bifurcation (PB) if condition
(11) is violated where the notation in (11)
will be introduced during the proof.

Proof. At m1
∗ = p3α

β2d1
+ γ1

k2
, J(A0) has a zero

eigenvalue λ0
2 = 0. Therefore, J(A0) at m∗

1
becomes

J∗ (A0) =

−d1 −eα − p1α
β1d1

− p2α
d1

0
0 0 0
0 −γ2

k2
−m2


Now, let S[0] =

(
s

[0]
1 , s

[0]
2 , s

[0]
3

)T
and T [0] =(

t
[0]
1 , t

[0]
2 , t

[0]
3

)T
represent the eigenvectors

corresponding to the zero eigenvalue of J∗(A0)
and J∗T (A0) respectively. Direct computation
gives

S[0] =
(− (β1 (ed1 + p2) + p1) α

d2
1β1

, 1,
−γ2
m2k2

)T

and

T [0] = ( 0, 1, 0)T .

Now, let h = (h1(I, C), h2(I, C, N), h3(C, N))T ,
then differentiating h with respect to m1 gives:

∂h

∂m1
=
(

∂h1
∂m1

,
∂h2
∂m1

,
∂h3
∂m1

)
= (0, C(1 − k1C, 0),

hm1 (A0, m1
∗) = (0, 0, 0) .

Hence,

T [0]T hm1 (A0, m1
∗) = (0, 1, 0) (0, 0, 0)T = 0

That means the (SNB) cannot happen at m1
∗.

Subsequently, since

T [0]T hm1 (A0, m1
∗) = 0

T [0]T
[
Dhm1 (A0, m1

∗) S[0]
]

= (0, 1, 0)

0 0 0
0 1 0
0 0 0




−(β1(ed1+p2)+p1) α
d2β1
1

−γ2
m2k2

 = 1 ̸= 0
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T [0]T
[
D2hm1 (A0, m1

∗)
(
S[0], S[0]

)]
= (0, 1, 0)

2s
[0]
1

p1
(
1 − I0s

[0]
1

)
β1

−
(
p2 + 2e2αs

[0]
1

) ,
p3 (1 + (2I0 − β2))

β2
2

−2
(
m∗

1k1 − γ1s
[0]
3

)
, −s

[0]
3

(
γ2 + 2m2k2s

[0]
3

))T

=

p3
(
1 + s

[0]
2 (2I0 − β2)

)
β2

2
− 2

(
m1

∗k1 − γ1s
[0]
3

) .

This means the required conditions for (TB)
are satisfied under condition (11). Finally, if
condition (11) is not satisfied, then.(

T [0]
)T

D3hm1 (A0, m∗
1)
(
S[0], S[0], S[0]

)
=

2p3
(
2β2s

[0]
1 − 1 − 3I0

)
β3

2
.

□

Theorem 5. For

γ1
∗ =

−a
[1]
11

2 (
a

[1]
22 + a

[1]
33

)
− 2a

[1]
22a

[1]
33a

[1]
11

C1
(
a

[1]
22a

[1]
32 + a

[1]
32a

[1]
33

)
−

−a
[1]
22

2 (
a

[1]
11 + a

[1]
33

)
+
(
a

[1]
11 + a

[1]
22

)
C1
(
a

[1]
22a

[1]
32 + a

[1]
32a

[1]
33

)

−

(
−a

[1]
33

2
+ a

[1]
12a

[1]
21

)
C1
(
a

[1]
22a

[1]
32 + a

[1]
32a

[1]
33

)
where γ2

∗ > 0, and the formulas of a
[2]
ij are given

in (8), the (PSCINC) model at A1 has a (SNB)
if (

T [1]
)T [

D2hγ1 (A1, γ∗
1)
(
S[1], S[1]

)]
̸= 0 (12)

Proof. According to J(A1), given by (6), the
(PSCINC) model at A1 has a zero eigenvalue,
say λ2

2 = 0, at γ1
∗ and the Jacobian matrix

J∗(A1) = J(A1, γ1
∗),becomes:

J∗ (A1) =

η11 η12 0
η21 η22 η23
0 η32 η33

 ,

here,

η11 = p1C1
β1 + C1

− p2C1 − d1,

η12 = −eα

(1 + eC1)2 + p1β1I1

(β1 + C1)2 − p2I1,

η21 = −p3
β2 + C1

,

η22 = m1 − 2m1k1C1 − p3β2I1

(β2 + C1)2 − γ1
∗N1,

η23 = −γ1
∗C1,

η32 = −γ2N3, η33 = m2 − 2m2k2N1 − γ2C1.

Now, let
S[1] =

(
s

[1]
1 , s

[1]
2 , s

[1]
3

)T

and
T [1] =

(
t
[1]
1 , t

[1]
2 , t

[1]
3

)T

represent the eigenvectors corresponding to
the zero eigenvalue of J∗(A1) and J∗T (A1)
respectively. Direct computation gives

S[1] =
(−η12

η11
, 1,

−η32
η33

)T

and
T [1] =

(−η21
η11

, 1,
−η23
η33

)T

where η11 ̸= 0 and η33 ̸= 0.
Subsequently, since

T [1]T hγ1 (A1, γ1
∗) =

(−η21
η11

, 1,
−η23
η33

)
(0, −C1N1, 0)T = −C1N1 ̸= 0(

T [1]
)T [

D2hγ1 (A1, γ∗
1)
(
S[1], S[1]

)]
=
(−η21

η11
, 1,

−η23
η33

)
(

2p1β1(s1
[1] − I1s2

[1])s2
[1]

(β1 + C1)2 − 2p2s1
[1]s2

[1]

+
2e2α

(
s2

[1]
)2

(1 + eC1)3 ,
p3s2

[1](s2
[1] − s1

[1]
β2)

(β2 + C1)2

+
2p3β2I1

(
s2

[1]
)2

(β2 + C1)3 − 2s2
[1](γ1

∗ + m1k1s2
[1],

−
(
s2

[1]γ2 + 2m2k2
))T

=
((2p1β1(s1

[1] − I1s2
[1])s2

[1]

(β1 + C1)2 − 2p2s1
[1]s2

[1]

+
2e2α

(
s2

[1]
)2

(1 + eC1)3

)−η21
η11

+
(

p3s2
[1](s2

[1] − s1
[1]

β2)
(β2 + C1)2 +

2p3β2I1
(
s2

[1]
)2

(β2 + C1)3

− 2s2
[1](γ1

∗ + m1k1s2
[1]
)

−
(
s2

[1]γ2 + 2m2k2
)(−η23

η33

))
Hence, condition (12) guarantees that the second
condition of saddle-node bifurcation is satisfied.
Therefore, the (PSCINC) model has SNB at A1
with the parameter γ∗

1 . □
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Theorem 6. For

γ2
∗ =

−a
[2]
11

2 (
a

[2]
22 + a

[2]
33

)
− a

[2]
22

2 (
a

[2]
11 + a

[2]
33

)
(
a

[2]
23a

[2]
33 + a

[2]
22a

[2]
23

)
N2

+

(
a

[2]
11 + a

[2]
22

)(
−a

[2]
33

2
+ a

[2]
12a

[2]
21

)
(
a

[2]
23a

[2]
33 + a

[2]
22a

[2]
23

)
N2

−
2a

[2]
11a

[2]
22a

[2]
33(

a
[2]
23a

[2]
33 + a

[2]
22a

[2]
23

)
N2

where γ2
∗ > 0, and the formulas of a

[2]
ij are given

in (8), the (PSCINC) model at A2 has a (SNB)
if

(
T [2]

)T [
D2hγ2 (A2, γ∗

2)
(
S[2], S[2]

)]
̸= 0 (13)

Proof. According to J(A2), given by (8), the
(PSCINC) model at A2 has a zero eigenvalue,
say λ3

2 = 0, at γ2
∗ and the Jacobian matrix

J∗(A2) = J(A2, γ2
∗), becomes:

J∗ (A2) =


ς11 ς12 0
ς21 ς22 ς23
0 ς32 ς33
0 0 0

ς14
ς24
0
ς44


ς11 = p1C2

β1 + C2
− p2C2 − d1 − d2H2,

ς12 = −eα

(1 + eC2)2 + p1β1I2

(β1 + C2)2 − p2I2,

ς13 = 0,

ς14 = −d2I4,

ς21 = −p3
β2 + C2

,

ς22 = m1 − 2m1k1C2 − p3β2I2

(β2 + C2)2

− γ1N2 − d3H2,

ς23 = −γ1C2,

ς24 = d3C2,

ς32 = −γ2
∗N2,

ς33 = m2 − 2m2k2N2 − γ2
∗C2,

ς44 = −d4.

Now, let

S[2] =
(
s

[2]
1 , s

[2]
2 , s

[2]
3 , s

[2]
4

)T

and

T [2] =
(
t
[2]
1 , t

[2]
2 , t

[2]
3 , t

[2]
4

)T

represent the eigenvectors corresponding to
the zero eigenvalue of J∗(A2) and J∗T (A2)
respectively. Direct computation gives

S[2] =
(

ς22ς33 − ς23ς32
ς21ς32

,
−ς33
ς32

, 1, 0
)T

and

T [2] =
( ς22ς33 − ς23ς32

ς12ς23
,
−ς33
ς23

,

1,

[
ς14(ς23ς32 − ς22ς33) + ς12ς33ς24

ς12ς23ς44

] )T

where ς12 ̸= 0.

T [2]T hγ2 (A2, γ2
∗) =

( ς22ς33 − ς23ς32
ς12ς23

,
−ς33
ς23

,

1,

[
ς14(ς23ς32 − ς22ς33) + ς12ς33ς24

ς12ς23ς44

] )T

(
(0, 0, −C2N2, 0)T

)T
= −C2N2 ̸= 0.

(
T [2]

)T [
D2hγ2 (A2, γ∗

2)
(
S[2], S[2]

)]
=
(

ς22ς33 − ς23ς32
ς12ς23

,
−ς33
ς23

,

1,

[
ς14(ς23ς32 − ς22ς33) + ς12ς33ς24

ς12ς23ς44

])
(2p1β1(s1

[2] − I2s2
[2])s2

[2]

(β1 + C2)2

− 2p2s1
[2]s2

[2] +
2e2α

(
s2

[2]
)2

(1 + eC2)3 ,

p3s2
[2](s2

[2] − s1
[2]

β2)
(β2 + C2)2 +

2p3β2I2
(
s2

[2]
)2

(β2 + C2)3

− 2s2
[2](γ1 + m1k1s2

[2],

−
(
s2

[2]γ2
∗ + 2m2k2

)
, 0
)T

□
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=
((2p1β1(s1

[2] − I2s2
[2])s2

[2]

(β1 + C2)2

− 2p2s1
[2]s2

[2] +
2e2α

(
s2

[2]
)2

(1 + eC2)3

)
((

ς22ς33 − ς23ς32
ς12ς23

)
+ p3s2

[2](s2
[2] − s1

[2]
β2)

(β2 + C2)2

+
2p3β2I2

(
s2

[2]
)2

(β2 + C2)3 − 2s2
[2](γ1 + m1k1s2

[2]
)

(−ς33
ς23

)
−
(
s2

[2]γ2
∗ + 2m2k2

))
.

Hence, condition (13) guarantees that the second
condition of saddle-node bifurcation is satisfied.
Therefore, the (PSCINC) model has SNB at A2
with the parameter γ∗

2 .

6. Optimal control

This section focuses on analyzing the model
following the administration of chemotherapy
treatment at a certain time. From a biomedical
standpoint, we have included the notion of
optimum control in the model. For this purpose,
we should look into the problem with a control
strategy that can lessen the health hazard for
the patient. Therefore, we propose and analyze
the optimal control problem applicable to model
(PSCINC) to determine the optimal dose of
chemotherapy to control the tumor. We decide
on control inputs v of cellular chemotherapy,
included in the fourth equation of the (PSCINC)
model, to be supplied from an external source at
different times.
So, let us assume that the time-dependent form
of our considered model is given in (1) with the
following initial conditions for the model set:
So, let us assume that the time-dependent form
of our considered model is given in (1) with
the following initial conditions for the (PSCINC)
system set:
I (0) = I0, C (0) = C0, N (0) = N0, H (0) = H0,

(14)
The objective function, which is to be minimized,
is defined as follows:

Ω (τ) =
∫ tf

0
[I (t) + C (t) + ε1ν2(t)]dt, (15)

The constants ε1 represent the weight factors
of the respective terms. These are utilized to
equalize the magnitude of the phrases. The
ideal selection of control variable ν will effectively
reduce tumor density and maximize immune

density simultaneously, while also minimizing
any unfavorable side effects within a set time
frame. The initial component of the integrand
function represents the overall quantity of
tumor cells, the subsequent component of the
integrand function represents the overall quantity
of immune cells, and the last component of
the integrand function indicates the efficacy of
the administered medications on the organism.
Here, we employ an optimum control problem
to the model to minimize the administration of
chemotherapeutic drugs, aiming to mitigate side
effects and shorten the patient’s recovery period.
Here, we set up an optimal control ν∗ such that

Ω (ν∗) = min {Ω (ν) : ν ∈ ∆}, (16)
where ∆ = {ν : measurable, 0 ≤ ν ≤ 1, t ∈ [0, tf ]}
is the admissible control set.

6.1. The existence of optimal control

In this sub-section, we analyze the existence of an
optimal control of the (PSCINC) model (1). The
property of super solutions Ī , C̄, N̄ , and H̄ of the
model (1) is that trajectories given by

dĪ

dt
= α − d1Ī ,

dC̄

dt
= m1C̄ − p3I, (17)

dN̄

dt
= m2N̄ ,

dH̄

dt
= ν − d4H̄,

are bounded. In vector form, we can express the
above system (17) as:

Ī
C̄
N̄
H̄


′

≤


−d1 0 0 0
−p3 m1 0 0

0 0 m2 0
0 0 0 −p4




Ī
C̄
N̄
H̄

+


α
0
0
ν


Since this is a linear system with bounded
coefficients and the time frame is limited, so, we
can conclude that the solutions Ī, C̄,N̄ , and H̄,
of the above system are bounded. Using the
theorem proposed by Lukes [60], we found that
the admissible control class and the corresponding
state equations with assumed initial conditions
are non-empty. Also, by the definition of the set
∆, it is clear that the control set ∆ is convex and
closed. Since the state solutions are bounded,
hence, the right-hand sides of the state system
(1) are continuous and bounded by a sum of the
bounded controls and the states.
Now, we examine the convexity of the integrand
of Ω (ν) on ∆ and that it is bounded below by
τ1ν2(t) − τ2 with τ1, τ2 > 0. Let p, q be distinct
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elements of Ω and 0 ≤ Y ≤ 1. We have to show
that Ω (p1Y + (1 − Y ) p2, q1Y + (1 − Y ) q2) ≤
(1 − Y ) Ω (p1, q1) + Y Ω (p2, q2) where, Ω (ν) =
I (t) + C (t) + ε1ν2(t),
To establish it, we proceed as follows:
Ω (p1Y + (1 − Y ) q1, p2Y + (1 − Y ) q2)
− (1 − Y ) Ω (p1, p2) + Y Ω (q1, q2)
= C (t) + I (t) + ε1(p1Y + (1 − Y ) q1)2

− Y
{

C (t) + I (t) + ε1p2
1

}
− (1 − Y )

{
C (t) + I (t)

+ ε1q2
1
}

= I (t) + C (t) + ε1
(
p2

1Y 2 + 2p1q1Y (1 − Y )

+ (1 − Y )2q2
1
)
−Y

{
I (t) + C (t) + ε1p2

1

}
−
{

I (t) + C (t) + ε1q2
1

}
+ Y

{
I (t) + C (t) + ε1q2

1

}

= ε1p2
1Y 2 + 2ε1p1q1Y (1 − Y ) + ε1(1 − Y )2q2

1

− ε1p2
1Y − ε1q2

1 + ε1q2
1Y

= ε1p2
1Y 2 + 2ε1p1q1Y − 2ε1p1q1Y 2

+ ε1
(
1 − 2Y + Y 2

)
q2

1 − ε1p2
1Y − ε1q2

1 + ε1q2
1Y

= ε1p2
1Y 2 − 2ε1p1q1Y 2 + ε1q2

1Y 2

− ε1p2
1Y + 2ε1p1q1Y − ε1q2

1Y

= − ε1 (p2 − q2)2 Y (1 − Y ) [Since, (Y − 1) ≤ 0,
and if ε1 ≥ 0],
and

I (t) + C (t) + ε1ν2 (t) ≥ ε1ν2 (t) ≥ τ1ν2(t)
≥ τ1ν2(t) − τ2.

This shows that τ1ν2(t) − τ2 is a lower bound
of Ω (τ, µ). This verifies that there exists an
optimal control ν∗ for which Ω (ν∗)=min Ω (ν∗) =
min {Ω (ν) : ν ∈ ∆} From the above analysis and
conclusion, we state the following theorem.

Theorem 7. Subject to the system (1), with
initial conditions I (0) = I0, C (0) = C0, N (0) =
N0, andH (0) = ν0, the objective functional

Ω (ν) =
∫ tf

0

[
I (t) + C (t) + ε1ν2 (t)

]
dt

admits an optimal control ν∗ such that
Ω (ν∗) = min{Ω (ν) : ν ∈ ∆} , where ∆ =
(ν)νare piecewise continuous, 0 ≤ ν ≤ 1, t ∈
[0, tf ].

6.2. Characterization of the optimal
control

For applying the Pontryagin maximum principle
[46], we introduced the four co-state variables

ξi (i = 1, 2, 3, 4). The Hamiltonian function is
given by
h = I +C +ε1ν2 + ξ1İ + ξ2Ċ + ξ3Ṅ +ξ4Ḣ (18)

With substitution from (1) into (18), we get
h∗ = I + C + ε1ν2

ξ1

(
α

1 + eC
+ p1 IC

β1 + C
− p2IC − d1I − d2IH

)
+ ξ2

(
m1C (1 − k1C) − p3IC

β2 + C
− γ1CN − d3HC

)
+ ξ3 (m2N (1 − k2N) − γ2CN ) + ξ4 (ν − d4H) ,

The Hamiltonian equations are:

ξ̇1 = −∂h∗
∂I

, ξ̇
2

= −∂h∗
∂C

, ξ̇3 = −∂h∗
∂N

, ξ̇4 = −∂h∗
∂H

,

(19)
where, ξi (t) , i = 1, 2, 3, 4 are the adjoint functions
to be determined suitably.
The form of the adjoint equations and
transversality conditions are standard results
from Pontryagin’s Maximum Principle [61]. The
adjoint system can be written in the form:

ξ̇1 = −∂h∗
∂I

= −1 − ξ1

(
p1C

β1 + C
− p2C − d1 − d2H

)
+ ξ2

p3IC

β2 + C
,

ξ̇2 = −∂h∗
∂C

= −1 + ξ1( −eα

(1 + eC)2 + p1β1I

(β1 + C)2 − p2I)

− ξ2(m1 − 2Cm1k1 − p3β2I

(β2 + C)2 − γ1N − d3H)

+ ξ3γ2N,

ξ̇3 = −∂h∗
∂N

= ξ2γ1C − ξ3 (m2 − 2m2k2N − γ2C) ,

ξ̇4 = −∂h∗
∂H

= ξ1d2I + ξ2d3C + d4ξ4,

The transversality conditions are ξi (tf ) = 0, for
i = 1, 2, 3, 4.
The condition dictate the necessary optimum
control functions is
∂h∗
∂ν = 0.

Hence, we get

ν∗ (t) = − ξ4
2ε1

; ν = ν∗(t) (20)

By using the bounds for the control ν∗(t) from
(20), we get
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ν∗ =


− ξ4

2ε1
, if 0 ≤ − ξ4

2ε1
≤ 1

0, if − ξ4
2ε1

≤ 0
1, if ξ4

2ε1
≥ 1


In compact notation, we have

ν∗ = min
{

max
{

0, − ξ4
2ε1

}
, 1
}

, (21)

Based on the analysis and conclusion presented
above, the subsequent theorem is derived.

Theorem 8. For optimal control ν∗

and corresponding state variable solutions
I∗ (t) , C∗(t), N∗(t) and H∗(t) that minimize over
∆, there exist specific adjoint variables ξi (t),
i = 1, 2, 3, 4 satisfying the following system:

ξ̇1 = −1 − ξ1

(
p1 C

β1 + C
− p2C − d1 − d2H

)
+ ξ2

p3IC

β2 + C
,

ξ̇2 = −1 + ξ1( −eα

(1 + eC)2 + p1 β1I

(β1 + C)2 − p2I)

− ξ2(m1 − 2Cm1k1 − p3β2I

(β2 + C)2

− γ1N − d3H) + ξ3γ2N,

ξ̇3 = ξ2γ1C − ξ3 (m2 − 2m2k2N − γ2C) , (22)
ξ̇4 = ξ1d2I + ξ2d3C + d4ξ4,

subject to the transversality conditions

ξi (tf ) = 0, i = 1, 2, 3, 4.

Furthermore, the subsequent properties are valid:

τ∗ = min
{

max
{

0, − ξ4
2ε1

}
, 1
}

7. Numerical Analysis

Numerical verification is essential for completing
analytical studies. In this section, we visually
confirmed the accuracy of our analytical findings
for the (PSCINC) system using the software
MATLAB. This verification holds significant
practical significance. The simulations were
conducted using the parameter values specified

below [53].
α =0.05, e = 0.1, p1 = 0.1, β1 = 0.4, p2 = 0.2,

d1 = 0.2, d2 = 0.09, m1 = 0.4, k1 = 1.5,

p3 = 0.3, β2 = 0.4, γ1 = 0.2, d3 = 0.05,

m2 = 0.35, k2 = 1; γ2 = 0.25, ν = 0.019,

d4 = 0.05.

Now, we will consider five scenarios to
comprehend the dynamic behavior of the
(PSCINC) model and assess the influence
of chemotherapy treatment and psychological
anxiety on tumor suppression. Subsequently, the
outcomes of the five cases will be juxtaposed for
comparison. The five cases are:

7.1. Case I: the healthy case

In this scenario, we examine the interaction
dynamics between healthy cells N(t) and immune
cells I(t) in the absence of chemotherapy
treatment and psychological nervousness, i.e.,
where ν = 0 and e = 0. Figure 2 depicts the
(PSCINC) model with a cancer-free equilibrium
point and a single positive equilibrium at A0 =
(2, 0, 2.38, 0) Furthermore, regardless of the initial
values, the solution initially experiences growth
or decline before converging asymptotically to A0
after approximately thirty days.

Figure 2. The dynamics of
(PSCINC) model with C = 0, ν = 0
and e = 0.

7.2. Case II: no treatment case

Here, we examine the behavior of the (PSCINC)
model in the absence of treatment and the
psychological scare. Figure 3 illustrates the
performance of the (PSCINC) model where ν = 0
and e = 0. All initial conditions lead to the
convergence of the system to a treatment-free
equilibrium point A1 = (I1, C1, N1, 0) =
(0.25, 0.13, 0.9, 0). In addition, the population of
immune cells steadily diminishes as the number
of tumor cells gradually increases. Furthermore,
this case clearly demonstrates that eradicating
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tumor cells is unattainable without a well-defined
therapeutic strategy.

Figure 3. The dynamics of the
(PSCINC) model with ν = 0 and
e = 0.

7.3. Case III: psychological scare case

The objective of this case is to demonstrate the
impact of anxiety on the interaction between
cancer cells and immune cells in the absence
of chemotherapy drugs. Figure 4 explains the
performance of the (PSCINC) model where ν = 0
with various values of e. The relationship between
rising anxiety and declining immune function is
evident. As a result, the tumor cells significantly
grow; therefore, external treatment is needed.

Figure 4. The dynamics of the
(PSCINC) model with ν = 0 and
various value of e.

7.4. Case IV: a treatment case

In this instance, we will examine the intricacies
of the (PSCINC) system when subjected
to chemo-drug. Figure.5 clearly depicts
the global stability characteristics of the
positive steady state A2 = (I2, C2, N2, H2) =
(0.2, 0.14, 0.89, 0.38). The administration of
chemotherapy leads to a substantial decrease
in tumor cells within the body compared to
past instances. In addition, chemotherapy also
adversely affects the immune cells, decreasing

the quantity of immune cells compared to the
previous cases. Considering those mentioned
above, additional doses are necessary to achieve
a state devoid of tumors.

Figure 5. The dynamics of the
(PSCINC) model with treatment
case.

7.5. Case V: a minimum dosage of
chemo-drug

This case aims to examine the effects of modifying
the number of chemotherapy doses required to
achieve a healthy state. Figure 5 clarifies the
performance of the (PSCINC) model with various
values of ν. The solution of the (PSCINC) system
asymptotically converges to A2 when v is less
than 0.14. Conversely, the system tends towards
a cancer-free state A0 when ν = 0.14. Thus,
a value of ν = 0.14 is the minimum dosage of
chemotherapy necessary to achieve a condition
devoid of cancer.

Figure 6. The dynamics of the
(PSCINC) model with various values
of ν

8. Conclusion

It has been looked at how an ODE mathematical
model for tumor growth works, which includes
how immune cells interact with tumor cells and
how psychological scares and chemotherapy drugs
work. The fundamental attributes of the model’s
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solutions, including positivity and boundedness,
were established. A stability analysis was
conducted on the system under consideration to
investigate the model’s dynamic behavior. Our
research indicates that the constant state devoid
of tumors is stable globally under particular
conditions. This suggests that the prescribed
treatment can eliminate tumor cells from the
body for a specific tumor growth rate.
The numerical simulations validate the analytical
findings. Precisely, the threshold values for the
transcritical bifurcation are calculated, indicating
the point at which cancer transitions from
persisting to eradicating. Additionally, numerical
analysis reveals that when the tumor size is
modest, the prescribed chemotherapy drug can
effectively eliminate tumor cells from the body
with a minimal minimum dose. Nonetheless,
a constraint of our model is that prolonged
treatment and a substantial dosage of medications
are necessary to eradicate large tumors, both of
which can be detrimental to the patient’s health.
Our upcoming research will focus on augmenting
the immune system by regular vitamin intake or
the utilization of stem cells.
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