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The analytical solution of the longitudinal wave equation in the MEE circular
rod is analyzed by the powerful sine-Gordon expansion method. Sine - Gordon
expansion is based on the well-known wave transformation and sine - Gordon
equation. In the longitudinal wave equation in mathematical physics, the trans-
verse Poisson MEE circular rod is caused by the dispersion. Some solutions
with complex, hyperbolic and trigonometric functions have been successfully
implemented. Numerical simulations of all solutions are given by selecting the
appropriate parameter values. The physical meaning of the analytical solution
explaining some practical physical problems is given.
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1. Introduction

Innovative analytical new solutions for non-linear
evolution equations (NEEs) has very important
role in area of non-linear physics. Non-linear evo-
lution equations are often used to state complex
models that appear in different areas of non-linear
science, such as biological sciences, quantum me-
chanics, and plasma physics. Recently, differ-
ent analytical techniques have been invested to
search new types of solutions. NLEs such as the

new general algebra method [1], the tan(F (ξ)
2 )-

expansion method [2], the extended tanh method
[3], the jacobi elliptic function method [4], the
homogeneous balance method [5], the generalized

Kudryashov method [6], the generalized (G
′

/G)
method [7], the extended homoclinic test function
method [8], the improved Bernoulli sub-equation
function method [9], the improved exp (−Φ(ξ))-
expansion function method [10] and so on. In
general, many more analytical techniques have
been designed and used in obtaining analytical
solutions of different NLEs [11–22]. Authors of

[23–28] obtained new lump and interaction for
some of models in which arise in applied sciences.
Moreover, Manafian and co-authors [29, 30] used
the analytical methods for getting to exact solu-
tions.

The powerful sine-Gordon expansion method
(SGEM) [31, 32] was used to find some new so-
lution methods to the longitudinal wave equation
of the magneto-electro-elastic (MEE) circular rod
[33] in this study. The longitudinal wave equation
of the MEE circular rod is developed by [33], the
longitudinal wave equation is a dispersion equa-
tion caused by the transverse Poisson’s effect in
MEE circular rod, developed from [34];

utt − q2uxx −
(q

2
u2 + putt

)

xx
= 0, (1)

where p is the dispersion parameter and q is
the linear longitudinal wave velocity of the MEE
circular rod which depend on material proper-
ties and rod geometry [34]. Different analytical
methods have been put in place to find solutions
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to the longitudinal wave equation in magneto-
electro-elastic MEE circular rod, like the im-
proved (G

′

/G)-expansion method [35], the func-
tional variable method [36],the ansatz method
[37], etc.

2. The SGEM

The general cases of SGEM was given in this sec-
tion,

Take into account the following sine-Gordon equa-
tion [38], [39]:

uxx − utt = n2sin(u). (2)

where u = u(x, t) and n ∈ R \ {0}.
Using the wave transformation u = u(x, t) =
U(β), β = α(x − kt) on Eq. (2), following non-
linear ordinary differential equation (NODE) was
gotten as:

U
′′

=
n2

α2(1− k2)
sin(U), (3)

as U = U(β), the amplitude of the traveling wave
is β and k is the speed of the traveling wave. To
integrate the equation (3), we get the following
equation:

[

(U

2

)′
]2

=
n2

α2(1− k2)
sin2

(U

2

)

+Q, (4)

as the integral constant is Q .

Set Q = 0, φ(β) = U
2 and b2 = n2

α2(1−k2)
in Eq.

(4), gives:

φ
′

= bsin(φ), (5)

inserting b = 1 into Eq. (5), produces:

φ
′

= sin(φ), (6)

simplifying Eq. (6), creates the following two im-
portant equations;

sin(φ) = sin(φ(β)) =
2deβ

d2e2β + 1

∣

∣

∣

∣

∣

d=1

= sech(β),

(7)

cos(φ) = cos(φ(β)) =
d2e2β − 1

d2e2β + 1

∣

∣

∣

∣

∣

d=1

= tanh(β),

(8)

as the integral constant is d .

For the given non-linear partial differential equa-
tion Eq. (9);

P (u, uux, u
2ut, . . .), (9)

its solution in the form as;

U(β) =
m
∑

i=1

tanhi−1(β)
[

Bisech(β)+Aitanh(β)
]

+A0.

(10)

Equation (10) may be given according to Eq. (7)
and (8) as;

U(φ) =

m
∑

i=1

cosi−1(φ)
[

Bisin(φ) +Aicos(φ)
]

+A0.

(11)

m is determined by balancing the highest power
non-linear term and the highest derivative in the
transformed NODE. Taking each summation of
the coefficients of sini(w)cosj(w), 0 ≤ i, j ≤ m
to be zero, produces a set of equations. This set
of equation is solved with the symbolic computa-
tional computational software, yields the values
of the coefficients Ai, Bi, µ and c. Eventually,
inserting the produced values of these coefficients
into Eq. (10) accompanied by the value of m,
gives the fresh travelling wave solutions to Eq.
(9).

3. Applications

The SGEM is used in searching the fresh solu-
tions to Eq. (1) in this section. Considering Eq.
(1), the following NODE was gotten by using the
wave transformation; u = U(β), β = µ(−kt+ x);

2pk2µ2U
′′ − 2(k2 − c20)U + c20U

2 = 0, (12)

p is non-zero constant and we get m = 2 by bal-
ancing U

′′

and U2 in Eq. (12).
Using Eq. (11) together with the value m = 2, we
get the following equation;

U(φ) = B1sin(φ) +A1cos(φ) +B2cos(φ)sin(φ)

+A2cos
2(φ) +A0, (13)

differentiating Eq. (13) twice, we get:
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U
′′

(φ) = B1cos
2(φ)sin(φ)−B1sin

3(φ)

− 2A1sin
2(φ)cos(φ) +B2cos

3(φ)sin(φ)

− 5B2sin
3(φ)cos(φ)− 4A2cos

2(φ)sin2(φ)

+ 2A2sin
4(φ),

(14)

Setting Eq. (13) and (15) to Eq. (12), gener-
ating trigonometric equations. After replacing
the trigonometric constants in the trigonomet-
ric equation, a set of algebraic equations is col-
lected by setting each sum of the coefficients of
the trigonometric functions of the same power to
zero. The set of equations is solved with assis-
tance of symbolic mathematical softwares; to get
coefficient values for different cases. We insert
coefficient values for each case into the Eq. (10)
with a value of m = 2, this gives us a new solution
Eq. (1).

Case-1:

A0 = 4(1 +
k2

q2
), A1 = 0, B1 = 0, A2 = −6(1− k2

q2
),

B2 = −6i+
6ik2

q2
, p =

1

k2µ2
(k2 − q2).

Case-2:

A0 = 4− 4

1 + pµ2
, A1 = 0, B1 = 0,

A2 = −6 +
6

1 + pµ2
, B2 =

6pµ2(pµ2 − 1)

p2µ4 − 1
i,

q = −k
√

1 + pµ2.

Case-3:

A0 = −6 +
6k2

q2
, A1 = 0, B1 = 0, A2 = 6− 6k2

q2
,

B2 = 6i(1− k2

q2
), µ = − 1

k
√
p

√

(k2 − q2).

Case-4:

A0 = 1 +
k2

q2
, A1 = 0, B1 = 0, A2 = −3(1− k2

q2
),

B2 = 0, p =
k2 − q2

4k2µ2
.

Case-5:

A0 = 1− 1

4pµ2 + 1
, A1 = 0, B1 = 0,

A2 = −3 +
3

4pµ2 + 1
, B2 = 0, q = k

√

4pµ2 + 1.

Case-6:

A0 = 1− k2

q2
, A1 = 0, B1 = 0, A2 = 3(

k2

q2
− 1),

B2 = 0, µ =
1

2k
√
p

√

(k2 − q2)i.

Solutions:
(1). The following solution is gotten by with case
1;

u1(x, t) =
6(k2 − q2)

q2
(1 + i sech[µ(x− kt)]

× tanh[µ(x− kt)]− tanh[(−kt+ x)µ]2)
(15)

Figure 1. The 3D shape for the
imaginary part of Eq. (15) with the
values k = 2, c0 = 1, µ = 3, −3 <
x < 3, −5 < t < 5 and t = 0 for the
graphic of 2D.
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Figure 2. The 3D shape for the real
part of Eq. (15) with the values
k = 2, c0 = 1, µ = 3, −3 < x < 3,
−5 < t < 5 and t = 0 for the graphic
of 2D.

(2). The following solution is gotten by with case
2;

u2(x, t) = 4− 4

1 + pµ2
+ (6ipµ2(−1 + pµ2)).

.
sech[(−kt+ x)µ] tanh[−kt+ x)µ]

−1 + p2µ4

+ (−6 +
6

1 + p2µ2
) tanh[(−kt+ x)µ]2.

(16)

Figure 3. The 2D and 3D shape for
the imaginary and real part of Eq.
(16) with the values k = 2, p = 1,
µ = 3, −5 < x < 8, 0 < t < 2 and
t = 0 for the graphics of 2D.

(3). The following solution is gotten by with case
3;

u3(x, t) =
6

q2
(q2 − k2)(−1− i sech[

1

k
√
p
(
√

k2 − q2)

× (x− kt)] tanh[
1

k
√
p
(
√

k2 − q2)(x− kt)]+

+ tanh[
1

k
√
p
(
√

k2 − q2)(x− kt)]2).

(17)
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Figure 4. The 2D and 3D shape for
the imaginary and real part of Eq.
(17) with the values k = 2, p = 1,
c0 = 1, −5 < x < 5, 0 < t < 2 and
t = 0 for the graphics of 2D.

(4). The following solution is gotten by with case
4;

u4(x, t) =
k2 − q2

q2
(2− 3 tanh[(−kt+ x)µ]2) (18)

Figure 5. The 2D and 3D shape for
the Eq. (18) with the values k =
0.005, µ = 3, c0 = 1, −1 < x < 1,
0 < t < 2 and t = 0 for the graphic of
2D.

(5). The following solution is gotten by with case
5;

u5(x, t) =
4pµ2

1 + 4pµ2
(1− 3 tanh[µ(x− kt)]2) (19)

Figure 6. The 2D and 3D shape for
the Eq. (19) with the values k = 0.5,
µ = 3, p = 1, −0.5 < x < 1, 0 < t < 2
and t = 0.7 for the graphic of 2D.

(6). The following solution is gotten by with case
6;

u6(x, t) =
k2 − q2

q2
(−1−3 tan[

√

k2 − q2

2k
√
p

(x−kt)]2).

(20)
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Figure 7. The 2D and 3D shape for
the Eq. (20) with the values k = 2,
c0 = 1, p = 1, −0.5 < x < 1,
0 < t < 2 and t = 0.7 for the graphic
of 2D.

4. Results and Discussion

In [33] the improved exp(−Φ(ξ))-expansion func-
tion method is used in the solution of the
magneto-electro-elastic circular rod longitudinal
wave equation and the solution of different hy-
perbolic function forms is obtained. Secondly,
the well-known improvement (G

′

/G)-expansion
method [35] has been used for this equation and
some precise hyperbolic and trigonometric func-
tions are obtained. We observe that our results
are new, but have the same solution structure.
When compared with the existing, the results ob-
tained by using these two methods. On the other
hand, we observe that in the numerical simula-
tions of the solutions we presented; Figure 1, Fig-
ure 2 and Figure 7 are singular soliton surfaces,
Figure 3 is solit off surface, Figures 4-6 are soli-
ton surfaces. We observe that some solutions in
this study have important physical significance,
such as the emergence of hyperbolic tangents in
the calculation of magnetic moments and relative
velocities, the emergence of hyperbolic secant in
the profile of a laminar jet [40].

5. Conclusions

In this study, by utilizing the sine-Gordon exten-
sion method with the help of symbolic mathemat-
ical software, we investigated the solution of the
magneto-electro-elastic circular rod longitudinal
wave equation. We obtain some new solutions for
complex hyperbolic and trigonometric functions.
All solutions obtained in this study validate wave
equations in magneto-electro-elastic circular rod
and we examine this using the same procedure as
symbolic mathematical software. We performed
numerical simulations of all the solutions obtained
in this paper. We observed that our results may
be helpful in detecting transverse Poissons effect
magneto-electro-elastic circular rod. The Sine-
Gordon extension method is a powerful and ef-
ficient mathematical tool that can be used with
the help of symbolic mathematical software to ex-
plore different non-linear methods arising in dif-
ferent fields of non-linear science.
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 Since it affects the performance of whole supply chain significantly, definition of 

correct inventory control policy in a supply chain is critical. Recent technological 

development enabled real time visibility of a supply network by horizontal 

integration of each node in a supply network. By this opportunity, inventory 

sharing among stocking locations is also possible in the effort of cost minimization 

in supply chain management.  Hence, lateral transshipment gained popularity and 

studies seeking the best lateral-transshipment policy is still under research. In this 

study, we aim to compare different lateral-transshipment policies for an s, S 

inventory control problem for a single-echelon supply chain network system. In 

this work, we consider a supply network with three stocking locations which may 

perform lateral transshipment among them when backorder takes place. We 

develop the simulation models of the systems in ARENA 14.5 commercial 

software and compare the performance of the policies by minimizing the total cost 

under a pre-defined fill rate constraint by using an optimization tool, OptQuest, 

integrated in that software. The results show that lateral transshipment works well 

compared to the scenario when there is no lateral transshipment policy in the 

network.  
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1. Introduction 

Because it affects performance of the whole chain 

significantly, inventory control policy in a supply chain 

is important. Due to recent increase in e-commerce, 

order profile has changed towards more product variety 

with less volume and decreased response time. For 

instance, same day delivery concept is considered as 

strategy in many distribution companies to increase 

customer satisfaction. The recent order profile caused 

more variability in orders throughout the supply chain. 

Therefore, inventory control problem emerged as a 

significant issue in supply chain to overcome this 

variability and increase the performance of the supply 

chain. In a study, it is pointed out that inventory cost 

constitutes the 40% of the total logistics cost for fast 

moving consumer goods supply chain [1]. Therefore, 

recently, there are numerous studies focusing on 

inventory control problems, e.g., exploring optimal 

policies [2-4] by testing new and practical policies such 

as lateral transshipment [5-7] and inventory routing 

policies [8].  

Companies tend to carry inventory in practice, to 

reduce their total cost and improve their customer 

service. However, information sharing also enabling 

inventory sharing among locations by transshipments 

has been less frequent [9-10]. For providing an 

effective mechanism, transshipments are being made 

between stocking locations at the same echelon based 

on their available inventories and their distances to 

increase the efficiency of the network. For instance, 

allowing transshipments between stocking locations 

may lead cost reduction as well as service improvement 

resulting with customer satisfaction. In this study, we 

study a single-echelon supply chain network by 

focusing on determining the best lateral-transshipment 

policy from four pre-defined ones. Our goal is to 

minimize the total cost by determining the safety-stock 

and up-to levels of stocking locations under a pre-

defined fill rate performance metric. In Fig. 1, the 

layout of the supply network is shown. Based on that, 

there are three stocking locations (depots) in which they 

have their own demand profiles. These stocking 
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locations may share their inventories when a backorder 

takes place in one of the locations based on the pre-

defined scenarios.  The details of the sharing policy 

scenarios are explained in Section 3.4. 

10 km

10 km

20 km

Main Depot                                           Stocking Locations

Depot 1

MD

Depot 2

Depot 3

MD

MD

700 km

850 km

700 km

 
Figure 1. The studied single-echelon supply chain network. 

 

In Fig. 1, we assume that the supply network’s stocking 

locations are close to each other so that the backorder 

can be met instantaneously. Hence, we ignore the lead 

times for lateral transshipments, however, we consider 

a cost for these transshipments. 

2. Literature review 

Lateral transshipment can be defined as stock sharing 

policy among same echelon locations in an inventory 

network system. It is mostly motivated  because that 

shorter lead times and decreased cost in redistribution 

of goods can be ensured compared to distribution from 

the main depot [11]. Recent comprehensive overviews 

on the problem are provided by [4] and [12]. In lateral 

transshipment mainly, there are two types of 

transshipment policies based on its timing: (1) reactive 

transshipments in response to an existing stock out [13-

15], (2) proactive transshipments to prevent the future 

stock out [16-18]. In this work, we study reactive 

transshipment policies in which lateral transshipment 

may take place when backorder occurs in a stocking 

location.  

Generally, the studies focus on the decision of how the 

lateral transshipment will take place between the 

locations [19-21]. For instance, Axsäter [19] studies a 

single-echelon inventory problem having a number of 

parallel local warehouses with Poisson demand. He 

evaluates the proposed decision rule via simulation 

model and concludes that the suggested rule performs 

quite good. Çapar et al. [20] study a decision rule by 

coordinating inventory and transportation policies in a 

two-stage supply chain network. They present that on 

average, their proposed rule outperforms the other 

alternative policies. A new heuristic approach for 

inventory sharing problem via lateral transshipment is 

introduced by Tiacci and Saetta [21]. Their work show 

that the proposed heuristic approach works well for 

inventory balancing problem by lateral transshipment 

policies minimizing overall cost. A recent survey has 

also studied lateral transshipment problem for 

inventory models [4]. The interested reader can find 

further information in that review article. 

The existing studies in the literature showed that 

transshipment is beneficial when the replenishment 

lead times are long from the upper echelon suppliers 

and when the stocking locations are close to each other 

at the same echelon level. This benefit increases 

drastically when backorder (shortage or penalty) cost is 

high. Recent transshipment studies explore different 

transshipment policies [20] by also investigating 

integration of proactive and reactive transshipment 

policies [22]. The existing studies show that when there 

is lateral transshipment policy in those networks, 

average cost is reduced by 11–17% compared to no 

lateral transshipment policy in that network [6]. 

The history of the (s, S) inventory control policies goes 

back to 1950s. Arrow et al. [23] developed a simple 

model determining the best order-up-to-level and the 

re-order level as a function of demand distribution, 

setup and stock out costs. The model considers 

immediate replenishment assumption. Freeman [24] 

studied (s, S) inventory policy with the inclusion of 

variable delivery time to derive the order size and the 

reordering point from an analytical perspective. Since 

then, lots of different variants of (s, S) policies have 

been analyzed and a considerable research has 

accumulated [25-28] because of its simple and efficient 

applications. An s, S inventory modelling application is 

shown by [29] which is a case study in a paint 

production company in Turkey. 

The literature papers propose trial of new different 

transshipment policies as future study. Hence, different 

from the existing studies, we consider different four 

transshipment policies under reactive transshipment 

policy to test which one works better under the studied 

network. In the considered policies, based on the 

backorder amounts and the inventory levels of the other 

stocking locations, transshipments either take place or 

do not take place. Besides we compare the four 

transshipment policies among each other, we also 

compare these transshipment policies with the one 

when there is no lateral transshipment policy in the 

network. 

3. Problem definition and simulation modelling 

In this section, we provide the details of the studied 

inventory problem and the simulation modelling of the 

studied system with the assumptions.  

3.1. Problem definition 

In this paper, we study a single-item, one-echelon 

inventory problem in which items can be stored in 

three, i = 1, 2, 3, stocking locations. Those stocking 

locations are assumed to be supplied by an upper 

echelon supplier (i.e., main depots) with infinite 
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production capacity (see Fig. 1). In the model, it is 

assumed that demand for each stocking location i, 

arrives at the beginning of each period t (dit). Demand, 

dit, is fully satisfied, if there is sufficient amount of 

inventory level at the depot i at time t, Iit. After fully 

satisfying the demand, at the end of the time, inventory 

is checked at stocking locations for determining 

whether an order will be given from the main depot. 

Based on the considered inventory control policy of s, 

S, if the inventory level Iit is less than or equal to safety 

stock level, si, an order is placed for the stocking 

location i at time t. The order quantity, Qit, is defined to 

be fulfilling the inventory level to up-to-levels of 

stocking locations, Si. Hence, Qit is equal to Si - Iit. In 

the models, it is assumed that there is truck (transporter) 

capacity in carrying products both from the main depot 

and in the lateral transshipments. A lead time from the 

main depot to the stocking locations, Lmi, is also 

considered. If the demand exceeds the current 

inventory level, backorder occurs. When backorder 

takes place, lateral transshipment may realize between 

stocking locations based on the pre-defined scenario 

detailed in Section 3.4. The backorder amount that 

could not be satisfied by lateral transshipment is 

included as backorder cost in the total cost calculations. 

3.2. Model notations 

The utilized notations for the parameters are provided 

below: 

b : backorder cost per demand, 

k : number of stocking locations (i.e., k = 3) 

h : holding cost per demand, 

lij : a single truck’s travel cost from stocking 

location i to j realizing lateral transshipment, 

ti : a single truck’s transportation cost from the 

main depot to stocking location i, 

dit : demand amount for stocking location i at 

time t, 

bit : after lateral transshipments, backorder 

amount occurred at stocking location i at time 

t, 

Iit : inventory level of stocking location i, at the 

end of time t, 

dmi : distance from the main depot to stocking 

location i (km.), 

dij : distance from stocking location i to j, 

Lmi : lead time from the main depot to stocking 

location i, 

Lij : lead time from stocking location i to stocking 

location j, 

Cm : Truck capacity for main depot 

Ct : Transporter capacity in lateral transshipment 

In the above variables, h and b values are assumed to 

be, $1/demand and $5/demand, respectively. Lmi is set 

to: Lm1 = 1.5 days; Lm2 = 1.75 days; Lm3 = 1.5 days and 

Lij values are ignored. Demand for stocking locations is 

considered to be same, stochastic and normally 

distributed: N(100, 20). 

Besides the above variables, we also consider the below 

decision variables for optimization.  

si : safety stock level of stocking location i; 

Si : up-to-level of stocking location i; 

nmit : number of trucks sent from the main depot to 

the stocking location i, at time t, 

nijt : number of transporters sent from stocking 

location i to j, at time t, 

Qit : order quantity of stocking location i, from the 

main depot at the end of time t, 

qijt : amount of lateral transshipment from 

stocking location i to stocking location j,  at 

time t, 

It should be noticed that in an (si, Si) inventory model, 

the a stocking location i (i.e. depot) places an order 

whenever its inventory level (Iit) decreases to a level 

less than the reorder level, si. At the end of each period 

t, the order quantity Qit is calculated by Eq. (1) 

providing that the inventory is raised to an order-up-to 

level Si: 

𝑄𝑖𝑡 = {
𝑆𝑖 − 𝐼𝑖𝑡  𝑖𝑓 𝐼𝑖𝑡 ≤ 𝑠𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                      (1) 

 

Total cost (TC) is calculated by the Eq. (2) where T is 

the total simulation run time (i.e. 365 days) and k is the 

total number of stocking locations (i.e. k = 3):  

𝑇𝐶 =  ∑ ∑ ∑ [(ℎ × 𝐼𝑖𝑡) + (𝑏 × 𝑏𝑖𝑡) +𝑘
𝑗≠𝑖

𝑘
𝑖=1

𝑇
𝑡=1

(𝑛𝑚𝑗𝑡 × 𝑡𝑖) + (𝑛𝑖𝑗𝑡 ∗ 𝑙𝑖𝑗)]                                         (2) 

 

where nmit, nijt, and ti, lij values are computed by the 

below (3)-(6) equations: 

   𝑛𝑚𝑖𝑡  = 𝑄𝑖𝑡  / 𝐶𝑚                 (3) 

𝑛𝑖𝑗𝑡 = 𝑞𝑖𝑗𝑡  / 𝐶𝑡  (4) 

                   𝑡𝑖 = dmi × $0.4/km  (5) 

                   𝑙𝑖𝑗 = dij × $0.2/km  (6) 

3.3. Simulation model assumptions 

The inventory problem is simulated by the assumptions 

summarized below. 

• In the simulation models, three stocking locations 

are considered where lateral transshipments may 

take place. 

• We consider four different pre-defined lateral 

transshipment policies (P1, P2, P3 and P4) to 

compare their optimal results. 

• Demand arrive each stocking location at the 

beginning of each day with normal distribution and 

the inventory levels are checked at the end of each 

day after demands are met from the inventory and 

lateral transshipments are completed. 

• In total cost calculations, holding, transportation, 
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transshipment and backorder costs are considered. 

• A new order is not sent to the main depot by the 

stocking locations until the previous ones arrive. 

• Holding and backorder costs are considered to be $1 

and $5 per demand, respectively. 

• In transportation and transshipment cost 

calculations, we considered the distance (in km.) 

travelled in the network. For instance, travelling 

cost of  a truck and lateral transshipment transporter 

is considered to be $0.4/km and $0.2/km, 

respectively. 

• There is truck capacity constraint for both main 

depot transportation and lateral-transshipments 

which are considered to be 100 products/truck (Cm) 

and 25 products/transporter (Ct), respectively.  

• It is assumed that there is infinite number of trucks 

and transporters in the system. 

• Upper echelon supplier has infinite amount of 

items. 

• The run length of simulation models is considered 

to be one year with 60 days of warm-up period for 

each scenario. 

• To find out the optimal levels of si, Si, we  

considered the minimization of total cost as 

objective function.  

• Ten independent replications are completed in each 

scenario run. 

• In the optimization, fill rate constraint is considered 

to be 0.95.  

In the fill rate assumption, we considered that for 

instance, if a customer requests 100 units for demand, 

but the current inventory level is 80 units, then the fill 

rate is 80%. In the simulation models, because it is a 

popular and commonly utilized variance reduction 

technique, we used Common Random Numbers (CRN) 

variance reduction technique. In that technique, the 

same random number stream is used for different 

scenario configurations so that variance reduction is 

ensured.  

3.4. Lateral transshipment policies 

As mentioned previously, we determine four different 

lateral-transshipment policies to test how the lateral 

transshipment policies affect the inventory control 

problem and which works better based on the optimized 

total costs.  

In each policy, first the arriving demands are satisfied 

by the current inventory in each stocking location. 

Then, a backorder existence is checked in the stocking 

locations of 1, 2 and 3, in sequence. If backorder occurs 

in a stocking location i at time t (bit), then a lateral 

transshipment may take place for this location based on 

the below pre-defined policies:  

 

Transshipment Policy 1, (P1): 

1- inventory availability is checked starting from the 

nearest stocking location j (where i ≠ j). 

2- backorder amount (bit) is started to be met by 

transshipments from the nearest stocking locations in 

order. For instance, in the nearest stocking location, if 

the existence inventory amount does not meet the 

backorder amount then the remaining backorder is met 

from the following nearest stoking locations. 

3- after transshipping all available inventories, if there 

is still a remaining backorder amount, then it is 

demanded from the upper supplier (main depot) at the 

end of the day. 

4- the remaining amount of backorder that is supplied 

from the upper echelon is incurred as backorder cost in 

the total cost calculation.  

 

Transshipment Policy 2, (P2): 

1- inventory availability is checked be starting from the 

nearest stocking location j (where i ≠ j) whether single 

lateral transshipment can be done or not. 

2- if available inventory at stocking location j at time t 

is larger than the backorder amount bit, all the backorder 

is transshipped from this nearest stocking location j. 

Otherwise, the remaining nearest stocking locations’ 

inventory levels are checked until it is found that there 

is available inventory level as backorder amount bit. 

3- if none of the stocking locations have enough 

inventory level as the backorder amount, bi, then no 

lateral transshipment occurs and the backorder amount 

is demanded from the upper supplier at the end of the 

day.  

4- the amount of backorder supplied from main depot 

is incurred as backorder cost in the total cost 

calculation.  

 

Transshipment Policy 3, (P3): 

In this policy, first the availability of implementing P2
 

is searched. Namely, the availability of meeting all the 

backorder amount at time t, bit, by a single lateral 

transshipment is searched. However, if there is no any 

stocking location j having bit amount of inventory level 

(Ijt < bit, ∀𝑗), then the total amount of inventory level in 

all stocking locations j at that time t where i ≠ j is 

calculated (∑ 𝐼𝑗𝑡)𝑗≠𝑖 . If the total inventory levels in the 

stocking locations is larger than equal to bit (∑ 𝐼𝑗𝑡𝑗≠𝑖  ≥

 bit) then lateral transshipments take place starting from 

the nearest stocking locations until the bit amount is 

met. Otherwise, no lateral transshipment occurs and all 

the bit amount is met from the main depot. 

 

Transshipment Policy 4, (P4): 

This policy is the combination of policies P1 and P2. 

Namely, first the availability of implementing the P2 is 

searched. If P2 cannot be implemented, in other words 

if the backorder amount at stocking location i at time t, 

cannot be met by a single lateral transshipment then P1 

is implemented.  

 

Policy 5, (P5): 

Except the transshipment policies defined above, we 

also consider an inventory control system where no 
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lateral transshipments among the stocking locations 

take place.  

3.5. Simulation model and OptQuest results 

As an example, simulation flow chart of the developed 

ARENA model for Policy 1 and its OptQuest result’s 

screenshots are shown by Figs. 2 and 3, respectively.  

 
Create demand (dit) 

at each stocking 
location

Set m = 1 and determine 
backorder amount as: 

bİt=dit - Iit 

Is dit > Iit?

Yes

No

Check the inventory level 
of stocking locations j (Ijt) 
starting from the closest 

location where (j i)

Is Ijt   bİt?
Yes

No

Make lateral transshipment 
from stocking location j to i at 

Ijt amount and update
bİt = bİt - Ijt and  Ijt =  0

Is bit > 0

No

Meet the demand 
and revise Iit as:

 Iit = Iit -dit  

Satisfy the full 
backorder amount 

and update: 
bİt = 0 and  Ijt =  Ijt - bİt

Yes Is m > k-1? No

Increment
 m = m + 1

Yes

Calculate 
TC

 
Figure 2. Flowchart of the simulation model for Policy 1 

 

In an s, S inventory problem optimization, Kleijnen and 

Wan [30] showed the efficiency of the OptQuest 

optimization tool in the ARENA software. This 

optimization tool is a heuristic-based optimization tool 

combining the meta-heuristics of tabu search, neural 

networks, and scatter search into a single search 

heuristic [30]. It allows the user to explicitly define 

integer and linear constraints for the simulation inputs. 

Initially, it also requires the user to specify the lower, 

suggested, and the upper values for the decision 

variables to be optimized. The suggested values are for 

determining the starting points in the search procedure 

for si and Si. In an effort to find a better result, first an 

initial optimization is run by heuristically determined 

suggested solution. Then, we utilize this initial 

optimization’s result as suggested solution in the 

second optimization run. 

3.6. Simulation results 

Fig. 3 shows the OptQuest result namely the optimal si, 

Si values for Policy 1. According to that, the optimal si, 

Si values for P1 are found to be (95, 200), (62, 100), 

(265, 360) for i = 1, 2, 3, respectively. The total cost is 

$483,694 at those levels. 

 

 

The optimal si, Si levels obtained by the OptQuest tool 

based on the pre-defined policies P1-P5 are summarized 

in Table 1 and Table 3. The output results for Table 1 

are given by Table 2. 

 

 

Figure 3. si, Si values of P1 in ARENA OptQuest 

 

Table 1. s, S values of policies. 

Policy s1 s2 s3 S1 S2 S3 

1 95 62 265 200 100 360 

2 143 63 255 304 96 298 

3 165 63 278 294 99 300 

4 61 40 210 200 99 391 

5 178 189 167 314 283 283 

 

Once again, Table 2 shows total cost and fill rate results 

based on optimal Table 1 results.   

Table 2. Total costs and fill rates of policies. 

Policy TC Fill rate 

1 $483,694 0.9535 

2 $512,941 0.9501 

3 $509,339 0.9546 

4 $492,445 0.9523 

5 $580,673 0.9508 

Table 3 shows, the frequency of lateral transshipments 

took place among the stocking locations at the Table 1 

values, optimal levels of si, Si found by OptQuest.  

Table 3. Lateral transshipment frequency among the 

stocking locations. 

Policy Avg ∑n1j Avg ∑n2j Avg ∑n3j Total 

1 765.6 106.6 886.4 1,758.6 

2 860.6 5.7 517.9 1,384.2 

3 904.9 9.3 563.9 1,478.1 

4 541.2 23.4 1,069.1 1,633.7 

Total 3,072.3 145 3,037.3  

 

Table 4 illustrates the frequency of transportation 

taking place from the main depot to the stocking 

locations in the scenarios of P1-P4 at the Table 1 values, 

the optimal levels of si, Si found by OptQuest. 
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Table 4. Transportation frequency from main depot to 

stocking locations. 

Policy ∑nm1 ∑nm2 ∑nm3 ∑nmi 

1 364.6 182.9 582.7 1,130.2 

2 536.1 182.9 488.2 1,207.2 

3 532.6 182.9 491.0 1,206.5 

4 335.8 181.7 625.4 1,142.9 

5 438.4 417.0 413.6 1,269.0 

 

Table 5 illustrates the total transportation and holding 

costs based on lateral transshipment policies. 

Table 5. Transportation and holding costs of policies. 

Policy ∑Trans. Cost ∑Holding Cost 

1 $327,430 $122,680 

2 $348,990 $129,600 

3 $348,794 $128,650 

4 $330,914 $127,590 

5 $380,340 $170,020 

 

In Table 1, we observe optimal si, Si levels and total cost 

(TC) values in columns 1-7 in order. We also illustrate 

the obtained fill rate at the last column. The findings 

from Tables 1-5 are summarized below: 

• It is observed that TC is always smaller when there 

is any lateral transshipment policy in the network. 

Note that TC in P5 is the largest one in Table 2. 

• It is observed that the minimum cost is obtained by 

P1, P4, P3, P2 in sequence.  

• By Table 1, it is noted that when there is any lateral 

transshipment policy in the network, stocking 

location 2 carries lower inventory (s, S levels) than 

the other stocking locations. This is probably due to 

that the second stocking location is the furthest 

location to the main depot. This stocking location 

tends to decrease the number of transportations 

from the main depot by decreasing the frequency of 

lateral transshipments to the other locations. This 

result can also be validated in Table 3 that ∑n2j = 

145 which is almost 1/20 of the other transshipment 

frequencies: 3,072 and 3,037. It is also verified by 

Table 4 that ∑nm2 values are relatively low 

compared to the others. 

• From Table 3, it can be observed that maximum 

lateral transshipment frequencies occur in P1, P4, 

P3, P2 in sequence, showing that there is negative 

correlation between TC and lateral transshipment 

frequency. Namely, when total cost increases, 

lateral transshipment cost decreases in the policies. 

• From Table 4, we observe that the least 

transportation frequency from the main depot took 

place in P1. Since this policy has the least TC, this 

may mean that the highest lateral transshipment 

frequency might take place in this policy. This can 

also be verified by Table 3 that the highest lateral 

transshipment frequency happened in P1 (1,759). 

• In Table 4, since there is no lateral transshipment, 

the highest transportation frequency from the main 

depot took place in P5. 

4. Conclusion 

In this study, we compare different (i.e. four) lateral-

transshipment policies in an s, S inventory control 

problem of a single-echelon supply chain network 

system in which there are three stocking locations. By 

the recent technological development, real time 

visibility of a supply network by horizontal integration 

of each node in a network is possible. By this 

opportunity, lateral transshipment gained popularity 

and studies seeking the best lateral-transshipment 

policy is still under research.  In this work, we aim to 

contribute to literature by considering different lateral 

transshipment policies in a supply network and 

comparing their performances by optimizing their 

objective functions, total cost. We develop the 

simulation models of the systems in ARENA 14.5 

commercial software and compare the performances of 

them by minimizing the total cost under a pre-defined 

fill rate constraint (i.e., 95%) by using OptQuest tool in 

this software. The results show that lateral 

transshipment works well for the studied supply system 

when it is compared with the scenario that there is no 

lateral transshipment policy in the network. It is 

observed that the minimum cost is obtained by the 

policies: P1, P4, P3, P2 in sequence.  

Also, we noted that trial of different lateral 

transshipment policies under different supply network 

designs as well as parameter values (e.g. backlogging 

cost) and layout of chain is promising to be investigated 

as a future study.  
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1. Introduction 

Logistics is the process of strategically managing the 

supply, transport, and storage of raw materials, semi or 

finished products to ensure cost-effectiveness. The raw 

materials and semi-finished products used by a 

company and the finished products produced by the 

company must be moved from one location to another. 

Logistic activities, which have a significant impact on 

the success of the production and distribution 

operations of the company, are composed of many 

functional areas. The performance shown in these 

functional areas leads to an increase in service quality 

as well as a reduction in operating costs, and logistics 

has to provide high-quality service at a low or 

acceptable cost [1]. 

In logistic operations, it is an important challenge to 

meet the different products demanded by consumers 

[29]. One of the most critical functions in logistics 

processes is warehousing. During this process, the 

products are stored at certain points for a certain period 

of time. The primary purpose of the classical 

warehousing is to store the products in a correct and 

non-destructive way. On the other hand, many 

operations are carried out from the receipt of the 

products to the delivery of them to the customer in 

today's modern warehousing concept. Such a system 

requires a high level of coordination between the seller 

and the buyer's decision-making [30]. In modern 

warehouse systems, activities such as classification of 

products, quality control, packaging, barcoding, 

labeling, keeping records of stock movements, 

providing the communication with the related units 

(sender, buyer, customer, producer, etc.) are carried out 

in addition to other activities [2,3].  

It is possible to classify warehouses according to 

geographical distribution (central and decentralized), 

property structure (unique, general, and contract), 

product characteristics (parts, bulk) and operation 

(production, distribution). A public logistics networks 

(PLN) is a network that provides an alternative to 

private logistics networks for the transport of goods. A 

PLN consists of distribution centers (DCs), trucks, and 

package components. In these networks, which are 

inspired by the structure and operation of the Internet, 

a package is sent from a store to a public distribution 

center located in an area in a metropolitan area [4].  

The use of automation systems for the activities carried 

out at the distribution centers provides a significant 

reduction in costs [5,6]. Fully automated warehouses 

(loading, unloading, sorting, stacking, automation of 

http://www.ams.org/msc/msc2010.html
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packages storage and retrieval) have become an 

essential issue for effective cost minimization and 

warehouse management. These warehouses where the 

operations in the warehouse are fully automated are 

defined as modular warehouses. Kay [5] suggested a 

distribution center design that would meet these 

requirements. The proposed system consists of square 

modules with orthogonal pop-up powered wheels. 

Figure 1 shows the top view of one of the modules with 

orthogonal pop-up powered wheels. In each direction, 

the wheels of the module are raised and lowered 

relative to the wheels in the other direction. The guides 

(Fig. 2) used in this system can be raised and lowered 

when necessary to limit and direct the movement of the 

load [7]. 

 

Figure 1. Top view of a single module [5] 

 

Figure 2. Guidelines in the ascended state [5] 

In this study, heuristics algorithms based on the 

algorithm proposed by Datar [6] and Sittivijan [8] are 

used for the control of packages in a modular 

warehouse. The purpose of the problem addressed is 

that the packages can be delivered to the desired exit 

point in the shortest time and least number of steps. The 

conceptual framework of the study is presented in 

Section 2. In this context, 15-floating block, rush hour, 

and the warehouseman's problem along with studies 

related to these problems are presented. The details of 

the proposed methods are given in Section 3. 

Experimental studies and results were included in the 

fourth and fifth sections, respectively. 

2. Route planning problem 

In this study, heuristic algorithms based on the 

transport of unit-size packages in a modular warehouse 

with a limited number of free spaces are proposed. 

Therefore, the problem is closely related to the motion 

planning problem. In this section, 15-floating block, 

rush hour and warehouseman's problems and the 

related literature are examined. These problems will 

provide a better understanding of this problem, which 

is considered within the scope of the study and related 

to the movement of objects within a limited space. 

2.1. 15-floating block problem 

The 15-floating block problem is similar to the 

structure of the problem discussed in this study. It is a 

purer form of the problem of transporting more than 

one object in a limited area [6]. In this problem, a 

square area of 4×4 has 15 full tiles and one empty tile 

numbered from 1 to 15, which will be rearranged 

according to a specific target configuration. An 

adjacent tile can be shifted to this position orthogonally 

by the described empty tile [9]. The goal is to reach the 

final target by moving the tiles only horizontally or 

vertically from the initial state as shown in Figure 3. 

 
Figure 3. Floating block puzzle 

There are many studies using various methods in the 

literature regarding this problem. Spitznagel [10] has 

proved that it is only possible to obtain the end 

configuration from the initial configuration by double-

numbered permutation. Reinefeld [11] discussed the 8-

floating block problem and evaluated the utility of node 

sequencing using the recursive deepening A* (YDA*) 

algorithm. It has been concluded that YDA* 

applications performed with a fixed operator (e.g., up, 

left, right, down) perform worse than those done with a 

simple random operator selection. Gue and Kim [12] 

developed a 15-block based warehouse system. Unlike 

the floating block problem, the calculation is made for 

more than one free space and as the number of free 

space increases, the retrieval time is reduced. Bauer [9] 

proposed the Manhattan Pair Distance Heuristics 

(MCU), which is a combination of YDA algorithm and 

Manhattan distance function. With the help of the 

proposed method, the number of nodes in the heuristic 

search has been reduced by 80% for the 15-floating 

block problem.   

2.2. Rush hour problem 

The rush hour problem, as seen in Figure 4, is a module-

based game that consists of a target vehicle to be 

transported to the exit point and only a few vehicles 

moving in the horizontal or vertical direction [13]. 

Other cars in the module are moved to open the path to 

the designated exit of the target car. 
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Figure 4. Rush hour problem 

Flake and Baum [13] showed that the decision of 

whether the target vehicle would exit the module was 

PSPACE-Complete. Furthermore, unlike the original 

rush hour problem, they presented a generalized 

version of the traffic problem (GSH - Generalized Rush 

Hour Problem) with the option of arbitrary width and 

height and the possibility of the outlet to be anywhere 

in the vicinity of the grid.  Hearn and Demaine [14] 

proposed a nondeterministic calculation model based 

on the inverse edge directions in the weighted 

directional charts with minimum flow constraints. The 

framework they developed was inspired by 

"Generalized Rush Hour Logic" developed by Flake 

and Baum [13]. Hauptman et al. [15] designed a novel 

IDA*-based heuristics solver for the Rush Hour 

domain. 

2.3. Warehouseman's problem 

The warehouseman's problem, which is an extension of 

the n×n floating block problem, involves coordinated 

movement planning of a large number of independent 

objects in a limited area [16]. The goal is to move 

objects in the repository from the initial configuration 

to the final configuration [6]. Coordinated motion 

planning of a large number of three-dimensional 

objects in the presence of obstacles is a computational 

problem in which it is important to regulate complexity 

[17]. Hopcroft et al. [17] proved that the problem of 

simultaneous motion planning for a limited number of 

discrete rectangular bodies of different sizes to move 

within a 2-dimensional rectangular area is PSPACE-

hard. Yeung and Bekey [18] used a decentralized 

approach based on the problem being global and local 

road planning problem. Sanchez and Latombe [19] 

used probabilistic roadmaps (PRM) which plans free 

paths for multiple interacting robots without collision. 

They developed a new PRM planner that combines a 

single-query bi-directional sampling strategy with a 

lazy collision-checking connection strategy. Sharma 

and Aloimonos [20] proposed a solution method 

introducing constraints on the size of objects for non-

unit sized objects and distributing the free space for 

warehouseman problem. Sarrafzadeh and Maddila [21] 

formed a two-dimensional warehouse system 

consisting of square objects (robots and obstacles) that 

were allowed to move horizontally and vertically along 

the grid lines. 

LaValle and Hutchinson [22] used a dynamic 

programming-based solution algorithm to solve 

multiple robot motion planning problems. Azarm and 

Schmidt [23] developed a framework that is 

decentralized and allows for parallel decision for 

multiple robots to solve the collision problem. The 

framework allows parallel path computation and 

dynamic priority assignment. Svestka and Overmars 

[24] proposed a coordinated approach to the problem of 

multi-robot road planning, unlike conventional 

decentralized planning. In the proposed system, the 

data structure that stores multi-robot motion 

information is created in two steps. In the first step, a 

roadmap for only one robot is created using the PRM 

planner, and then some of these simple roadmaps have 

been made a roadmap for the composite robot in the 

second step. 

Leroy et al. [25] developed a geometric-based method 

for motion planning of multiple robots. While the paths 

of all the robots are calculated independently of each 

other, the problem of coordinating the movements of 

the robots in their way so as not to collide with each 

other has been emphasized. Guo and Parker [26] 

proposed a distributed and best motion planning 

algorithm for multiple robots. This computational 

complexity problem is divided into two modules as 

path and speed planning, and D* search method is 

applied to both modules. Yamashita et al. [27] 

suggested a two-stage method for motion planning of 

multiple mobile robots in order to move a large object 

together in a three-dimensional environment. As a 

result, they have integrated their movement planner 

into two phases as a global road planner and a local 

motion planner. In global path planning, constraints of 

object motion are considered as a cost function and a 

heuristic function in the A* search. Liu et al. [28] 

presented a road planning scheme based on the ant 

colony algorithm with collision avoidance for multiple 

robot systems. In order to solve the collision between 

moving robots, they adopted a behavior strategy on 

"first come and first served" principle.   

3. Proposed methods 

In this study, five solution methods based on A* 

heuristic are proposed for planning the movement of 

packets to avoid collisions and deadlocks in a modular 

storage system. Although the proposed methods are 

diversified in some respects, they have the same 

components. With the help of these approaches, motion 

plans are prepared in the warehouse system where there 

are moving obstacles consisting of more than one 

object moving at the same time. Since there may be 

conflicts between moving objects, the route planning is 

not sufficient to bring the active objects to the desired 

targets at this stage. Therefore, the methods include 

components such as route planning, tagging, and main 

control. These components are described in the 

following sections. 

3.1. Route planning phase 

Each of the active objects has a planned path. An active 

object has the capability of planning a route from its 

initial position to its destination. On the other hand, if 

it has been tagged by a higher priority object and move 
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away from its current planned path, it can plan a new 

route from its initial location or its current location. 

Route planning is used to find this path. To find the path 

from the current position to the target position, the 

orthogonal neighboring modules around the current 

module are examined. In this study, A* based heuristic 

algorithms are used to select the next module to be 

moved. The lowest cost neighbor module is selected as 

the new module with this algorithm. The standard A* 

algorithm was modeled by making some arrangements 

because the warehouse system discussed in the study 

was not static. The location of the objects in the 

warehouse changes with time, so it is not a static but a 

dynamic environment. Therefore, a new function 

named 𝐿𝐵(𝑥,𝑦)
𝑇  is used instead of the 𝐹(𝑛) function. The 

module with the smallest 𝐿𝐵(𝑥,𝑦)
𝑇  value is selected as the 

module to be moved. According to Equation (1), the 

current position (𝑎, 𝑏) of the object to be moved and 

the target position (𝑥, 𝑦) of the object is assumed to be 

as follows: 

𝐿𝐵(𝑥,𝑦)
𝑇 = 𝑇

(𝑎,𝑏)

(𝑎0,𝑏0)
+ 𝑇(𝑥,𝑦)

(𝑎,𝑏)
+ 𝑇(𝑎𝑛,𝑏𝑛)

(𝑥,𝑦)
 (1) 

where 

𝑇
(𝑎,𝑏)

(𝑎0,𝑏0)
 : the wandering time from the starting module 

(𝑎0, 𝑏0) to some intermediary position (𝑎, 𝑏) 

𝑇(𝑥,𝑦)
(𝑎,𝑏)

    : the weighted estimated wander time to go to 

the neighboring module (𝑥, 𝑦) during the 

next 𝑘 time steps.  

Since the configuration of the objects in the system may 

vary from one time step to another time step, at this 

stage, the weighted sums for each t time step are 

computed using Equation (2). 

𝑇(𝑥,𝑦)
(𝑎,𝑏)

= ∑ 𝑤𝑡 × 𝑇(𝑥,𝑦),𝑡
(𝑎,𝑏)

𝑘

𝑡=1
 (2) 

While the T(x,y)
(a,b)

 value is calculated, the occupancy gap 

state of the neighboring module is considered during 

the time off from the current time step (𝑡 = 1) to the 

𝑘𝑡ℎ time step (𝑡 = 𝑘). Because the state of the objects 

in the system can vary greatly from one time step to 

another time step. In this paper, the route planning is 

taken as 𝑘 = 3 and the system state in each of the 3-

time steps from the time step present in the route 

planning for each package is evaluated. The wt value 

in Equation (2) is arbitrarily chosen, but it must satisfy 

the conditions of ∑ wt
k
t=1 =1 and  wt > wt−1. 

𝑇(𝑥,𝑦),𝑡
(𝑎,𝑏)

 : estimated wander time to move the object from 

its current module (a, b) to the neighbor 

module (x,y) at the time step t. 

𝑇(𝑥,𝑦),𝑡
(𝑎,𝑏)

= 1 : At 𝑡 = 𝑘 time step if the neighboring 

module is empty, the current module 

passes in a time step with the 

neighboring module.  

𝑇(𝑥,𝑦),𝑡
(𝑎,𝑏)

≥ 2  :  At  t = k time step, if the neighboring 

module is filled with a low-priority 

object, switching to that module takes 

place in one or more time steps. 

𝑇(𝑥,𝑦),𝑡
(𝑎,𝑏)

= ∞ : At  𝑡 = 𝑘 time step, if there is a high 

priority object that has reached the target 

in the neighboring module, it can not be 

moved, and this variable takes the 

infinite value.  

𝑇(𝑎𝑛,𝑏𝑛)
(𝑥,𝑦)

     :  The distance from the neighboring module 

to the target point. The Manhattan 

distance method is used to calculate by 

Equation (3). 

𝑇(𝑎𝑛,𝑏𝑛)
(𝑥,𝑦)

= |𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 − 𝑥target |

+ |𝑦𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 − 𝑦target| 
(3) 

𝐿𝐵(𝑥,𝑦)
𝑇 is the lower bound value used on the path to be 

defined to go from point (𝑎, 𝑏) to point (𝑥, 𝑦). As in the 

case where the neighbor with the smallest 𝐹(𝑛) value 

is selected in the A* algorithm, here the neighbors with 

the smallest 𝐿𝐵(𝑥,𝑦)
𝑇 value from the orthogonal 

neighbors of the current module is selected too.   

3.2. Tagging phase 

When moving on the planned path of the high priority 

object, if it encounters a lower priority or inactive 

object from the active object on the path, this process is 

used to move these objects away from the defined path. 

In Figure 5, the object numbered 8 tries to move from 

module (2,2) to module (2,3). Module (2,3) has an 

inactive object with 4 priority. For this reason, the 

object with 8 priority tags the object with 4 priority. In 

tagging, 8, which is the priority of the current object, is 

transferred to the object with 4 priority as the 

inheritance priority. Thus, the object with 4 priority can 

move 5, 6 or 7 priority objects. Because this object has 

a value of 8 as the inheritance priority during the 

tagging process. After the object with a priority of 4 has 

been tagged, it is checked whether they are empty 

neighbors that can move. Neighbors are (3,3) and (1,3) 

modules. The object with priority 4 selects the object 

with priority 2, which is the lowest priority neighbor. 

4's inheritance priority passes to object with priority 2, 

but when the object with priority 2  tries to tag the 

object with priority 9, returns to the object with priority 

4 because 9's priority is higher than 8. Here, 

backtracking is performed. The new object to be tagged 

is selected as 7, 7 → 5, 5 → 3, 3 → 6 tags and the 

module (3,1) is found as the last empty module. The 

tagging process ends in this way. In the latest case, it is 

moved to 6 → (3,1), 3 → (2,1). 

 

Figure 5. Example of the tagging process 
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3.3. Main control phase 

The movement of all active and inactive objects is 

controlled by the main control component. At each time 

step, this part controls every active object that is not at 

the destination point and checks whether it is tagged by 

another high priority object. If it is not tagged, it 

performs route planning for the currently active object 

due to the changing system environment.  

Possible situations in the main control process can be 

listed as follows: 

✓ If the neighboring module is empty and not tagged 

by another object, then the currently active object 

passes to the neighboring module within that time 

step. 

✓ If the neighboring module is empty and tagged by 

another object, then it is checked whether the 

neighboring module is tagged by the low priority. 

If the neighboring module is tagged by the low 

priority object, the tagging process of that object 

is released, and the currently active object is 

passed to the neighboring module at that time 

step. If the neighboring module is tagged by a high 

priority object, the higher priority object is 

expected to move from that module. 

✓ If the neighboring module is not empty and is 

tagged by another object, it is also checked 

whether the neighboring module is tagged by the 

low priority. If the neighboring module is tagged 

by the low priority object, the tagging process for 

that object is released, and the tagging process is 

performed by the current object, and the current 

module is moved to the neighbor module. If the 

neighboring module is tagged by a high priority 

object, the higher priority object is expected to 

move from that module. 

✓ If the neighboring module is not empty and is not 

tagged by another object, then the object's priority 

in the neighboring module is looked. If the 

priority of the neighboring module is lower than 

the priority of the active object, the labeling 

process is started by the active object for this 

module and if the tagging process is successful, 

the active object passes to the neighboring 

module. If the priority of the neighboring module 

is higher than the priority of the active object, the 

higher priority object is expected to move from 

that module.  

4. Experimental study 

In order to show the performance of the proposed 

algorithms, 23 test problems were produced for 3 group 

dataset. The dataset is divided into groups according to 

the density and dimensions of the warehouse. Table 1 

shows the group numbers of the dataset and the size and 

density information of the warehouses. The first group 

contains 40% and 50% density warehouse test 

problems in 44 sizes. The second group has a 66 

sizes of warehouse layout with the density ranging from 

40-70%. Moreover, the last one consists of 20-99% 

density and 1632 warehouse sizes. 

Table 1. Details of the data set 

The 

group of 

data sets 

Number of 

data set 

Density 

Interval 

(%) 

Size of 

warehouse 

Group 1 1, 2 and 3 40-50 44 

Group 2 4, ..., 8 40-70 66 

Group 3 9, ..., 23 20-99 1632 

 

All algorithms were implemented in the Eclipse 

environment using the Java programming language. 

Comparisons were made on a standard computer with 

4 GB RAM and 2.67 GHz processor. In Table 2, the 

features and differences of all examined algorithms are 

shown in summary.  

Table 2. Details of algorithms 

Algorithm Features and Differences 

ALG-B1 
(1) 

✓ Sittivijan (2015) algorithm  

✓ For each active object, an A * based intuitive 

route planning is performed at the beginning 

ALG-B2 

(2) 

✓ Datar (2011) algorithm 

✓ It is a greedy approach. 

✓ It is an algorithm that is planned only for the 
movement at the next time step. 

ALG-P1 

(3) 

✓ The algorithm in which ALG-B1 is restarted 

in every environment change 

✓ For each active object, the route planning is 
performed again with an intuitive A * based 

always on the time step 

ALG-P2 

(4) 

✓ An improved version of ALG-B1. 

✓ Release process applied to tag object is 

removed from the main control and applied 
only during the tagging process 

ALG-P3 

(5) 

✓ An improved version of ALG-P1 
✓ Release process applied to tag object is 

removed from the main control and applied 

only during the tagging process 

ALG-P4 

(6) 

✓ An improved version of ALG-B1 

✓ The calculation of the LB(x,y)
T  function has 

been changed 

ALG-P5 
(7) 

✓ An improved version of ALG-P3 

✓ The calculation of the LB(x,y)
T  function has 

been changed 

 

In the experimental study, solution times and the 

number of steps in reaching the final solution were 

taken into consideration for the performance 

comparison of the methods. In Table 3, all algorithms 

were compared for data sets in terms of the number of 

steps required to reach the destination points of the 

packages.   
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Table 3. Number of solution steps 

Data 

Set 

METHODS 

S
iz

e 

D
en

si
ty

 

1 2 3 4 5 6 7 

1 8 9 8 8 8 8 8 4*4 0,4 

2 8 9 7 8 7 7 8 4*4 0,5 

3 9 4 9 9 9 3 3 4*4 0,5 

4 11 20 11 11 11 11 11 6*6 0,4 

5 12 13 12 12 12 12 12 6*6 0,5 

6 6 14 6 6 6 6 6 6*6 0,6 

7 19 16 15 19 15 19 15 6*6 0,6 

8 13 19 13 13 13 13 13 6*6 0,7 

9 29 31 27 29 27 29 27 16*32 0,2 

10 29 31 27 29 27 29 27 16*32 0,2 

11 26 31 24 26 24 26 24 16*32 0,2 

12 29 33 25 29 25 29 25 16*32 0,3 

13 32 37 33 32 33 32 33 16*32 0,4 

14 47 40 37 47 37 47 37 16*32 0,5 

15 41 47 38 41 38 41 38 16*32 0,6 

16 53 75 52 53 52 53 52 16*32 0,7 

17 64 122 75 64 75 64 75 16*32 0,8 

18 89 117 80 89 80 89 82 16*32 0,9 

19 143 128 125 143 125 143 125 16*32 0,95 

20 - 232 205 - 205 - 208 16*32 0,96 

21 - - - - - - - 16*32 0,97 

22 - - - - - - - 16*32 0,98 

23 - - - - - - - 16*32 0,99 

 582 692 543 582 543 582 545     

 

All algorithms were compared with ALG-B1 (1) 

according to the solution step numbers, and the results 

are shown in Table 4 and Figure 6. When the solutions 

are examined in terms of the number of steps, it has 

been observed that the proposed algorithms generally 

have better results than ALG-B1 (1) and ALG-B2 (2).  

For example, while the proposed methods reached a 

solution in 15 steps for the 7th dataset, ALG-B1 (1) and 

ALG-B2 (2) were able to reach solutions in steps of 19 

and 16, respectively. For some datasets, the solution 

could not be obtained. The reason for this is that in the 

present configuration, no path can be defined for the 

arrival of the active packets to the destination points. A 

deadlock event occurs for these datasets. As a result, 

packages cannot move to any module. 

 

Table 4. Relative comparison of solution steps 

Data 

Set 

METHODS 

S
iz

e 

D
e
n

si
ty

 

1 2 3 4 5 6 7 

1 1 1,13 1,00 1 1,00 1,00 1,00 4*4 0,40 

2 1 1,13 0,88 1 0,88 0,88 1,00 4*4 0,50 

3 1 0,44 1,00 1 1,00 0,33 0,33 4*4 0,50 

4 1 1,82 1,00 1 1,00 1,00 1,00 6*6 0,40 

5 1 1,08 1,00 1 1,00 1,00 1,00 6*6 0,50 

6 1 2,33 1,00 1 1,00 1,00 1,00 6*6 0,60 

7 1 0,84 0,79 1 0,79 1,00 0,79 6*6 0,60 

8 1 1,46 1,00 1 1,00 1,00 1,00 6*6 0,70 

9 1 1,07 0,93 1 0,93 1,00 0,93 16*32 0,20 

10 1 1,07 0,93 1 0,93 1,00 0,93 16*32 0,20 

11 1 1,19 0,92 1 0,92 1,00 0,92 16*32 0,20 

12 1 1,14 0,86 1 0,86 1,00 0,86 16*32 0,30 

13 1 1,16 1,03 1 1,03 1,00 1,03 16*32 0,40 

14 1 0,85 0,79 1 0,79 1,00 0,79 16*32 0,50 

15 1 1,15 0,93 1 0,93 1,00 0,93 16*32 0,60 

16 1 1,42 0,98 1 0,98 1,00 0,98 16*32 0,70 

17 1 1,91 1,17 1 1,17 1,00 1,17 16*32 0,80 

18 1 1,31 0,90 1 0,90 1,00 0,92 16*32 0,90 

19 1 0,90 0,87 1 0,87 1,00 0,87 16*32 0,95 

20 - - - - - - - 16*32 0,96 

21 - - - - - - - 16*32 0,97 

22 - - - - - - - 16*32 0,98 

23 - - - - - - - 16*32 0,99 

Mean 1,00 1,23 0,95 1,00 0,95 0,96 0,92     

 

 

Figure 6. Relative comparison of the solution steps 

The second comparison of the obtained solutions is the 

solution times. The solution times of the methods for 

different datasets are shown in Table 5. On the other 

hand, the relative comparison is made according to the 

ALG-B1 method in Table 6. When the average solution 

times are taken into consideration, it is seen that the 

proposed methods provide better solutions in shorter 

times. The solution time comparison is shown in Figure 

7. 
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Table 5. Solution times of the methods 

Data 

Set 

METHODS 

S
iz

e 

D
e
n

si
ty

 

1 2 3 4 5 6 7 

1 4,88 5,40 4,89 4,86 4,88 4,90 4,87 4*4 0,4 

2 4,91 5,45 4,41 4,88 4,39 4,38 4,92 4*4 0,5 

3 5,40 2,84 5,41 5,43 5,38 2,38 2,32 4*4 0,5 

Total 15,1 13,7 14,7 15,1 14,6 11,6 12,1   

4 1 1,82 1,00 1 1,00 1,00 1,00 6*6 0,4 

5 1 1,08 1,00 1 1,00 1,00 1,00 6*6 0,5 

6 1 2,33 1,00 1 1,00 1,00 1,00 6*6 0,6 

7 1 0,84 0,79 1 0,79 1,00 0,79 6*6 0,6 

8 1 1,46 1,00 1 1,00 1,00 1,00 6*6 0,7 

Total 36,2 46,9 34,2 35,9 33,9 36 34,01   

9 1 1,07 0,93 1 0,93 1,00 0,93 16*32 0,2 

10 1 1,07 0,93 1 0,93 1,00 0,93 16*32 0,2 

11 1 1,19 0,92 1 0,92 1,00 0,92 16*32 0,2 

12 1 1,14 0,86 1 0,86 1,00 0,86 16*32 0,3 

13 1 1,16 1,03 1 1,03 1,00 1,03 16*32 0,4 

14 1 0,85 0,79 1 0,79 1,00 0,79 16*32 0,5 

15 1 1,15 0,93 1 0,93 1,00 0,93 16*32 0,6 

16 1 1,42 0,98 1 0,98 1,00 0,98 16*32 0,7 

17 1 1,91 1,17 1 1,17 1,00 1,17 16*32 0,8 

18 1 1,31 0,90 1 0,90 1,00 0,92 16*32 0,9 

19 1 0,90 0,87 1 0,87 1,00 0,87 16*32 0,95 

20 - - - - - - - 16*32 0,96 

21 - - - - - - - 16*32 0,97 

22 - - - - - - - 16*32 0,98 

23 - - - - - - - 16*32 0,99 

Total 344,8 673,8 456,1 342,3 439,1 336,5 437,1     

 

Table 6. Relative comparison of solution times 

Data 

Set 

METHODS 

S
iz

e 

D
e
n

si
ty

 

1 2 3 4 5 6 7 

1 1,00 1,11 1,00 0,99 1,00 1,00 1,00 4*4 0,4 

2 1,00 1,11 0,90 0,99 0,89 0,89 1,00 4*4 0,5 

3 1,00 0,53 1,00 1,01 1,00 0,44 0,43 4*4 0,5 

4 1,00 1,70 1,01 1,01 1,00 1,01 1,01 6*6 0,4 

5 1,00 1,06 1,00 0,99 0,99 0,99 0,99 6*6 0,5 

6 1,00 2,05 1,03 0,99 0,99 1,00 1,00 6*6 0,6 

7 1,00 0,87 0,81 1,00 0,81 1,01 0,82 6*6 0,6 

8 1,00 1,38 0,99 0,98 0,99 0,98 0,98 6*6 0,7 

9 1,00 0,97 0,94 1,00 0,93 1,00 0,92 16*32 0,2 

10 1,00 0,98 0,94 0,98 0,91 0,98 0,91 16*32 0,2 

11 1,00 1,13 0,96 0,99 0,96 1,00 0,96 16*32 0,2 

12 1,00 1,08 0,88 0,98 0,86 1,00 0,87 16*32 0,3 

13 1,00 1,05 0,98 0,97 0,94 0,99 0,95 16*32 0,4 

14 1,00 0,80 0,78 0,99 0,78 0,98 0,78 16*32 0,5 

15 1,00 1,08 0,94 0,98 0,92 0,98 0,93 16*32 0,6 

16 1,00 1,35 0,98 0,99 0,97 1,00 0,97 16*32 0,7 

17 1,00 1,96 1,16 0,99 1,16 0,99 1,16 16*32 0,8 

18 1,00 1,28 0,89 0,99 0,88 1,00 0,88 16*32 0,9 

19 1,00 0,90 1,02 1,01 0,88 0,93 0,86 16*32 0,95 

20 - - - - - - - 16*32 0,96 

21 - - - - - - - 16*32 0,97 

22 - - - - - - - 16*32 0,98 

23 - - - - - - - 16*32 0,99 

Total 344,8 673,8 456,1 342,3 439,1 336,5 437,1   

 

 
Figure 7. Relative comparison of the solution times 

5. Conclusion 

In this paper, the modular warehouse management 

issue is discussed, and the new A* based heuristics 

algorithms for simultaneous movement of multiple 

unit-sized packages in the modular warehouse have 

been proposed. While some features are different, the 

proposed methods consist of three stages. The first 

stage is the route planning used to perform the 

movement of each package from the starting location to 

the destination location. The second stage is the tagging 

process based on packet priorities, used to prevent 

packet collisions. The final stage is the main control 

part where the movement of all packages in the 

warehouse is controlled.  

The proposed methods are compared with the methods 

of Datar [6] and Sittivijan [8]. Datar [6] chose the next 

movement area in the route planning section only by 

looking at the distance to the target and the priorities of 

the packages. Sittivijan [8] has proposed an A* based 

heuristic for the movement of packages. The difference 

between the method proposed in this study and the 

method proposed by Sittivijan [8] is that the heuristic 

route planning is carried out at the beginning and 

subsequent route planning is not carried out as long as 

the packages do not leave their the planned routes. 

However, in the proposed method, the route planning 

process is applied again for the active packages in each 

environment change. Furthermore, in Sittivijan [8], a 

release is applied to the object subjected to the tagging 

process in both the main control and the tagging 

process. In the proposed method, this operation was 

removed from the main control section and applied 

only in the tagging process to ensure achieving high-

quality results. Also, an improvement has been made to 

the conditions of high priority packages to reach their 

destination at close to their LB value calculations 

during the route planning phase, which provides 

improved results. In future studies, solution approaches 

using other heuristics will be developed for warehouse 

systems with different dimensions. 
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 This study considers a make-to-stock production system with multiple identical 

parallel servers, fixed production start-up costs and lost sales. Processing times are 

assumed to be two-phase Coxian random variables that allows us to model the 

systems having rework or remanufacturing operations. First, the dynamic 

programming formulation is developed and the structure of the optimal production 

policy is characterized. Due to the highly dynamic nature of the optimal policy, as 

a second contribution we propose an easy-to-apply production policy. The 

proposed policy makes use of the dynamic state information and controlled by 

only two parameters. We test the performance of the proposed policy at several 

instances and reveal that it is near optimal. We also assess the value of dynamic 

state information in general by comparing the proposed policy with the well-

known static inventory position based policy. 
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1. Introduction 

In a make-to-stock production system, there is always 

a tradeoff between excess inventory, shortages and 

production costs. Production control is the main tool 

handling this tradeoff and providing cost effective 

operation. In general, in a make-to-stock environment, 

optimal production control requires starting production 

at the right time and producing with the optimum 

number of channels (servers, lines, or machines) to 

provide sufficient amount of products.  

Production policy strategies use the information of 

inventory status to trigger the production when the 

inventory status drops below certain threshold levels. 

Here, inventory status refers a function of the state 

variables that keep track of the required system 

information such as inventory level, number of 

outstanding production orders and their ages. The form 

of the optimal inventory status function would change 

from system to system but it is still unknown even for 

most of the basic make-to-stock production settings. 

Therefore, most of the studies in the literature, which 

consider only a single server, assumes that inventory 

status equals inventory level. There are limited number 

of studies on multi-server production-inventory 

systems but they only provide partial characterization 

of the optimal policy without any discussion on the 

performances of the static, which should take inventory 

status as inventory position, or alternative dynamic 

policies. 

In real life production-inventory systems, due to the 

nature of the environment and its technology, 

production times might have zero, moderate or high 

variance. Furthermore, such systems might have 

rework/inspection or remanufacturing operations. In 

order to deal with such real life systems, we assume 

phase-type, in specific two-phase Coxian production 

times. A busy server (worker or machine) might be 

either at the first phase (main operation) or at the 

second phase (inspection/rework) at any given time. A 

two-phase Coxian random variable has independent 

exponential phases and there is a certain visiting 

probability from phase-one to phase-two. Hence, we 

can create different systems at the boundaries of the 

visiting probability: when it is set to zero, processing 

time distribution becomes exponential (which is a 

typical assumption in the literature), when it is set to 

one, we can mimic the two-phase general Erlang 

processing times. Different values of this probability 

and production rates of phases correspond to systems 

with different rework characteristics and processing 

time moments. The representation of a production 

channel feeding the inventory after a two-phase Coxian 

processing time is shown in Figure 1. Coxian 

production times assumption would also help us to 

assess the value of dynamic state information, i.e. 

current status of production. 

 
Figure 1. Representation of a Cox-2 production server 

http://www.ams.org/msc/msc2010.html
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We charge fixed production (start-up) cost for 

activating servers, holding cost for each unit of 

inventory and lost sale cost for each unsatisfied 

demand. The studies that consider fixed costs in the 

literature are assuming only a single server. To the best 

of our knowledge, our study is the first considering 

multiple parallel production servers and fixed start-up 

cost at the same time in make-to-stock control 

environment. There is no study in the literature 

characterizing the optimal production policy for multi-

server systems. For single server backordering systems, 

it is known that the optimal production policy is a two-

critical-number policy. In this study, we aim to 

characterize the optimal production policy for lost sales 

multi-server systems with fixed production cost and 

propose easy to apply alternatives. 

We provide the literature review in Section 2. Dynamic 

programming formulation of the problem is given in 

Section 3. In Section 4, we numerically characterize the 

optimal production policy. In Section 5, we propose an 

alternative production policy and evaluate its 

performance. Section 6 concludes the paper and 

provides future research directions. 

2. Literature review  

In this chapter, we review the production and inventory 

control literature in the make-to-stock environment. 

This problem is first attacked by considering the 

systems having single production channel and single 

customer/demand class. Analyses are mostly based on 

queueing theory techniques. Interestingly, the early 

studies consider the fixed startup or shut-down costs. 

More recent studies extend the literature by considering 

multiple production channels without fixed costs. 

Another common feature of the recent studies is the 

Markovian structure that enables them to develop 

Markov Decision Process (MDP) formulation for the 

control of make-to-stock systems.  

Gavish and Graves [1] is the first to study the 

production-inventory problem assuming single 

channel, fixed and deterministic production times, 

independent Exponential inter-demand-arrival times, 

and backorders. They modeled the problem as an 

𝑀/𝐷/1 make-to-stock queue in the infinite horizon 

under the time-average cost criterion. This first study is 

actually the extension of Heyman [2] and Sobel [3] to 

the make-to-stock production environment. In [2] and 

[3], 𝑀/𝐺/1 and 𝐺/𝐺/1 queueing systems are studied, 

respectively, operating with server start-up and 

shutdown costs, and unit service and queue-time costs. 

For both of the settings, it is shown that the optimal 

policy is a two critical number policy denoted by (𝑆, 𝑠) 

and (𝑀, 𝑚) in [2] and [3], respectively. If the queue 

length is less than or equal to 𝑚 (or s), service is not 

provided until queue length increases to 𝑀 (or S). 

Service is triggered when the queue length is M and 

continued until it drops to m again. Although the 

analyses of [2] and [3] are specific for the queueing 

environment, we believe that their setting covers the 

production control for make-to-order systems. The 

optimal policy structure, which is a two critical number 

policy, is preserved in the make-to-stock production 

environment setting of [1]. However, the control 

parameters of the policy are defined on the inventory 

level: start production when the inventory level hits to 

the lower control level and continue until it hits to the 

upper control level. For different settings where two 

critical number policy is still optimal, see [4] and [5]. 

Researchers apply different techniques for the analysis 

of the two critical number policy. For example, Lee and 

Srinivasan [6] considers 𝑀/𝐺/1 make-to-stock queue 

with backordering and propose a renewal analysis in 

order to calculate expected cost. For compound Poisson 

demand extension of this study see [7]. 

Recent studies mostly apply MDP techniques for the 

settings having Markovian structure. This stream of 

literature usually assumes no fixed production/setup 

cost. In addition, production is triggered by a single 

server except Bulut and Fadıloğlu [8]. Ha [9] is the first 

that uses MDP techniques in problem modeling. [9] 

addresses 𝑀/𝑀/1 make-to-stock queue with multiple 

demand classes and lost sales, and shows that base-

stock is optimal production control policy. For 

backordering case, see [10]. [8] extends the setting by 

assuming multiple parallel exponential servers and 

optimal policy is defined as state-dependent base-stock. 

Ha [11] proves that work storage level is optimal 

production policy for 𝑀/𝐸𝑘/1 make-to-stock queue. 

Gayon et al. [12] differs from [11] with the 

backordering assumption. However, in our study, 

preserving the Markovian structure, we consider 

multiple parallel production servers allowing reworks 

and fixed start-up costs at the same time. Interested 

readers are also directed to the study [13] that considers 

the control of hybrid make-to-stock/make-to-order 

systems. 

3. Dynamic programming formulation 

We consider a production system including s many 

identical parallel servers each having two production 

phases in order to produce a single type of product. 

Processing times are assumed to be two-phase Coxian 

random variables where each phase is exponentially 

distributed with rates 𝜇1 and 𝜇2, respectively. 

Production is started at phase-one, then items are either 

processed at second phase with a certain probability 𝛽, 

or leave the system without passing second stage with 

probability 1 − 𝛽 (Figure 1). Visiting probability 𝛽 

facilitates us to work on more general systems than the 

ones having exponential processing times, which is a 

classical assumption in the literature. We model the 

system as 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock queue with fixed 

start-up costs and lost sales. In the terminology of 

production-inventory control literature, the classical 

Kendall Lee queueing notation is used for the models 

of make-to-stock systems. However, the meaning of the 

queuing notation is slightly different in the make-to-

stock environment. In our case, 𝑀 denotes Markovian 
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inter-demand arrival times but the arrived demands do 

not enter a queue and trigger a production order. 

Instead, they are either directly satisfied from the 

inventory or lost, and immediately leave the system. 

The second entry in the notation, which is "𝐶𝑜𝑥2" in our 

case, is for the production time distribution. The 

inventory is replenished using 𝑠 many available 

production channels according to a production policy 

in anticipation of the future demand arrivals. That is, 

Coxian-2 is not the “service” time of each demand 

arrival; it is the replenishment lead-time of any 

production order triggered according to the policy. 

Customer demands arrive according to a stationary 

Poisson process with rate 𝜆. Lost sale cost 𝑐 is incurred 

for each unsatisfied demand. Fixed start-up cost of 

activating a server is 𝐾, inventory holding cost is ℎ and 

discount rate is denoted by 𝛼.  

System state is defined with three variables to keep 

track of the events. Let 𝑥𝑖(𝑡), 𝑖 ∈ {1,2}, be the number 

of active servers at 𝑖𝑡ℎ phase and 𝑥3(𝑡) be the inventory 

level at time 𝑡. Then the system state space is 

𝑆𝑆 = {
(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) | ∑ 𝑥𝑖(𝑡)2

𝑖=1 ≤ 𝑠,

 𝑥𝑖(𝑡) ∈ 𝑍+ ∪ {0}, 𝑖 = 1,2,3
}  (1) 

Through the Markovian property, decision can be made 

in either at a phase completion or a demand arrival. For 

this reason, system state definition 

(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) is used regardless of time 

dimension. Since the original problem is a production-

inventory control problem in continuous time, we 

obtain the discrete time equivalent of this problem via 

uniformization technique ([14]). The uniform transition 

rate is defined as 𝜈 = λ + 𝑠(𝜇1 + 𝜇2). In our model, 

production is controlled by the decision variable 𝑢 ∈
{𝑥1, … , 𝑠 − 𝑥2}, which is the number of busy servers at 

phase-1 (at the first stage of the production process). 

Model only controls the number of active servers at 

stage-one because whenever production is triggered on 

a server, it starts from stage-one. The production 

control variable is upper bounded by number of servers 

that are not at stage-two and lower bounded by number 

of active servers at phase-one since order cancellation 

is not allowed. Based on the above definitions, optimal 

cost-to-go function 𝐽 is given by

𝐽(𝑥1, 𝑥2, 𝑥3) =
1

𝜈 + 𝛼
min

𝑥1≤𝑢≤𝑠−𝑥2

{ℎ𝑥3 + 𝐾(𝑢 − 𝑥1) 

+𝑢𝜇1𝛽𝐽(𝑢 − 1, 𝑥2 + 1, 𝑥3)  

+𝑢𝜇1(1 − 𝛽)𝑚𝑖𝑛{𝐽(𝑢 − 1, 𝑥2, 𝑥3 + 1), 𝐽(𝑢, 𝑥2, 𝑥3 + 1)}  

+𝑥2𝜇2𝑚𝑖𝑛{𝐽(𝑢, 𝑥2 − 1, 𝑥3 + 1), 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 + 1)}  

+(𝑠(𝜇1 + 𝜇2) − 𝑢𝜇1 − 𝑥2𝜇2)𝐽(𝑢, 𝑥2, 𝑥3) + 𝜆𝐿(𝑢, 𝑥2, 𝑥3)}  (2) 

where 𝐿 is the lost sales operator expressed by 

𝐿(𝑥1, 𝑥2, 𝑥3) = {
𝐽(𝑥1, 𝑥2, 𝑥3 − 1), 𝑥3 > 0

𝑐 + 𝐽(𝑥1, 𝑥2, 0), 𝑥3 = 0
  (3) 

We aim to identify how many production servers 

should be active/busy at any given state to minimize the 

expected discounted system cost. The minimization 

operation defined with rate 𝑢𝜇1(1 − 𝛽) corresponds to 

the decision at the time of production completion at 

phase-one: it decides whether to continue production 

on the server that has just finished processing at the first 

phase and replenished inventory. The next optimizer, 

recalled with rate 𝑥2𝜇2, is to decide whether to continue 

production on the server that has just finished 

processing at the second phase and replenished 

inventory. One should note that if fixed production cost 

is zero, these two continuation operators are redundant 

because the system can reactivate any server with zero 

cost whenever needed.  

The term (𝑠(𝜇1 + 𝜇2) − 𝑢𝜇1 − 𝑥2𝜇2)𝐽(𝑢, 𝑥2, 𝑥3) is 

necessary for the fictitious self-transitions due to the 

uniformization. In equation (3), the operator 𝐿 

corresponds to the transitions triggered by demand 

arrivals: if there is inventory on-hand, it is decreased by 

one, otherwise lost sales cost is incurred and state 

remains the same. 

 

 

4. Characterization of the optimal policy 

In this section, we provide a numerical characterization 

of the optimal production policy under average system 

cost. Since the system dynamics can be very clearly 

expressed with discounted cost DPs, we developed our 

formulation accordingly. However, we conduct 

numerical studies under average system cost criteria in 

order to make the performance measure independent of 

the initial state and the discount factor. We apply the 

value iteration algorithm to the system defined by 

equations (2) and (3) with discount rate 𝛼 = 0. Average 

system cost is calculated as the convergent value of the 

ratio of the optimal cost-to-go function value and the 

number of iterations. 

Gavish and Graves [4] shows that two-critical-number 

policy is optimal for backordering 𝑀/𝐺/1 make-to-

stock systems with fixed start-up cost. This policy 

dictates that production should be triggered when the 

inventory level drops to the lower control level (𝐼∗) and 

it should be continued until the inventory level reaches 

to the upper control level (𝐼∗∗). In Section 4.1, we 

numerically show that this optimal policy structure is 

also preserved for lost sales 𝑀/𝐶𝑜𝑥2/1 systems. On the 
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other hand, the numerical studies in Section 4.2 

illustrates the dynamic nature of the optimal policy for 

multi-server systems. 

4.1. Single server systems 

Single server cases are relatively easy to handle 

because at any state production decision 𝑢 is either 0 or 

1. For the numerical study, we first define a base case 

as [𝜇1, 𝜇2, 𝛽, ℎ, λ, c] = [3.25, 1.75, 0.15, 3, 6, 3]. In this 

subsection, we set 𝑠 = 1 and provide the results while 

we are changing 𝐾 or 𝜆. We first assume 𝐾 = 0 and 

represent the optimal production decisions in Table 1. 

Rows are for the first two state variables, which are 

𝑥1 = the number of active servers at stage-one and 

𝑥2 = the number of active servers at stage-two. The 

columns are for the last state variable, 𝑥3 = the 

inventory level. The numbers at the intersection of the 

row and the column axes represent the corresponding 

optimal decision. 

Table 1. Optimal production policy: s=1, K=0 

𝑢∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] 1 1 1 1 0 0 0 

[1, 0] 1 1 1 1 1 1 1 

[0, 1] 0 0 0 0 0 0 0 

The optimal decision at state (𝑥1, 𝑥2, 𝑥3), denoted by 

𝑢∗(𝑥1, 𝑥2, 𝑥3), is the optimal number of busy servers at 

phase-1 as explained in Section 3. For instance, 

𝑢∗(0, 0, 0) = 1 implies that the server, which is 

currently idle, should be activated if the inventory level 

is zero. Since 𝐾 = 0 and continuation decisions are 

redundant, Table 1 fully characterizes the optimal 

policy. For single server systems the decision is trivial 

at states (1,0, 𝑥3) and (0,1, 𝑥3). At such states the 

server is already busy (there is no idle server to 

activate) and the decision is automatically 𝑥1. Hence, 

control is only for the states of (0,0, 𝑥3) type. Table 1, 

which is an example case for our extensive numerical 

study, shows that the optimal production policy is of 

base stock type: it is optimal to produce below the 

maximum inventory level (base stock level) and not to 

produce otherwise. For the setting considered in the 

table, optimal base stock level, 𝐵𝑆∗,  is 4. 

However, when there is fixed start-up cost optimal 

production policy cannot be described with a single 

parameter as Gavish and Graves [4] shows for single-

server backordering systems. As exemplified in Table 

2, our numerical studies depict that two-critical-

number policy is optimal also for lost sales systems. In 

the 𝑢∗part of the table, it is seen that production is 

started when inventory level drops to 2. When 𝐾 > 0, 

in addition to the number of active servers decision, the 

continuation decisions are also required and provided 

in 𝑐1
∗ and 𝑐2

∗ parts of Table 2. Referring to the DP model 

of Section 3, we define 𝑐1
∗ and 𝑐2

∗ as follows: 𝑐1
∗ = 1 if 

𝑚𝑖𝑛{𝐽(𝑢 − 1, 𝑥2, 𝑥3 + 1), 𝐽(𝑢, 𝑥2, 𝑥3 + 1)} =

𝐽(𝑢, 𝑥2, 𝑥3 + 1), i.e.  it is optimal to immediately start 

new production at stage-1 when the whole production 

process has completed after stage-1 (without visiting 

stage-2). Similarly, 𝑐2
∗ = 1 if 𝑚𝑖𝑛{𝐽(𝑢, 𝑥2 − 1, 𝑥3 +

1), 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 + 1)} = 𝐽(𝑢 + 1, 𝑥2 − 1, 𝑥3 +
1) corresponding to the event where the production 

process has completed after stage-2 and it is optimal to 

immediately start new production on stage-1 of the 

process. Otherwise, the server that has just finished 

processing is turned-off and, 𝑐1
∗ and 𝑐2

∗ are set to zero. 

By definition, 𝑐1
∗(𝑥1, 𝑥2, 𝑥3) and 𝑐2

∗(𝑥1, 𝑥2, 𝑥3) are 

relevant only when 𝑥1 > 0 and 𝑥2 > 0, respectively. 

Otherwise continuation decisions are not applicable 

(NA). As seen from Table 2, 𝑐1
∗(1,0, 𝑥3) = 𝑐2

∗(0,1, 𝑥3) 

for all inventory levels 𝑥3. This holds because there is 

only one available server and the inventory level just 

after production completion would be the same 

independent of the last stage visited. If it is optimal to 

continue production on the server, then the new process 

is going to start at stage-1 in any case.  

For the setting considered in Table 2 the parameters of 

the two-critical-number policy are (𝐼∗, 𝐼∗∗) = (2, 6) 

where 𝐼∗ is the production trigger level and 𝐼∗∗ is the 

maximum inventory level that the system reaches. 

Table 2. Optimal production decisions, s=1, K=2 

𝑢∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] 1 1 1 0 0 0 0 

[1, 0] 1 1 1 1 1 1 1 

[0, 1] 0 0 0 0 0 0 0 

𝑐1
∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] NA NA NA NA NA NA NA 

[1, 0] 1 1 1 1 1 1 0 

[0, 1] NA NA NA NA NA NA NA 

𝑐2
∗(𝑥1, 𝑥2, 𝑥3) 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 6 

[0, 0] NA NA NA NA NA NA NA 

[1, 0] NA NA NA NA NA NA NA 

[0, 1] 1 1 1 1 1 1 0 

After the characterization of the optimal policy we next 

show in Table 3 how the optimal policy parameters 

react to changes in traffic intensity and production start-

up cost. We change the demand rate while keeping 

Coxian processing time parameters constant to obtain 

settings with different traffic intensity (𝜌). The effect 

of Coxian parameters is discussed in Section 5.  

Table 3 reveals that the optimal policy parameters are 

non-decreasing in 𝜌. At lower 𝜌 values system prefers 

not to produce at all. That is, the optimal values of the 

policy parameters are all zero and corresponding 

average system cost equals 𝜆𝑐. On the other hand, it is 

optimal to produce at some inventory levels beyond 
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certain traffic intensity and thus 𝐵𝑆∗ and the vector  
(𝐼∗, 𝐼∗∗) are not zero for 𝐾 = 0 and 𝐾 > 0 cases, 

respectively. When 𝐾 > 0, as the traffic getting heavier 

the increase in 𝐼∗∗ is more pronounced than the increase 

in 𝐼∗ because the system needs to hold more inventory 

to meet the increasing demand. For fixed 𝜌, a similar 

behavior is observed as the start-up cost 𝐾 increases: in 

order to decrease the frequency of production start-up 

(so the total fixed cost) and to continue with the 

activated server as much as possible, the gap between 

the maximum inventory level and the production 

trigger point, 𝐼∗∗ − 𝐼∗, is getting wider. 

Table 3. Optimal policy parameters, 𝑠 = 1 

  𝐾 = 0 𝐾 = 1 𝐾 = 2 𝐾 = 3 

λ 𝝆 AC 𝐵𝑆∗ AC 𝐼∗ 𝐼∗∗ AC 𝐼∗ 𝐼∗∗ AC 𝐼∗ 𝐼∗∗ 

0.50 0.29 1.50 0 1.50 0 0 1.50 0 0 1.50 0 0 

0.75 0.43 2.25 0 2.25 0 0 2.25 0 0 2.25 0 0 

1.00 0.58 3.00 1 3.00 0 0 3.00 0 0 3.00 0 0 

1.50 0.86 3.70 1 4.50 0 1 4.50 0 0 4.50 0 0 

2.00 1.15 4.61 1 5.21 0 2 5.56 0 2 5.86 0 3 

2.50 1.44 5.66 1 6.06 0 2 6.29 0 3 6.46 0 3 

3.00 1.73 6.66 2 6.95 0 3 7.11 0 3 7.19 0 4 

3.50 2.01 7.73 2 7.94 1 4 8.00 1 4 8.05 0 5 

4.00 2.30 8.90 2 8.99 1 4 9.02 1 5 9.04 1 5 

4.2. Multi-server systems 

Although the structure of the optimal production policy 

is known for single server make-to-stock systems, it has 

not yet been fully characterized for multiple server 

systems. To the best of our knowledge, the only study 

addressing the production control of multi-server 

systems is Bulut and Fadıloğlu [8] and they only 

provide partial characterization of the policy for the 

𝑀/𝑀/𝑠 case without fixed cost. In this section, we 

provide numerical analyses to describe the structure of 

the optimal policy for the 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock 

systems with fixed cost for the first time in the 

literature. Single server assumption relatively 

eliminates the complexity because for such cases the 

decision is 0-1 for all inventory levels: whether to 

activate the only available server or not. However, 

when 𝑠 > 1, the controller should decide how many 

servers should be active at any system state. 

Furthermore, this decision would be dependent on the 

status of the ongoing production, i.e. to the stage/phase 

information of the active servers.  

Recalling the base case, we first set 𝑠 = 3 and 𝐾 = 0 

and provide the optimal decisions in Table 4(a). Similar 

to the single-server case, 𝑢∗ matrix is enough to 

describe the optimal policy when the production start-

up cost is zero. We separate the decision matrix into 

four layers where each layer corresponds to a particular 

total number of active servers. In general, if there are 𝑠 

available servers, there would be (𝑠 + 1) layers. For the 

setting presented in Table 4(a), we list our observations 

on the structure of the optimal policy below: 

i. Since all the available servers are busy at the bottom 

layer, i.e. 𝑥1 + 𝑥2 = 𝑠 = 3, and order cancellation 

cost is practically infinite, the optimal decision is 

trivial at all states of the bottom layer: 

𝑢∗(𝑥1, 𝑥2, 𝑥3) = 𝑥1. 

ii. Production decisions are non-increasing in 

inventory level 𝑥3, because shortage risk is reduced 

by increasing inventory. 

iii. Unlike the classical static policies, which are based 

on either inventory level or inventory position (e.g. 

base stock), unit increase in inventory level does not 

always end up with unit decrease in the optimal 

number of active servers at phase-one, e.g. 

𝑢∗(0,0,1) = 2 but 𝑢∗(0,0,2) = 0. 

iv. In addition to (iii), there is a second level of 

dynamicity in the structure of the optimal policy; 

decisions are dependent on the status of ongoing 

production. One would expect that as the number of 

completed production stages increases, the total 

number of active servers decreases or remains the 

same. This is true for the processing time random 

variables having increasing failure rate (IFR) such 

as Erlangian production times. For such settings, as 

the number of completed stages increases 

remaining time to replenish the inventory 

stochastically decreases. However, for the case 

considered in Table 4(a), Coxian production time 

random variable has the parameters (𝜇1, 𝜇2, 𝛽) =
(3.25,1.75,0.15) and more channels are needed if 

the item being processed visits stage-2. Since stage-

1 is much faster than stage-2 and probability of 

visiting stage-2 is small, expected time to 

production completion is smaller when the current 

production is at stage-1 compared to the case where 

it is at stage-2. In order to make it clearer, let us 

consider the states (1,0,1) and (0,1,1) of Table 

4(a): the inventory level is the same for both of the 

states but the (only) active server is at stage-1 in the 

first state and at stage-2 in the second. As seen from 

the table, 𝑢∗(1,0,1) = 𝑢∗(0,1,1) = 2 and the 

transitions are to (2,0,1) and (2,1,1) from (1,0,1) 

and (0,1,1), respectively. Before the decisions, both 

states have the same number of active servers, 

which is one, but after the transitions state (2,1,1) 

has one more active server than (2,0,1). 

We increase 𝜇2 from 1.75 to 7.5 in Table 4(b) and 

observe completely different production decisions 

for the states (1,0,1) and (0,1,1): 𝑢∗(1,0,1) = 2,  

𝑢∗(0,1,1) = 0 an the transitions are to (2,0,1) and 

(0,1,1) from (1,0,1) and (0,1,1), respectively  That 

is, this time it is optimal to have more active servers 

when the current production is at phase-1.  

v. With its three parameters Coxian production time 

random variable has the flexibility to obtain 

increasing and decreasing failure rate (IFR or DFR) 



Control of M/Cox-2/s make-to-stock systems                                                  31 

settings and, we show in Table 4 (a) and (b) that the 

structure of the optimal policy changes accordingly. 

Table 4. Optimal production decisions s=3, K=0 

(a) DFR, (b) IFR 

(a) 𝑢∗ 𝑥3  (b) 𝑢∗ 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5  (𝑥1, 𝑥2) 0 1 2 3 4 5 

[0, 0] 3 2 0 0 0 0  [0, 0] 3 2 0 0 0 0 

[1, 0] 3 2 1 1 1 1  [1, 0] 3 2 1 1 1 1 

[0, 1] 2 2 0 0 0 0  [0, 1] 2 0 0 0 0 0 

[2, 0] 3 2 2 2 2 2  [2, 0] 3 2 2 2 2 2 

[1, 1] 2 2 1 1 1 1  [1, 1] 2 1 1 1 1 1 

[0, 2] 1 1 0 0 0 0  [0, 2] 1 0 0 0 0 0 

[3, 0] 3 3 3 3 3 3  [3, 0] 3 3 3 3 3 3 

[2, 1] 2 2 2 2 2 2  [2, 1] 2 2 2 2 2 2 

[1, 2] 1 1 1 1 1 1  [1, 2] 1 1 1 1 1 1 

[0, 3] 0 0 0 0 0 0  [0, 3] 0 0 0 0 0 0 

Fixed production cost adds more complexity to the 

structure of the optimal policy. To reveal this, one can 

compare Table 4(a) and Table 5 where the only 

difference is the value of the start-up cost 𝐾. When 

fixed cost is larger optimal policy tends to activate less 

servers at all the states. Specifically, fixed cost prevents 

activating all the available servers even there is no 

inventory on hand. On the other hand, the optimal 

policy balance the holding and shortage trade-off 

mostly with the continuation decisions 𝑐1
∗ and 𝑐2

∗; 

production continues with the previously activated 

servers for some time. However, continuation decisions 

are also state dependent and are not only determined by 

the total number of active servers.  As opposed to the 

single-server case shown in Table 2, there exists a, b 

and 𝑥3 values such that 𝑐1
∗(𝑎, 𝑏, 𝑥3) ≠ 𝑐2

∗(𝑏, 𝑎, 𝑥3).  For 

instance, 𝑐1
∗(2,0,3) = 0 but 𝑐2

∗(0,2,3) = 1. This 

dynamic behavior of the optimal policy is due to the 

fact that any active server at stage-1 can replenish the 

inventory by two different realizations: with probability 
(1 − 𝛽) inventory is replenished directly from stage-1, 

but with probability 𝛽 stage-2 is visited and then the 

production is completed. On the other hand, any active 

server at stage-2 has only one possible realization path 

to replenish the inventory. Hence, when 𝑠 > 1, 

continuation decisions are coupled with the number of 

active servers decision and depending on the values of 

the Coxian parameters (𝜇1, 𝜇2, 𝛽), continuation 

decisions might be different even for the symmetric 

states at the same inventory level. 

Table 5. Optimal production decisions, s=3 and K=2 

𝑢∗ 𝑥3 𝑐1
∗ 𝑥3 𝑐2

∗ 𝑥3 

(𝑥1, 𝑥2) 0 1 2 3 4 5 (𝑥1, 𝑥2) 0 1 2 3 4 5 (𝑥1, 𝑥2) 0 1 2 3 4 5 

[0, 0] 2 1 0 0 0 0 [0, 0] NA NA NA NA NA NA [0, 0] NA NA NA NA NA NA 

[1, 0] 2 1 1 1 1 1 [1, 0] 1 1 1 1 1 0 [1, 0] NA NA NA NA NA NA 

[0, 1] 1 0 0 0 0 0 [0, 1] NA NA NA NA NA NA [0, 1] 1 1 1 1 1 0 

[2, 0] 2 2 2 2 2 2 [2, 0] 1 1 1 0 0 0 [2, 0] NA NA NA NA NA NA 

[1, 1] 1 1 1 1 1 1 [1, 1] 1 1 1 1 0 0 [1, 1] 1 1 1 0 0 0 

[0, 2] 0 0 0 0 0 0 [0, 2] NA NA NA NA NA NA [0, 2] 1 1 1 1 0 0 

[3, 0] 3 3 3 3 3 3 [3, 0] 1 1 0 0 0 0 [3, 0] NA NA NA NA NA NA 

[2, 1] 2 2 2 2 2 2 [2, 1] 1 1 0 0 0 0 [2, 1] 1 1 0 0 0 0 

[1, 2] 1 1 1 1 1 1 [1, 2] 1 1 0 0 0 0 [1, 2] 1 1 0 0 0 0 

[0, 3] 0 0 0 0 0 0 [0, 3] NA NA NA NA NA NA [0, 3] 1 1 0 0 0 0 

 

As the discussion on tables 4(a), 4(b) and 5 exhibits, for 

the multi-server systems, optimal policy is highly 

dynamic/state-dependent and cannot be fully described 

with two static parameters such as inventory level or 

inventory position. The highly dynamic structure of the 

optimal policy would reduce its value for practitioners. 

In practice, controllers are mostly after easy-to-apply 

approximate policies. We therefore propose an 

alternative production policy that is controlled by two 

parameters and can quickly adapt itself to IFR and DFR 

cases. Next two sections are devoted to the introduction 

and performance evaluation of our policy. 

 

5. An alternative policy structure 

As we have discussed in Section 4, the values of the 

Coxian parameters directly affect the structure of the 

optimal policy. In order to first guarantee that our 

policy structure responds to the changes in input 

parameters (𝜇1, 𝜇2, 𝛽), we define 𝐸(1,0, 𝑥3) and 

𝐸(0,1, 𝑥3) as the expected remaining production times 

if the current production is on stage-1 and stage-2, 

respectively. Since the stages are memoryless, 

𝐸(1,0, 𝑥3) =
1

𝜇1
+ 𝛽

1

𝜇2
 and 𝐸(0,1, 𝑥3) =

1

𝜇2
. We aim to 

identify IFR and DFR cases by comparing these 

expected times to production completion. 𝐸(0,1, 𝑥3) <

𝐸(1,0, 𝑥3) or equivalently 𝑟 =
𝐸(0,1,𝑥3)

𝐸(1,0,𝑥3)
< 1 implies that 
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expected remaining production time decreases when 

stage-2 is visited. For such settings, since the 

probability of demand arrivals before inventory 

replenishment decreases, our policy should demotivate 

activating new servers when stage-2 is visited. 

Otherwise, we are in a DFR case and the policy should 

motivate (or at least should not demotivate) activating 

new servers when stage-2 is visited. 

Second, for the sake of applicability we aim to propose 

a policy structure that can be controlled by only two 

parameters. We stick to the notation used in Section 4: 

𝐼∗ and 𝐼∗∗ are the production trigger and the maximum 

levels, respectively. This two-critical-number policy is 

optimal for single-server settings and the parameters of 

the policy are defined in terms of inventory level.  So 

as to better capture the dynamic nature of the optimal 

policy of an 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock system, we 

define 𝐼∗ and 𝐼∗∗  in terms of a function of the system 

state vector referred as inventory status (IS). At any 

state (𝑥1, 𝑥2, 𝑥3), 

𝐼𝑆(𝑥1, 𝑥2, 𝑥3) = ∑ 𝑎𝑖𝑥𝑖
3
𝑖=1   (4) 

where 𝑎1, 𝑎2 and 𝑎3 are the weights of the number of 

active servers at stage-1, the number of active servers 

at stage-2 and inventory level, respectively. The above 

definition of inventory status allows us to trace a policy 

space including the classical inventory level (𝐼𝑆 = 𝐼𝐿 

when (𝑎1, 𝑎2, 𝑎3) = (0,0,1)) and inventory position 

(𝐼𝑆 = 𝐼𝑃 when (𝑎1, 𝑎2, 𝑎3) = (1,1,1)) based policies.  

Based on the above discussion, we propose the below 

policy structure that computes 𝑢(𝑥1, 𝑥2, 𝑥3) = the 

number of active/busy servers at stage-1, 𝑐1(𝑥1, 𝑥2, 𝑥3) 

= continuation decision for the server that has just 

finished stage-1 and replenished inventory, and  

𝑐2(𝑥1, 𝑥2, 𝑥3) = continuation decision for the server that 

has just finished stage-2 and replenished inventory.

𝑢(𝑥1, 𝑥2, 𝑥3) = {
⌊𝑚𝑖𝑛{(𝐼∗ + 1) − 𝐼𝑆(𝑥1, 𝑥2, 𝑥3)  + 𝑥1, (𝑠 − 𝑥2)}⌉, 𝐼𝑆 ≤ 𝐼∗

𝑥1                                     , 𝐼𝑆 > 𝐼∗  (5)

𝑐1(𝑥1, 𝑥2, 𝑥3) = {
1, 𝐼𝑆(𝑥1 − 1, 𝑥2, 𝑥3 + 1) < 𝐼∗∗

0, 𝐼𝑆(𝑥1 − 1, 𝑥2, 𝑥3 + 1) ≥ 𝐼∗∗  (6)

𝑐2(𝑥1, 𝑥2, 𝑥3) = {
1, 𝐼𝑆(𝑥1, 𝑥2 − 1, 𝑥3 + 1) < 𝐼∗∗

0, 𝐼𝑆(𝑥1, 𝑥2 − 1, 𝑥3 + 1) ≥ 𝐼∗∗  (7)

For the states whose inventory status is at or below the 

production trigger level 𝐼∗, the proposed policy tries to 

raise IS to (𝐼∗ + 1). This can only be achieved with  

(𝐼∗ + 1) − 𝐼𝑆(𝑥1, 𝑥2, 𝑥3) many new active servers at 

stage-1 additional to 𝑥1. However, as discussed in the 

dynamic programming formulation of Chapter 3, 

𝑢(𝑥1, 𝑥2, 𝑥3) is bounded above by (𝑠 − 𝑥2). In 

Equation (5), ⌊∙⌉ is to return the nearest integer for the 

calculated value as the number of active servers at 

stage-1. For the other states,  𝐼𝑆(𝑥1, 𝑥2, 𝑥3) > 𝐼∗ and we 

do no nothing: 𝑢(𝑥1, 𝑥2, 𝑥3) returns the current number 

of busy servers at stage-1. 

Continuation decisions of the policy are defined by (6) 

and (7), which are only applicable when 𝑥1 > 0 and 

𝑥2 > 0, respectively. The policy keeps the previously 

activated servers busy until target level 𝐼∗∗ is reached. 

In (6) and (7), decisions are given just after production 

completion (in 𝑐𝑖, 𝑥𝑖 is decreased by 1, i = 1,2) and 

inventory replenishment (𝑥3 is increased by 1).    

The above defined policy structure has three weight and 

two control parameters: (𝑎1, 𝑎2, 𝑎3) and (𝐼∗, 𝐼∗∗). First 

we develop the following approach to find the setting 

specific values of the weights (𝑎1, 𝑎2, 𝑎3): We structure 

our policy based on the relative values of  𝑎𝑖′s. Thereby, 

the degrees of freedom of finding the values of 𝑎𝑖′s is 

decreased to two. Without loss of generality, we set the 

value of an active server at stage-1 to 1, i.e., 

𝑎1 = 1  (8) 

Then, the weight of an on-hand inventory relative to the 

weight of an outstanding order at stage-1 is calculated 

as: 

𝑎3 =

1

𝜇1
+𝛽

1

𝜇2
1

𝜇1

=
𝛽𝜇1+𝜇2

𝜇2
  (9) 

where 
1

𝜇1
+ 𝛽

1

𝜇2
  and 

1

𝜇1
 are the expected time to 

complete the whole production and stage-1, 

respectively. That is, if an item at stage-1, which is 

going to spend (on the average) 
1

𝜇1
 time units to 

complete the stage, has the weight 𝑎1, then the relative 

weight of an item in the inventory, which has on the 

average spent 
1

𝜇1
+ 𝛽

1

𝜇2
 time units in the production 

facility, is  

1

𝜇1
+𝛽

1

𝜇2
1

𝜇1

 times 𝑎1. The weight of an item at 

stage-2, 𝑎2, on the other hand, is set to different values 

for IFR and DFR cases. As discussed in Section 4, 

depending on the values of Coxian parameters 
(𝜇1, 𝜇2, 𝛽) more active servers might be needed if the 

item being processed visits stage-2. Our policy 

structure gains this flexibility with 𝑎2. We let 

𝑎2 = {

𝑎1+𝑎3

2
, 𝑖𝑓 𝑟 =

𝐸(0,1,𝑥3)

𝐸(1,0,𝑥3)
< 1

0, 𝑖𝑓 𝑟 ≥ 1
  (10) 

The ratio 𝑟 =
𝐸(0,1,𝑥3)

𝐸(1,0,𝑥3)
 is less than 1 if the expected time 

to production completion decreases when stage-2 is 

visited. For such IFR cases, we set the weight of an 

outstanding order at stage-2 to the average of the 

weights of the items that are at stage-1 and in the 

inventory. In this way, for the IFR cases we obtain a 

weight structure satisfying 𝑎1 < 𝑎2 < 𝑎3.  

On the other hand, if the case is DFR, the weight is set 

to 0 in order to motivate the system to activate more 
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servers whenever the slower stage (stage-2) is visited. 

In this case, 𝑎2 < 𝑎1 < 𝑎3. 

One can prefer to select the “best” values of (𝑎1, 𝑎2, 𝑎3) 

using an optimization routine applied over the DP 

formulation. However,  the next section shows that the 

performance of the proposed structure under our 

intelligent guesses (8), (9) and (10) is very close to the 

optimal’s. That is, without undertaking the computation 

cost of any optimization algorithm, we obtain a very 

good approximation to the “ideal” weights by exploring 

the structure of the optimal policy (in Section 4) and 

selecting the values accordingly.       

On the other hand, it is hard to develop a similar 

intuition for the control levels (𝐼∗, 𝐼∗∗).  We therefore 

use our DP formulation (2) and (3) as the optimization 

routine: For given values of (𝐼∗, 𝐼∗∗) such that 𝐼∗ < 𝐼∗∗, 

DP is fed with the decision set of the proposed policy, 

(5), (6) and (7), and the value iteration algorithm is run 

to calculate the average system cost. We then search for 

the optimal values of the parameters in the integer 

domain. As the results presented in Section 6 show that 

optimizing (𝐼∗, 𝐼∗∗) in the integer space results in a 

well-performing near-optimal policy.   

It should be noted that 𝑎1 can also be set to any arbitrary 

positive value. In such cases, the values of 𝑎2, 𝑎3 and 

thus IS would also be changed relative to 𝑎1. Hence, the 

optimal values of (𝐼∗, 𝐼∗∗)  would be also altered/shifted 

in order to find the same cost minimizer 𝑢(𝑥1, 𝑥2, 𝑥3) 

values. That is, larger values of 𝑎𝑖 ′s would result in 

larger values of (𝐼∗, 𝐼∗∗) so as to find the same 𝑢 value.  

Although we obtain the results in a reasonable amount 

of time one can further fasten the routine if the search 

first visits the space around (𝐼∗∗ − 𝐼∗) = 𝐸𝑂𝑄.  The 

approximate value of the batching decision of the 

classical inventory systems would here help us to 

capture the effect of the fixed cost on the length of the 

non-production period. One should note that our make-

to-stock production-inventory environment is different 

than the classical inventory settings in terms of capacity 

(there are only s many servers) and one-at-a-time 

replenishment as the active servers complete 

production. A classical inventory system having 

stochastic lead-times that is controlled by lot-for-lot 

policy can be modeled using our approach only if s 

tends to infinity, which requires to guarantee an 

uncapacitated system.  

6. Performance evaluation of the proposed policy 

In this section we present the numerical study assessing 

the performance of the policy structure described by 

(5), (6) and (7). We test the performance of the structure 

with the (𝑎1, 𝑎2, 𝑎3) values given in (8), (9) and (10), 

which defines the specific policy that we propose. We 

also evaluate the performance of the inventory position 

based static policy (IP Policy) in order to quantify the 

value of dynamic state information. Our policy 

structure already has the flexibility to cover the IP 

Policy: in (4), we let (𝑎1, 𝑎2, 𝑎3) = (1,1,1) to obtain the 

inventory position as the sum of the on-hand inventory 

and the number of outstanding production orders (the 

number of items that are being processed).   

The main goal of this section is to reveal the effects of 

Coxian parameters (𝜇1, 𝜇2, 𝛽), the demand rate λ and 

the fixed cost K on the performances of the considered 

policies. The results of the numerical study are 

summarized in the tables provided at the end of the 

section. While changing the above mentioned 

parameters, without loss of generality we fix the values 

of the holding cost rate h and the unit lost sales cost c 

to 3. Each table includes five different instances with 

different traffic intensities (𝜌) ranging from 0.50 to 

1.50. For each instance, average costs of the optimal, 

proposed and IP policies, and their optimal control 

levels (𝐼∗, 𝐼∗∗) are reported. For the proposed and IP 

policies, the optimality gap, defined as the percent cost 

deviation from the optimal, is also provided.  

Table 6 shows the results when there are two parallel 

servers with no start-up costs and Coxian production 

times have decreasing failure rates (DFR). Our 

dynamic policy performs very well in the environment 

of Table 6. The optimality gap of the proposed policy 

is less than 0.5% at all the instances of the table. 

Furthermore, IP Policy is also a notable alternative of 

the optimal policy when the capacity is tight: when 

there are limited of number of servers or traffic 

intensity is high. As 𝜌 increases or equivalently as the 

capacity is getting tighter, more and more servers 

would be activated independent of the status of the 

production. That is, all the plausible policies, including 

the optimal one, utilize all the servers at higher traffic 

intensity values. This observation is valid not just for 

Table 6 but for all the tables of the chapter: The 

proposed policy is near optimal at all the traffic 

intensities of all the considered cases, and IP Policy is 

a second alternative for the highly utilized systems.     

Table 7 and Table 8 are the ‘positive fixed cost’ and 

‘more server’ extensions of Table 6, respectively.  

When the production startup cost 𝐾 is 0.5, the 

maximum optimality gap of the Proposed Policy is 

2.55% and of the IP Policy is 3.22%. Both maximums 

are observed at the same instance where 𝜌 = 0.5.  For 

the systems with higher server activation cost, the 

distance between the upper and lower control limits, 

which is (𝐼∗∗ − 𝐼∗), should be larger. That is, instead of 

activating servers at higher inventory levels it is more 

economical to increase 𝐼∗∗ in order to both postpone the 

production cycle and to continue production on the 

previously activated servers once it is started until 

reaching 𝐼∗∗ again. 

On the other hand, in Table 8, the number of available 

servers is higher (and fixed cost is zero) and the 

maximum deviations from the optimality are 3.21% 

and 6.89% for the Proposed and IP policies, 

respectively. However, for the Proposed Policy, the 

average of the five optimality gaps reported in the table 

is only 1.54%, which is the highest average among all 

the tables. Since the Proposed Policy makes use of the 
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dynamic production status information of all the 

servers, it outperforms the static IP policy as the 

number of available servers increases.    

Table 9 is for the IFR version of Table 8. The table 

shows that the optimality gap of the Proposed Policy is 

below 1% at all the instances. Although the 

performance of IP Policy is also improved from Table 

8 to Table 9, that improvement is not as significant as 

the improvement attained by the Proposed Policy.  

At all the tables from 6 to 9, the traffic intensity (𝜌) is 

increased by decreasing 𝜇1, the processing rate of 

stage-1. In order to eliminate any bias that can be due 

to this method, we reconsider the environment of Table 

8 where 𝑠 = 5 and 𝐾 = 0, and increase the traffic 

intensity by decreasing 𝜇2 this time. The results are 

reported in the last table, Table 10. The probability of a 

WIP item being at phase-2 increases as 𝜇2 decreases 

that sharpens the DFR nature of the production times. 

Due to this fact, the performance of our policy is better 

than Table 8 in Table 10. 

Table 6. Performances of the alternative policies: DFR cases with s=2 and K=0 

Table 7. Performances of the alternative policies with DFR distribution, s=2 and K=0.5 

   Optimal Policy  IP Policy  Proposed Policy 

 

 

# 

 

𝜌 
(𝜇1, 𝜇2, 𝛽) 

Average  

Cost  

 

Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 

Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (15, 0.5, 0.05) 8.82  9.12 (1, 5) 3.22  9.06 (1, 8) 2.55 

2 0.75 (6.65, 0.5, 0.05) 9.71  9.79 (1, 6) 0.80  9.72 (2, 6) 0.03 

3 1.00 (4.25, 0.5, 0.05) 10.24  10.28 (1, 6) 0.45  10.32 (1, 7) 0.80 

4 1.25 (3.15, 0.5, 0.05) 10.77  10.78 (1, 7) 0.16  10.80 (2, 8) 0.30 

5 1.50 (2.50, 0.5, 0.05) 11.20  11.21 (2, 7) 0.09  11.20 (2, 8) 0.02 

Table 8. Performances of the Alternative Policies with DFR distribution, s=5 and K=0 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 (𝜇1, 𝜇2, 𝛽) 
Average  

Cost  

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (2.79, 0.5, 0.05) 7.85  8.43 (3, 4) 6.89  7.96 (3, 4) 1.47 

2 0.75 (1.90, 0.5, 0.05) 8.47  8.92 (4, 7) 5.01  8.75 (3, 4) 3.21 

3 1.00 (1.35, 0.5, 0.05) 9.29  9.43 (4, 5) 1.47  9.38 (4, 5) 0.99 

4 1.25 (1.06, 0.5, 0.05) 9.97  10.09 (5, 8) 1.20  10.11 (5, 6) 1.37 

5 1.50 (0.87, 0.5, 0.05) 10.67  10.70 (5, 8) 0.32  10.74 (5, 8) 0.68 

Table 9. Performances of the Alternative Policies with IFR distribution, s=5 and K=0 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 (𝜇1, 𝜇2, 𝛽) 
Average  

Cost  

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (8.50, 2.65, 0.8) 7.97  8.33 (3, 6) 4.26  8.05 (7, 12) 0.99 

2 0.75 (3.90, 2.65, 0.8) 8.46  8.81 (3, 6) 3.93  8.52 (5, 9) 0.75 

3 1.00 (1.88, 2.65, 0.8) 9.27  9.40 (4, 7) 1.39  9.33 (6, 8) 0.62 

4 1.25 (1.35, 2.65, 0.8) 9.88  9.94 (5, 7) 0.58  9.91 (6, 7) 0.24 

5 1.50 (1.05, 2.65, 0.8) 10.52  10.57 (5, 7) 0.48  10.55 (7, 8) 0.26 

Table 10. Performances of the Alternative Policies with DFR distribution, s=5, K=0 and 𝜇2 is changing 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 (𝜇1, 𝜇2, 𝛽) 
Average  

Cost  

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 
Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (14, 2.30, 0.8) 7.83  8.33 (3, 6) 6.00  7.93 (4, 11) 1.32 

2 0.75 (14, 1.44, 0.8) 8.44  8.92 (4, 7) 5.34  8.51 (4, 16) 0.81 

3 1.00 (14, 1.05, 0.8) 9.24  9.40 (4, 7) 1.73  9.28 (12, 23) 0.49 

4 1.25 (14, 0.82, 0.8) 10.02  10.13 (4, 7) 1.10  10.02 (16, 28) 0.06 

5 1.50 (14, 0.68, 0.8) 10.74  10.84 (5, 8) 0.92  10.74 (19, 33) 0.02 

   Optimal Policy  IP Policy  Proposed Policy 

 

# 

 

𝜌 

(𝜇1, 𝜇2, 𝛽) 

 

Average  

Cost 

 Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

 Average  

Cost  

(𝐼∗, 𝐼∗∗) 

 

Optimality 

Gap % 

1  0.5 (15, 0.5, 0.05) 7.05  7.20 (1, 2) 2.03  7.09 (1, 7) 0.48 

2 0.75 (6.65, 0.5, 0.05) 8.21  8.49 (1, 2) 3.32  8.21 (2, 3) 0.00 

3 1.00 (4.25, 0.5, 0.05) 9.19  9.26 (2, 3) 0.70  9.24 (2, 5) 0.45 

4 1.25 (3.15, 0.5, 0.05) 9.98  10.01 (2, 3) 0.27  9.99 (3, 4) 0.09 

5 1.50 (2.50, 0.5, 0.05) 10.70  10.72 (2, 3) 0.19  10.71 (3, 4) 0.10 
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As the holding cost rate (h) and unit lost sales cost (c) 

are both set to 3 in all the above examples, we aim to 

depict the effect of changes in the (holding cost 

rate)/(unit lost sales cost) ratio in Figure 2. In order to 

visit different values of this ratio, without loss of 

generality we only change holding cost rate: h varies 

from 1 to 14 while c is kept constant at 3. The other 

parameters are assumed to be [𝑠, 𝜇1, 𝜇2, 𝛽, 𝐾, λ] =
[2, 4.25, 0.5, 0.05, 0.5, 6]. In the figure, for each 

increment of h, average system cost of both the optimal 

and proposed policies, and (𝐼∗, 𝐼∗∗) values of the 

proposed policy are presented. As seen from the height 

of the bars representing the average system costs of the 

policies the performances are so close to each other: 

average and maximum optimality gaps are calculated 

as 0.25% and 0.90%, respectively. Furthermore, for 

both of the policies average system cost is concave in h 

that converges to a certain value (18) when h is above 

12. As h increases and becomes larger relative to c, both 

policies demotivate production. In our example, when 

ℎ > 12 it is optimal not to produce at all. In this case 

all the incoming demands are lost and the average 

system cost converges to λc = 18 for both of the 

policies. In parallel to this observation, it is also seen 

from the figure that both of the optimal control 

parameters of the proposed policy, which are defined 

by (𝐼∗, 𝐼∗∗), are non-increasing in h. Equivalently we 

can say that they would be non-decreasing in c. On the 

hand, when holding cost rate is getting smaller and 

smaller (compared to the unit lost sales cost) the 

average cost converges to zero. As h decreases both 𝐼∗ 

and 𝐼∗∗ increase in order to minimize shortage and start-

up costs. At the extreme, when ℎ = 0, 𝐼∗ can be set to 

any value above a threshold that guarantees no 

shortage. Similarly,  𝐼∗∗ can be any value (greater than 

𝐼∗) such that fixed cost per each server is incurred only 

finitely many times. For all such control levels the long-

run average system cost would be zero.  

 

 
Figure 2. Effects of changes in h on the average cost and (𝐼∗, 𝐼∗∗) 

 

7. Conclusion 

This article considers a production-inventory system in 

a make-to-stock environment with multiple identical 

production channels (machines, servers or lines), fixed 

production start-up costs and lost sales. We assume that 

production times are 2-phase Coxian random variables 

that allows us to model rework/remanufacturing and 

repair operations within the production process. 

Demands are generated according to a stationary 

Poisson process and unsatisfied demands are 

immediately lost.  

We extend the existing literature by considering phase-

type production times and multiple servers with start-

up costs in the same model. The system is modeled as 

an 𝑀/𝐶𝑜𝑥2/𝑠 make-to-stock queue and dynamic 

programming formulation is developed. Thereafter, we 

first numerically characterize the optimal production 

policy and reveal that it has a highly dynamic nature. 

Secondly, we propose a policy structure that aims to 

capture the dynamic nature of the optimal policy with 

two control and three weight parameters. Control 

parameters are to define the maximum inventory and 

the production start-up levels. The other three 

parameters are the weights of the number of active 

servers at stage-1, the number of active servers at stage-

2 and the number of items in inventory. This policy 

structure has the capability to trace a large space of 

several different policies. Using this structure we 

specifically propose a policy with fixed weight 

parameters and test its performance with respect to the 

optimal. Results reveal that our policy, which is 

controlled by only two parameters and thus easy-to-

apply, is near optimal at all the instances.   
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 In this study, a multi-resource agent bottleneck generalized assignment problem 

(MRBGAP) is addressed. In the bottleneck generalized assignment problem 

(BGAP), more than one job can be assigned to an agent, and the objective function 

is to minimize the maximum load over all agents. In this problem, multiple 

resources are considered and the capacity of the agents is dependent on these 

resources and it has minimum two indices. In addition, agent qualifications are 

taken into account. In other words, not every job can be assignable to every agent. 

The problem is defined by considering the problem of assigning jobs to employees 

in a firm. BGAP has been shown to be NP- hard. Consequently, a multi-start 

iterated tabu search (MITS) algorithm has been proposed for the solution of large-

scale problems. The results of the proposed algorithm are compared by the results 

of the tabu search (TS) algorithm and mixed integer linear programming (MILP) 

model.  
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1. Introduction 

Assignment problems (AP) are an important topic 

which is frequently studied in the literature. AP is 

generally considered in three classes. The simplest 

form of the AP, in which each agent can be assigned a 

job at most, is the classic AP. There are m number of 

agents and n number of jobs in this problem. Each job 

must be assigned to an agent so that the total cost is 

minimal. Each agent should also be assigned a job (one-

to-one). Another class of the AP is generalized 

assignment problem (GAP). In GAP, more than one job 

can be assigned to an agent. Some subclasses of GAP 

are multi-resource generalized assignment problem 

(MRGAP), bottleneck generalized assignment problem 

(BGAP). Another class of AP is multidimensional AP. 

In multidimensional AP, jobs are assigned to at least 

two different resources. Detailed information can be 

reached from the literature review by Pentico [1]. 

In the GAP, each agent has a certain capacity. Jobs use 

this capacity and the capacity of the agent cannot be 

exceeded. In MRGAP, multiple resources are used for 

the completion of the jobs. Therefore, the capacity of 

agents depends on these resources. The capacity 

parameter of the agents has at least two indices due to 

parameter dependent on the agent and the resource. 

There are many applications of the MRGAP in real life.  

 

For example, in vehicle routing problems, as vehicles 

are agents, and jobs are considered to be the places 

where vehicles should be visited, and the capacity of 

the vehicles depends on both the weight and the volume 

of the vehicle, the problem can be considered as the 

MRGAP [2]. 

In bottleneck assignment problems (BAP), the 

objective function is the minimization of the maximum 

assignment cost or maximum load over all agents. 

Completion time of the jobs also can be taken into 

account. In other words, completion time of the last job 

is minimized in the BAP [3]. 

GAP is an important problem frequently studied in 

literature. Studies in the literature can be categorized as 

studies that proposes exact algorithms and heuristic 

algorithms. In the studies that propose exact 

algorithms, the branch-bound algorithm ([4] and [5]), 

the cutting plane algorithm [6], the branch and price 

algorithm [7, 8], branch- and- cut algorithm for GAP 

with additional pair constraints [9] and with min- max 

regret criterion [10] were used. When the exact solution 

approaches are used, the solution time of the problem 

is quite prolonged. Since the GAP problem is an NP-

hard problem, it is quite common to use heuristic 

algorithms that gives the near optimal solution in a 

short time [11]. In the studies using heuristic  
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algorithms, tabu search algorithm [12-14], genetic 

algorithm [15], bees algorithm [16], a heuristic based 

on Lagrangian relaxation [17, 18], LP- based heuristic 

[19], a hybrid heuristic based on scatter search [20], 

improved differential evolution algorithm [21], a 

parallel genetic algorithm [22] and simulated annealing 

algorithm [14] were used. Degroote et al. [23], poposed 

a methodology for selection the most suitable algorithm 

for GAP. Chakravarthy et al. [24], proposed a heuristic 

algorithm for bottleneck generalized assignment 

problem. For a strategic variant of GAP, approximation 

algorithm is proposed by Fadaei and Bichler [25]. 

Detailed information for GAP can be found in the 

literature review by Öncan [11]. 

Although there are many studies related to GAP, the 

number of studies dealing with the MRGAP is less. 

MRGAP is the generalization of the GAP. GAP has 

been shown to be NP- hard and MRGAP is also NP- 

hard [26]. Karsu and Azizoğlu [3], proposed a branch-

bound algorithm for the multi-resource bottleneck 

GAP. Mazzola and Wilcox [2], proposed a three stage 

heuristic algorithm for the MRGAP. In the first stage, a 

suitable solution is obtained and at the other stages, this 

solution is improved. Yagiura et al. [27], proposed a 

new algorithm for multi-resource generalized quadratic 

assignment problem. In the algorithm, the path 

relinking approach was used in the neighborhood 

generation. Gavish and Pirkul [28], proposed a 

heuristic algorithm and branch-bound algorithm for the 

MRGAP. They also proposed some rules for the 

reduction of the problem dimensions. Yagiura et al. 

[29], proposed a TS-based heuristic algorithm for the 

MRGAP. Mitrovic-Minic and Punnen [30], proposed a 

heuristic algorithm based on a variable neighborhood 

search for the MRGAP.  

The MRGAP problem is the generalized version of 

GAP and is a more difficult problem to solve. However, 

many studies in the literature propose an heuristic 

algorithm for GAP. Wu et al. [10], Souza et al. [20], 

Sethanan and Pitakaso [21], and Moussavi et al. [31] 

proposed an heuristic algorithm for the generalized 

assignment problem. Difference from the literature, in 

this study an heuristic algorithm is proposed for the 

multi-resource agent bottleneck generalized 

assignment problem with agent qualifications. The 

differences of the study from literature are agent 

qualifications are taken into account, a different 

heuristic algorithm is proposed for the larger size test 

problems than the problem sizes in the literature and the 

success of the proposed heuristic is shown through test 

problems by comparing with Tabu Search in the 

literature.  The TS algorithm has been proposed by 

Karsu and Azizoğlu [3] in the literature for the problem 

of MRGAP. The proposed iterated local search 

algorithm is compared with the TS algorithm. Test 

problems are generated in two different ways as that 

takes into account agent qualification and not takes into 

account agent qualification. In addition, larger size test 

problems are solved and the success of the algorithm 

has been shown through test problems. In addition, 

iterative local search algorithm was proposed for the 

first time for the MRGAP.  

The remainder of this paper is organized as follows. 

The first section of the study is the introduction, in the 

second section the problem is defined and MILP model 

is given. In the third section, the proposed solution 

method is explained. In the fourth section, experimental 

results are given and conclusions are given in the final 

section. 

2. Problem description 

In this study, multi-resource bottleneck generalized 

assignment problem (MRBGAP) with agent 

qualifications was addressed. The problem addressed in 

this study is defined by the problem of assigning 

employees to jobs in a firm. Employees are considered 

as agents. Each jobs must be assigned to an employee. 

More than one job can be assigned to an employee. 

Employee capacities depend on employee and shift. 

The shifts are defined as morning, noon, afternoon, 

evening and night. Employees' capacities (working 

hours) vary according to shifts. For example, an 

employee can work more in the morning shift than in 

the evening shift. For this reason, the employees' 

capacity parameter has two indices due to the parameter 

depending on the employee and the shift. The objective 

function is the minimization of the completion time of 

the last job, and this objective function is the bottleneck 

objective function. 

The sets, indices, parameters, decision variables, 

constraints and objective function of the MILP model 

are given below; 

Sets and indices 

N:Set of jobs, N= {1, 2, …, n}  

M: Set of agents, M= {1, 2,…, m} 

R: Set of resource, R= {1, 2,…,r}   

 j: job indices where j⋲ N . 

i: agent indices where i⋲ M . 

k: resource indices where k⋲ R . 

Parameters 

pijk: processing time for job j on agent i and resource k 

bik: capacity for agent i on resource k 

hij= {
1; 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑗𝑜𝑏 𝑗
0;                                                                   𝑜. 𝑤.

 

M: very large positive number 

Decision variables 

 xij =  {
1; 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑔𝑒𝑛𝑡 𝑖
0;                                                   𝑜. 𝑤.
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Lmax: maximum completion time 

Model  

Min Z= Lmax           (1) 

s.t. 

∑ 𝑝𝑖𝑗𝑘𝑥𝑖𝑗𝑗 ≤ bik  ∀ i, k          (2) 

∑ 𝑥𝑖𝑗𝑖 =1  ∀ j          (3) 

∑ ∑ 𝑝𝑖𝑗𝑘𝑥𝑖𝑗𝑗𝑘 ≤ Lmax  ∀ i        (4) 

𝑥𝑖𝑗≤  hij   ∀ i, j         (5)     

xij⋲ {0,1} ve Lmax ≥ 0          (6) 

Constraint (1) shows the objective function, 

minimization of the maximum completion time. 

Constraint (2) ensures agent capacities are not 

exceeded. With constraint (3), each job is assigned to 

an agent. The constraint (4) calculates the completion 

of the last job. The constraint (5) ensures agent 

qualifications are satisfied. Constraints (6) are the sign 

constraints.  

Table 1: Parameters of pijk 

  pij1 pij2 pij3 

i 1 2 3 4 1 2 3 4 1 2 3 4 

1 18 25 6 5 10 23 37 42 36 31 25 14 

2 45 41 17 7 9 10 40 15 19 46 15 8 

3 44 13 18 10 10 36 9 17 46 9 11 32 

4 37 28 45 5 6 28 25 14 10 25 41 15 

5 6 31 45 29 24 29 49 35 42 37 9 17 

6 37 41 4 11 17 4 30 47 37 38 11 34 

7 6 44 30 36 23 40 14 10 45 21 33 12 

8 20 25 28 46 42 44 23 11 9 45 26 29 

9 21 14 39 14 28 5 27 32 41 44 31 32 

10 34 47 48 41 28 8 21 33 48 12 15 32 

11 32 44 45 17 4 45 21 45 23 11 16 17 

12 32 11 20 44 21 43 25 6 39 26 5 47 

13 37 45 8 32 46 17 47 24 20 25 15 11 

14 12 27 22 38 5 29 12 40 14 10 5 33 

15 34 29 13 24 33 11 16 35 13 36 4 42 

 

The problem is also explained by an example. In the 

example, there are 15 jobs, 4 employees (agents) and 3 

shifts (resources). Table 1 shows pijk values. hij and bjk 

parameters are given in Table 2 and Table 

3,respectively.  

Example: 15 jobs, 4 employee (agent) and 3 shifts 

(resource) 

 

Table 2: Parameters of hij  

i  hij 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 

2 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 

3 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 

4 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 

 

Table 3: Parameters of bjk  

i 
      bik 

1 2 3 

1 138 102 147 

2 120 100 110 

3 130 132 95 

4 90 105 100 

 

In the best solution, jobs 2, 7 and 10 are assigned to 

agent 1; jobs 11, 13 and 15 are assigned to agent 2; jobs 

3, 6, 9, 12 and 14 are assigned to agent 3; jobs 1, 4, 5, 

and 8 are assigned to agent 4. Loads of the agents are 

254, 263, 269 and 262, respectively. The objective 

function value is 269. 

3. Multi-start iterated tabu search algorithm  

Since the problem is NP-Hard, a multi-start iterated 

tabu search algorithm has been proposed to solve large 

problem instances. 

The iterated local search algorithm is a heuristic 

algorithm that has three basic stages. The first stage is 

the generation of the initial solution. At the second 

stage the solution is improved by a local search method. 

The third stage is the perturbation stage. The steps of 

the iterated local search algorithm are given in Figure 

1. Once the initial solution is obtained, the algorithm 

repeats the local search and perturbation steps until the 

stopping criterion is achieved. If the solution obtained 

from the local search is better than the current solution, 

the solution is considered to be the current solution. The 

perturbation mechanism is intended to escape from 

local optimal. In the perturbation phase, the solution is 

changed slightly. 

Iterated local search algorithm is applied to many 

combinatorial optimization problem successfully. 

Iterated local search algorithm is proposed for the 

scheduling problem [32], vehicle routing problem [33-

36], quadratic assignment problem [37], quadratic 

knapsack problem [38], hub location problem [39] and 

shift scheduling [40]. 

Firstly, abbreviations used in algorithm are given: 

S0(c)(n): Initial (current) (neighbor) solution;  

Sp: Perturbated solution;  

E0(c)(n): Obj. func. value of the initial (current) 

(neighbor) solution; 
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CL: Set of jobs; 

TLL: Tabu list length;  

v: maximum iteration number of TS; 

MTLS: Maximum tabu list size;  

Ebest: Objective function value of the best solution; 

maxStart: Multi- start number of the algorithm 

In this study, multi- start iterated tabu search algorithm 

is proposed for the multi resource bottleneck 

generalized assignment problem. Different features 

have been used to increase the success of the proposed 

algorithm. 

 

Procedure ILS 

Generate initial solution S0; 

Apply local search procedure to S0 and obtain S*;  

While termination condition not meet 

 Apply perturbation to S* and obtain Sp; 

 Apply local search procedure to Sp and obtain 𝑆′′; 

 If f(𝑆′′)<f(S*) 

  S*←𝑆′′; 

 End 

End 

Figure 1. Algorithm of the iterated local search 

 

One of the important features of the proposed algorithm 

is to start the search process multiple times. This feature 

provides diversification. Initial solution of the 

algorithm is generated by  randomly or by a greedy 

algorithm. Throughout our preliminary experiments, it 

was observed that the algorithm reached better 

solutions faster by using greedy algorithm as an initial 

solution finding mechanism. However, only the use of 

the greedy algorithm caused starting with very similar 

solutions. Thus, random solutions also taken as an 

initial solution for the investigation of the unexplored 

regions in the search space. For this, a random number 

is derived. If this random number is greater then q (a 

predetermined parameter) the algorithm uses the 

greedy algorithm. Otherwise random initial solution is 

generated. TS algorithm is used as a local search 

algorithm. The TS algorithm and perturbation 

mechanisms are applied respectively until the stopping 

criterion is achieved. Once the stopping criterion has 

been achieved, an initial solution is generated again and 

the steps are repeated until the number of multiple 

starting is reached.  

In the next section, initial solution finding mechanisms, 

TS algorithm used in local search, perturbation 

mechanism and all steps of algorithm will be described. 

 

3.1. Initial solution finding mechanism  

3.1.1. A greedy construction heuristic 

When generating the initial solution, a job is assigned 

to the agent with the smallest completion time as 

possible. For this, pij values are calculated using 

Equation 7. pij denotes the total completion time of the 

job according to agent on the basis of resource. 

pij=∑ 𝑝𝑖𝑗𝑘𝑘          ∀i,j                                           (7)                                                                                        

The pij values are sorted in ascending order and the spij 

matrix is obtained. The aim is to assign the job to the 

first agent in the spij matrix. However, since each agent 

has a capacity and agent qualifications are taken into 

account, the agent cannot be assigned to first agent in 

the spij matrix. If the job is not assigned to the first 

agent, the job is assigned to second order of the agent 

in the spij matrix. Algorithm is repeated until each job 

is assigned to an agent and a solution is obtained. The 

algorithm is given on Figure 2. 

3.1.2. Random initial solution 

In the random solution finding algorithm, the randomly 

selected job j* is assigned to the randomly selected 

agent i*. If job j* is not assignable to i*, another agent 

is randomly generated. The algorithm is working until 

a solution is obtained. 

3.2. Local search algorithm 

The TS algorithm was used as the local search 

algorithm in the proposed heuristic method.  

Two methods are used to generate the neighboring 

solutions from current solution. The first method is to 

assign each job in the agent with the largest completion 

time to the other agents. The other method is the 

reciprocal displacement of jobs in the agent with the 

largest completion time with the jobs in other agents. 

All solutions are derived from the current solution by 

using neighboring solution generation methods.  

The best of these solutions is taken, and if the 

movement in the generation of the neighbor solution is 

not in the tabu list, the solution is taken directly as the 

current solution. If a movement is made in the tabu list 

and the solution is not a better solution than the best 

solution, the neighbor solution with the second smallest 

objective function is chosen and the same test is also 

applied to this solution. This step is repeated until a 

solution is accepted.  

The length of the tabu list is considered as fixed, and 

when the tabu list is full, the movement that has been in 

the list for the longest period is deleted. It is forbidden 

to carry out the movements in the tabu list. If a better 

solution is obtained than the best solution, the tabu is 

eliminated and the relevant solution is taken as the 

current solution.  

If the solution is obtained as a result of the use of the 

first neighboring method, the job and the relevant agent 

are added to the tabu list. The movement of this job to 

the relevant agent during the tabu is prohibited. If the 

solution is obtained as a result of the use of the second 

neighboring method, replacement of these jobs is 

prohibited. The algorithm works until it reaches the 

predetermined number of iterations. The steps of the 

tabu search algorithm are given in Figure 3. 
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Procedure a greedy construction heuristic 

Input: pijk, hij, bik, spij 

Output: Initial solution (S0), Objective funct. value of 

S0 (E0) 

exit1←0, 𝑛′←0; CL←{1,…,n} 

While exit1==0 

 exit2←0; x←1; flag←0; 

 While exit2==0 

Select the job j* randomly from the CL and assign    

the j* to the x th order of the agent in the spij* 

matrix; 

    For k=1 to r 

       If bi*k<pi*j*k or hi*j*==0 

       flag←1; 

       End 

    End 

    If flag==1 

     x←x+1; 

    Else 

  exit2←1; 𝑛′←𝑛′+1; 

  bi*k←bi*k-pi*j*k;CL←CL\{j*}; 

    End 

    If x==m 

      exit2←1; 𝑛′←0; Initialize CL and bik; 

    End 

 End 

   If 𝑛′==n 

  exit1←1; 

    End 

End 

Figure 2. Greedy Construction Heuristic 

 

 

Procedure TS algorithm  

Input: pijk, bik, hij, m, n, r, v, MTLS, S0, E0 

Output: Near optimal solution (S*) 

S*←S0; E*←E0; Sc←S0; Ec←E0; TLL←1; 

While iter<v 

Generate neighbor solutions and sort ascending 

order according to obj. func.value (Sn 
t); t←1; 

check←0; 

 While check==0 

       If the movement of Sn 
t not tabu or En

t<Ebest 

           Sc←Sn
t; Ec←En

t;  

                Insert the movement of Sc at the tabu list; 

                TLL←TLL+1; check←1; 

        Else 

          t←t+1; 

       End 

 End 

      If TLL==MTLS+1 

         Delete the first element in the tabu list; 

         TLL←1; 

 End 

 If Ec<E* 

  S*←Sc; E*←Ec; 

 End 

 iter←iter+1; 

End 

Figure 3. Tabu search algorithm 

 

3.3. Perturbation mechanism 

The iterative local search algorithm uses the 

perturbation mechanism to escape the local optimal. If 

the perturbation is too strong, the algorithm can move 

away from promising regions. If perturbation is too 

small, the algorithm may loop in previously searched 

regions. Therefore, it is very important to determine the 

appropriate perturbation length. With perturbation, a 

new solution (𝑆′′) is derived from one of the methods 

of the neighboring solution from the current solution 

(𝑆′). If objective function value of 𝑆′′ is less than 

objective function value 𝑆′, then the perturbated 

solution will be 𝑆′′.  

If 𝑆′′ is accepted, the value Ɣ is increased by λ. 

Otherwise, a new 𝑆′′ solution is derived. λ is taken as a 

value between 0 and 1. If the number of consecutive 

rejected solutions reaches a predetermined value 

(maxTry), the value of Ɣ is increased by λ. The 

algorithm works until the number of applied moves 

equal to pertLength. The perturbation mechanism is 

given in Figure 4. 

 

Procedure Perturbation 

Input: 𝑆′, pertLength, λ, maxtry 

Output: Sp 

p←1; Ɣ←1+ λ; Sp←𝑆′; try←0; 

While p≤pertLength 

 Generate a random solution 𝑆′′, from 𝑆′ by     

applying a randomly selected neighborhood structure; 

 If f(𝑆′′)≤ Ɣ* f(𝑆′) 

  Sp←𝑆′′; Ɣ← Ɣ + λ; p←p+1; try←0; 

 Else 

  try←try+1; 

  If try>maxtry 

       Ɣ← Ɣ +λ; try←0; 

    End 

 End 

End 

Figure 4. Perturbation mechanism 
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3.4. Steps of the algorithm 

The steps of the proposed multistart iterated tabu search 

algorithm are given in Figure 5. 

 

Procedure MS- ITS 

Input: problem data, maxStart, λ, maxTry, pertLength, 

v, MTLS, q, maxiter 

Output: Near optimal solution (S*) 

For s=1:maxStart 

 pertLength←1; 

 Generate a random number rnd; 

 If rnd≤q 

  Construct a random initial solution S0 with the          

objective function E0; 

  (S0,E0)←RandomInitialSolution(problem data) 

 Else 

  Construct an initial solution S0 with the objective  

function E0 using greedy algorithm; 

  (S0,E0)←GreedyInitialSolution(problem 

data,spij) 

 End 

 (S*,E*)←TabuSearchAlgorithm(problem data, 

v, MTLS,S0,E0) 

  𝑆′=S*; 𝐸′=E*; 

 While iteration<maxiter 

 (Sp,Ep)←Perturbation(pertLength,λ,maxtry, 𝑆′,

 𝐸′) 

       (𝑆′′, 𝐸′′)←TabuSearchAlgorithm(problem data, 

v, MTLS,Sp,Ep) 

  If 𝐸′′<E* 

      S*←𝑆′′; E*←𝐸′′; 

        End  

  iteration← iteration+1; 

     End 

End 

Figure 5. Steps of the algorithm 

4. Computational results 

The success of heuristic algorithms strongly depends 

on the selection of the right parameters. The parameters 

of the heuristic are maxStart, λ, maxTry, pertLength, v, 

MTLS, maxiter and q. Taguchi experimental design 

(TED) reduces the number of experiments and it is a 

successful method for determining the parameters of 

heuristic algorithms. If the number of parameters is 

high TED is preferred because it reduces the number of 

experiments [41]. The parameters of the algorithm were 

determined with TED due to proposed algorithm has 

many parameters. Factor levels are given in Table 4. 

There has been 8 factors and 3 levels. L27 orthogonal 

array is selected. Since the objective function of the 

problem is minimization, smaller-the-better type 

function is selected for the Taguchi design. S/N ratio is 

given below (Eq- 8). n is the number of observations in 

each experiment and Yi is the objective function value. 

S/N ratio= −10 ∗ 𝑙𝑜𝑔 (
1

𝑛
∑ 𝑌𝑖

2𝑛
𝑖=1 )                      (8) 

 

Table 4: Factor levels 

Factors Levels 

maxStart (A) 10; 15 and 20 

λ (B) 0.02; 0.03 and 0.04 

maxTry (C) 25, 50 and 75  

pertLength (D) 10; 20 and 30 

v (E) 500; 750 and 1000 

MTLS (F) 40; 60 and 80 

maxiter (G) 50; 75 and 100 

q (H) 0.3; 0.4 and 0.5 

 

In this study, instead of applying TED to each test 

problem, the following test problems were selected and 

TED was applied. In Table 5 selected test problems and 

determined parameters are given. In the selected 

problems, U [15,25], number of agent is 10 and number 

of jobs is 200. The largest problem size was preferred. 

Test problems are generated as described in the study 

by Karsu and Azizoğlu [3].  

 

Table 5. Selected test problems and determined 

parameters 

c hij A B C D E F G H 

1.4 1 10 0.04 25 10 500 80 50 0.4 

0.7 10 0.02 25 20 500 40 50 0.4 

1.6 1 10 0.03 50 20 500 60 50 0.5 

0.7 10 0.02 50 10 500 40 50 0.3 

 

Response table of S/N ratios for the test problem with 

c=1.4 and h=1 in Table 6.  

 

Table 6. Response table of S/N ratios 

Factors S/N Ratio 

1 2 3 

A -63,30 -63,32 -63,33 

B -63,31 -63,30 -63,27 

C -63,14 -63,17 -63,16 

D -63,26 -63,31 -63,34 

E -63,08 -63,21 -63,10 

F -63,32 -63,30 -63,26 

G -63,13 -63,30 -63,25 

H -63,31 -63,26 -63,32 

 

According to the highest S/N values, the levels of the 

factors are determined and given in Table 5. Taguchi 

experimental design is analyzed using Minitab 16 for 
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Windows (Minitab Inc.). 

The MILP model was coded in GAMS 24.1.3 program 

and the Cplex solver was used. Heuristic algorithms 

were coded in the MATLAB  R2012b and implemented 

on an Intel (R) Core ™ i7- 5500 U CPU at 2.40 GHz 

with 12 GB of RAM memory and the Windows 10 

operating system. The proposed algorithm is compared 

with the Tabu Search algorithm. The tabu search 

algorithm and the proposed algorithm were run in equal 

iterations. For this reason, the tabu search algorithm has 

been run with a (maxStart * v * maxiter) number of 

iterations. The neighbor generation of the TS algorithm 

is same with proposed heuristic approach. The results 

of the proposed algorithm, the tabu search algorithm, 

and the MILP (mixed integer linear programming) 

model are given in Table A1-A2. In Table A1 agent 

number is 5 and job numbers are 75 and 100. In Table 

A2 agent number is 10 and job numbers are 150 and 

200. The problem specifications including the number 

of jobs, distribution of the processing times, the value 

of the c, probability of the parameter hij are given in the 

first, second, third and fourth columns, respectively. 

The MILP solution and CPU time, iterated local search 

solution and CPU time of the algorithm, TS solution 

and CPU time are given in Table A1-A2. The results of 

the ILS and TS algorithms are compared by the MILP 

solution. The heuristic error was calculated as follows: 

%𝐸𝑟𝑟𝑜𝑟 =
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑀𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑀𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×100 

In the study, 48 test problems were solved by MILP 

model, ILP algorithm and TS algorithm. The success of 

the proposed algorithm is shown by comparing the 

results of the MILP model and TS algorithm. The 

proposed heuristic algorithm gave better results than 

TS algorithm in all test problems except 2 test 

problems. ILS algorithm gave the same result with TS 

for 5 test problems. The average error rates in heuristic 

algorithms according to the number of jobs are given in 

the Table 7.  

 

Table 7. Average error according to job number 

Job number 
Average Error 

ILS TS 

75 0 0,31 

100 0,005 0,28 

150 0,005 0,87 

200 0,13 1,23 

Average 0,035 0,6725 

 

The proposed heuristic algorithm found the optimal 

results for test problems with 75 jobs. When the number 

of jobs is taken as 100, ILS found the optimal results in 

all test problems except 1 test problem. MILP model 

cannot find the best results for test problems with 150 

jobs at 3600 sec. The proposed heuristic algorithm 

found a better solution in a shorter time than the MILP 

model for 5 test problems out of 12 test problems. 

When the number of jobs was 200, the ILS algorithm 

gave better solutions for 6 test problems out of 12 test 

problems in a shorter time than the MILP model. If the 

tables are interpreted considering the number of agents, 

the MILP model found optimal solution for all test 

problems with 5 agents. The proposed heuristic 

algorithm found optimal solution for test problems with 

5 agents except 1 test problem. MILP model could not 

find the best solution in 3600 seconds for test problems 

with 10 agents. The proposed heuristic algorithm 

provided better solution in 11 test problems out of 24 

test problems in a shorter time than the MILP model. 

When the number of agents was 10, the TS algorithm 

provided a better solution for only 2 test problems than 

the ILS algorithm. The proposed heuristic algorithms 

were run in equal iteration number and ILS algorithm 

provided solutions in a shorter time than TS algorithm 

for all test problems. As a result, ILS algorithm 

displayed better performance than TS algorithm for 

MRBGAP. 

5. Conclusion 

In this article, multi-resource agent bottleneck 

generalized assignment problem (MRBGAP) is 

considered. The MRBGAP problem is the generalized 

version of GAP and is a more difficult problem to solve. 

However, many studies in the literature propose 

heuristic algorithms for GAP. Agent qualifications are 

examined firstly with this study for the MRBGAP. Due 

to the NP hardness of the problem, a multi- start iterated 

tabu search algorithm is proposed for the solution of the 

problem. In addition, proposed heuristic algorithm is 

compared with TS algorithm. According to 

experimental comparisons, ILS algorithm yielded 

better results than TS algorithm. ILS algorithm found 

better results than the MILP model in a shorter time for 

10 agents. With this study, large problem instances are 

generated for MRBGAP. This study is the first to use 

ILS algorithm for the MRBGAP. Future studies will 

focus on matheuristic algorithm, other meta heuristic 

algorithms and stochastic version of the problem.   
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Appendices 

Table A1. Five agent and 75 or 100 jobs (* denotes optimal solutions) 

    MILP  ILS   TS 

n pij1 c hij Solution   CPU  Solution CPU %Error  Solution CPU %Error 

75 U[5,25] 1,4 1 697,35 * 0,49   697,35 45,22 0   699,77 85,79 0,35 

75 U[5,25] 1,4 0,7 728,3 * 1,08   728,3 27,41 0   729,64 40,42 0,19 

75 U[5,25] 1,6 1 574,27 * 1,31   574,27 48,98 0   575,07 82,75 0,14 

75 U[5,25] 1,6 0,7 814,46 * 1,2   814,46 20,13 0   814,46 42,42 0 

75 U[15,25] 1,4 1 1153,9 * 0,81   1153,9 35,26 0   1153,9 82,19 0 

75 U[15,25] 1,4 0,7 1219,56 * 1,7   1219,56 22,19 0   1220,53 45,42 0,08 

75 U[15,25] 1,6 1 1157,64 * 1,42   1157,64 39,84 0   1169,14 88,46 1 

75 U[15,25] 1,6 0,7 978,86 * 1,03   978,86 20,46 0   978,86 42,46 0 

75 U[25,35] 1,4 1 1806,47 * 3,56   1806,47 41,21 0   1812,16 85,64 0,32 

75 U[25,35] 1,4 0,7 1915,14 * 2,57   1915,14 25,12 0   1915,14 41,53 0 

75 U[25,35] 1,6 1 1770,45 * 2,7   1770,45 41,54 0   1775,76 86,79 0,3 

75 U[25,35] 1,6 0,7 1921,74 * 1,25   1921,74 21,89 0   1948,96 48,86 1,42 

100 U[5,25] 1,4 1 814,47 * 2,8   814,96 81,69 0,06   818,29 102,85 0,47 

100 U[5,25] 1,4 0,7 917,57 * 1,76   917,57 67,88 0   917,57 85,69 0 

100 U[5,25] 1,6 1 860,59 * 5,53   860,59 82,87 0   861,32 105,18 0,09 

100 U[5,25] 1,6 0,7 1008,28 * 0,89   1008,28 61,95 0   1008,28 80,25 0 

100 U[15,25] 1,4 1 1522,29 * 5,44   1522,29 89,22 0   1522,49 109,18 0,02 

100 U[15,25] 1,4 0,7 1616,18 * 1,43   1616,18 69,28 0   1628,33 81,43 0,76 

100 U[15,25] 1,6 1 1537,62 * 2,18   1537,62 87,87 0   1545,82 106,17 0,54 

100 U[15,25] 1,6 0,7 1645,26 * 2,06   1645,26 68,51 0   1649,96 88,88 0,29 

100 U[25,35] 1,4 1 2451,96 * 5,5   2451,96 86,54 0   2463,93 101,6 0,49 

100 U[25,35] 1,4 0,7 2514,61 * 42,54   2514,61 64 0   2514,61 87,67 0 

100 U[25,35] 1,6 1 2435,7 * 4,41   2435,7 83,75 0   2451,57 107,62 0,66 

100 U[25,35] 1,6 0,7 2645,9 * 3,59   2645,9 55,88 0   2647,86 80,86 0,08 
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Table A2. Ten agent and 150 or 200 jobs 

    MILP  ILS   TS 

n pij1 c hij Solution   CPU  Solution CPU %Error  Solution CPU %Error 

150 U[5,25] 1,4 1 500,19   3600   501,18 1656,85 0,2   501,68 2258,5 0,3 

150 U[5,25] 1,4 0,7 568,62   3600   562,13 1258,45 -1,14   570,8 1874,6 0,38 

150 U[5,25] 1,6 1 487,87   3600   489,23 1845,74 0,28   499,49 2156,8 2,38 

150 U[5,25] 1,6 0,7 585,68   3600   588,74 1152,41 0,52   587,16 1745,7 0,25 

150 U[15,25] 1,4 1 1068,17   3600   1069,5 1985,12 0,12   1071,63 2275,3 0,32 

150 U[15,25] 1,4 0,7 1115,84   3600   1114,14 1158,46 -0,15   1120,07 1856,4 0,38 

150 U[15,25] 1,6 1 1062,19   3600   1064,89 1585,45 0,25   1074,3 2041,9 1,14 

150 U[15,25] 1,6 0,7 1111,28   3600   1114,23 985,12 0,27   1119,24 1765,2 0,72 

150 U[25,35] 1,4 1 1683,83   3600   1683,55 1289,13 -0,02   1684,24 2256,5 0,02 

150 U[25,35] 1,4 0,7 1766,41   3600   1762,5 1258,45 -0,22   1784,49 1946,4 1,02 

150 U[25,35] 1,6 1 1685,86   3600   1684,28 1365,75 -0,09   1720,34 2178,7 2,04 

150 U[25,35] 1,6 0,7 1770,04   3600   1770,95 1058,43 0,05   1798,02 1845,5 1,58 

200 U[5,25] 1,4 1 655,5   3600   660,76 2156,52 0,8   658,02 2985,4 0,38 

200 U[5,25] 1,4 0,7 748,35   3600   752,63 1985,63 0,57   762,46 2441,1 1,89 

200 U[5,25] 1,6 1 666,2   3600   670,19 2045,12 0,6   669,13 2874,3 0,44 

200 U[5,25] 1,6 0,7 769,65   3600   766,38 1756,42 -0,42   789,1 2045,5 2,53 

200 U[15,25] 1,4 1 1425,66   3600   1425,28 2378,41 -0,03   1425,37 2796,1 -0,02 

200 U[15,25] 1,4 0,7 1494,56   3600   1494,46 1974,23 -0,01   1499,15 2248,6 0,31 

200 U[15,25] 1,6 1 1432,5   3600   1431,54 2685,42 -0,07   1498,45 2213,9 4,6 

200 U[15,25] 1,6 0,7 1465,53   3600   1468,01 1545,78 0,17   1496,42 2016,2 2,11 

200 U[25,35] 1,4 1 2251,16   3600   2250,43 1985,45 -0,03   2289,15 2845,3 1,69 

200 U[25,35] 1,4 0,7 2338,99   3600   2339,41 1845,12 0,02   2339,95 2156,2 0,04 

200 U[25,35] 1,6 1 2234,67   3600   2232,55 2156,45 -0,1   2256,78 2845,3 0,99 

200 U[25,35] 1,6 0,7 2330,87   3600   2333,75 1585,12 0,12   2328,86 2045,9 -0,09 

 

 

 

 

 
An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr) 

 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of the 

copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, 

so long as the original authors and source are credited. To see the complete license contents, please visit 

http://creativecommons.org/licenses/by/4.0/.  

 

 

 

http://creativecommons.org/licenses/by/4.0/
http://ijocta.balikesir.edu.tr/
http://creativecommons.org/licenses/by/4.0/


An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.10, No.1, pp.47-54 (2020)

http://doi.org/10.11121/ijocta.01.2020.00684

RESEARCH ARTICLE

A new iterative linearization approach for solving nonlinear

equations systems

Gizem Temelcan*a, Mustafa Sivrib, Inci Albayrakb

aDepartment of Computer Programming, Istanbul Aydin University, Turkey
bDepartment of Mathematical Engineering, Yildiz Technical University, Turkey
temelcan.gizem@gmail.com, msivri@yildiz.edu.tr; ibayrak@yildiz.edu.tr

ARTICLE INFO ABSTRACT

Article History:
Received 17 August 2018

Accepted 24 July 2019

Available 14 January 2020

Nonlinear equations arise frequently while modeling chemistry, physics, econ-
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1. Introduction

Numerical analysis and computers are intimately
related with each other regarding to solve mathe-
matical problems. With the development of com-
puters, numerical methods have been increased
for solving scientific and engineering problems.
The numerical methods are used to find approxi-
mate solution of such problems because it is not
possible to obtain exact solution by using alge-
braic processes. One of the most important issues
for solving NLES in science and engineering is to
find a solution that is frequently arising in op-
timization and computational mathematics. Be-
cause NLESs cannot be solved as easily as linear
systems, iterative methods are improved as a new
class of numerical solution methods.

Iterative method is a procedure repeated over and
over again to find either the root of an equation or
the solution of an NLES. In numerical methods,
the sequence of approximate solutions converges

to the root of the system. If the convergence rate
of an iterative method is rapid, then a solution
may be found in less iterations compared with
other methods. As the iterations begin to have
successive same values, this is an indication that
the obtained solution is the exact solution of the
NLES. However, when the obtained solution of
the system does not converge, it is indicated that
there is an error in the computations or there is
no solution. Therefore, an NLES has finite or infi-
nite number of solutions or no solution. There are
numerous conventional methods to solve NLESs
having algebraic and transcendental equations.
One of the most popular and traditional numer-
ical methods is Newton method which is widely
used for finding roots of the NLES. This method
is based on Taylor series expansion of a function,
and converges rapidly to the exact solution of the
NLES. It can be presented as an advantage that
Newton method requires less iterations to reach
the solution compared to other known methods.

*Corresponding Author
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Another advantage of the Newton method is the
framework is clear, and therefore it can be used to
solve a variety of problems. On the contrary, due
to the difficulty in computation of both Jacobian
matrix and its inverse at each iteration. Using
the Newton method would be time-consuming re-
garding to the size of the system. To avoid these
impracticabilities, some developments and modi-
fications are made to the Newton method, such
as Quasi-Newton method, Dimension Reducing
method, Modified Reducing Dimension method
and Perturbed Dimension Reducing method.

Grapsa and Vrahatis [1] reviewed a class of meth-
ods for solving NLESs and optimization problems
named Dimension Reducing methods. Frontini
and Sormani [2] extended to p-dimensional case
the modification of Newton method. This method
is used to solve NLES and compared with Newton
method and Halley-Chebyshev method. Babo-
lian et al. [3] extended the Adomian decomposi-
tion method for solving the NLES. Nie [4] trans-
formed the NLES into a constrained nonlinear
optimization problem and used null space algo-
rithm to solve the problem. Also, Nie [5] proposed
a new approach by converting an NLES into a
constrained nonlinear programming problem, and
solved this problem by using a line search se-
quential quadratic programming approach. Jafari
and Daftardar-Gejji [6] suggested a modification
of Adomian decomposition method and demon-
strated that series solution obtained converges
faster than that of standard Adomian decomposi-
tion method. Darvishi and Barati [7] presented an
iterative third-order Newton-type method based
on Adomian decomposition method for solving
NLESs. Golbabai and Javidi [8] considered ho-
motopy perturbation method to construct an it-
erative method for solving the NLES, compared
the results with that of the revised Adomian de-
composition method in [6] obtained, and showed
the accuracy and fast convergence of the proposed
method. Biazar and Ghanbary [9] constructed
a new iterative approach based on the concept
of Jacobi method and presented the effectiveness
of the proposed method as the number of equa-
tions and variables increases. Grosan and Abra-
ham [10] proposed a novel approach transforming
NLES to a multiobjective optimization problem
and revealed that it deals with the large scale
system of equations. Hosseini and Kafash [11]
presented an algorithm based on Adomian de-
composition convergence basis method for solv-
ing functional equations. Gu and Zhu [12] pre-
sented an effective filter algorithm for solving both

the nonlinear systems of equalities and inequali-
ties. They transformed the system into a non-
linear programming problem, and used the non-
monotone technique and the global line search
strategy in the algorithm. Vahidi et al. [13] im-
plemented the restarted Adomian decomposition
method for solving the NLESs and showed that
the proposed method converges to the exact so-
lutions more rapidly than the Adomian decom-
position method. Sharma and Gupta [14] pre-
sented two iterative methods for solving NLES.
One of the methods is a third-order method hav-
ing two-steps which are the Newton iteration and
the weighted-Newton iteration, respectively. The
other method is a fifth and sixth-order method
having three-steps of which the first two steps are
same as that of third-order method and third step
is the weighted-Newton iteration again. Wang
and Pu [15] proposed a nonmonotone filter trust
region method to solve the NLES. The system
is converted to a nonlinear programming prob-
lem in which some equations are treated as con-
straints whereas the others are taken as objec-
tive function. Zhang [16] reviewed some meth-
ods, especially iterative methods, of solving sys-
tem of nonlinear equations in the technical re-
port. Dhamacharoen [17] proposed a new hy-
brid method having less computations than oth-
ers. This hybrid method is composed of two meth-
ods that are the Newton method and the Broyden
method. The proposed method is compared with
the Newton method and the Darvishi−Barati
method [7], and it is seen that the number of
computations is fewer than the compared ones
even if it requires more iterations to reach the
solution. Izadian et al. [18] proposed a new ap-
proach combining Newton method and Homotopy
Analysis method to solve the algebraic and tran-
scendental equations system. The main purpose
of this combined approach is to accelerate the
rate of convergence and to obtain the local con-
vergence. Narang et al. [19] presented a fourth
order two parameter Chebyshev-Halley like two-
point family for solving the nonlinear equations
of large-scale systems. Saheya et al. [20] pre-
sented an improved Newton method based on it-
erative rational approximation model. Wang and
Fan [21] presented two high computational effi-
cient derivative-free iterative methods. The meth-
ods have low computational cost by reducing the
number of lower-upper decomposition of matrix
in each iteration. Xiao and Yin [22] presented
a technique using the extended Newton iteration
for increasing the order of convergence for iter-
ative methods. They applied the proposed tech-
nique to several known methods and obtained new
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methods having higher order of convergence. Bal-
aji et al. [23] solved the NLES by using the inte-
grated restarted Adomian decomposition method
and Adomian decomposition method. Madhu et
al. [24] proposed a new method which is an im-
provement of double-step Newton method. It is
two-step fifth-order method in which two func-
tions and two first order Frechet derivatives are
used. Sharma and Arora [25] proposed Newton-
like iterative methods of fifth and eighth-order of
convergence to solve NLESs.

There are numerious traditional approaches such
as Muller method and the Secant method for solv-
ing NLESs, however, these methods have many
shortcomings. The methods are very sensitive
to the choice of initial values and may show os-
cillatory behavior or even diverge in the case of
closeness between the initial value chosen and the
root of the system [26]. Moreover, most of these
methods require continuously differentiable non-
linear equations. To avoid the negative aspects of
the traditional methods, some approaches based
on metaheuristic optimization methods such as
Genetic Algorithm, Particle Swarm Optimization,
Simulated Annealing have been presented. These
methods are used with no assumptions about
the function being optimized such as smoothness,
convexity or differentiability. Dai et al. [27] mixed
Genetic Algorithm and quasi-Newton method for
solving NLES. Hirsch et al. [28] proposed a mod-
ified metaheuristic GRASP method in which all
roots are found through the multiple minimiza-
tions of an objective function to find all real solu-
tions of NLES. Pourjafari and Mojallali [26] pro-
posed a novel optimization-based method finding
all real and complex roots of a system.

In this paper, we introduce a new iterative ap-
proach to solve an NLES as an optimization prob-
lem. By means of the first order Taylor series
expansion and by choosing an arbitrary nonnega-
tive initial point, a system of linearized equations
is solved at each iteration. New variables are ob-
tained by adding balancing variables to the ini-
tial solution of the system of linearized equations,
and then Maclaurin series expansion is used to
linearize the NLES reconstructed by substituting
these new variables in the system. At each iter-
ation, a LP problem is constructed of which the
linearized equations are considered as constraints
whereas the objective function is the minimiza-
tion of the summation of balancing variables. The
iterative approach is processed until all ballancing
variables are zero, and the optimal solution of the
NLES is found.

The organization of the paper is as follows. In
Section 2, some brief information is given. In sec-
tion 3, the proposed approach is presented. In
Section 4, some numerical examples and results
are demonstrated and the paper ends with con-
clusion at Section 5.

2. Preliminaries

In this section, some definitions are given related
with the proposed approach. In this paper, it is
assumed that each equation in the NLES are con-
tinuously differentiable.

Definition 1. [29] An NLES is a set of equations
as follows:

f1 (x1, ..., xn) = 0
f2 (x1, ..., xn) = 0

...
fm (x1, ..., xn) = 0

where (x1, ..., xn) ∈ Rn is a vector, xj ∈ R,
(j = 1, ..., n) and each fi (x), (i = 1, ...,m) is a
nonlinear real function.

Definition 2. A solution of an NLES having
m equations in n variables is a point A =
(a1, ..., an) ∈ Rn such that

f1(a1, ..., an) = · · · = fm(a1, ..., an) = 0.

Definition 3. A function f is continuously dif-
ferentiable if and only if the first (and possibly
higher) order derivative of f is continuous.

Definition 4. [29] Taylor series expansion gen-
erated by f(x) at x = a is

f(x) = f(a) + f ′(a)(x− a)

+
1

2!
f ′′(a)(x− a)2

+ · · ·+
1

n!
f (n)(a)(x− a)n + . . . .

For linearization,

f(a) + f ′(a)(x− a) = 0

is considered. Accordingly, the first two terms of
Taylor series expansion generated by f(x1, ..., xn)
at A = (a1, ..., an), i.e.

f(A)+
∂

∂x1
f(A)(x1−a1)+· · ·+

∂

∂xn
f(A)(xn−an) = 0

linearizes the function f in n variables.

Definition 5. [29] A set of vectors converges if
the norm is zero, i.e.
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|xk − xk−1|| =

=
√

(xk1 − xk−1
1 )2 + · · ·+ (xkn − xk−1

n )2 = 0

where k is the number of iterations. The vector
x = (x1, ..., xn) is the root of the function if it sat-
isfies that |fi(x)| < ǫ, i = 1, ...,m where ǫ ≥ 0 is
a given tolerance.

3. The proposed approach

A linearization method based on Taylor series ex-
pansion is adopted. Each nonlinear multi vari-
able function of the NLES given in Definition 2.1
is considered as fi(x1, ..., xn), (i = 1, ...,m) and
A = (a1, ..., an) is a nonnegative chosen point.
By using the linear terms of Taylor series gener-
ated at the point A as presented in Definition 2.4,
each original nonlinear equation of the NLES is
reduced to a linear equation. Because the higher
order terms will be close to zero while xj is suffi-
ciently close to aj , we omit them to obtain the
approximation. Thus, by using the expansion,
each nonlinear function fi in n variables is lin-
earized and a linear equations system is obtained.
Using the linear equations system obtained, the
algorithm generated to solve NLES is presented
below.

Step 1. Load an NLES having m equations in n
variables such that

f1(x1, ..., xn) = 0
f2(x1, ..., xn) = 0

...
fm(x1, ..., xn) = 0.

(1)

Step 2. Choose any initial arbitrary nonnegative
point such that A = (a1, ..., an).

Step 3. Linearize each equation in (1) by gener-
ating Taylor series expansion at the chosen point
A, and construct a linear equations system having
m equations in n variables as follows

f1(A) +
n
∑

i=1

∂f1(A)
∂xi

(xi − ai) = 0

f2(A) +
n
∑

i=1

∂f2(A)
∂xi

(xi − ai) = 0

...

fm(A) +
n
∑

i=1

∂fm(A)
∂xi

(xi − ai) = 0.

(2)

Step 4. Solve the linearized equations system
(2), and obtain a solution (x̄1, ..., x̄n).

Step 5. Consider the solution (x̄1, ..., x̄n) and in-
troduce new variables x̄j , (j = 1, ..., n) by adding

balancing variables

x̄j = x̄j + uj − vj (3)

where uj and vj , (j = 1, ..., n) are nonnegative and
defined as 0 ≤ uj ≤ 1 and 0 ≤ vj ≤ 1.

Step 6. Substitute the new variables (3) in the
NLES (1).

Step 7. Linearize the NLES obtained in Step 6
by generating Maclaurin series expansion.

Step 8. Construct a LP problem such that

Min
∑n

j=1(uj + vj)

s.t.
f1L(uj , vj) = 0
f2L(uj , vj) = 0
...
fmL(uj , vj) = 0

(4)

where the subscript L defines the linearization,
and solve (4).

Step 9. If all uj and vj , (j = 1, ..., n) are zero,
x̄j , (j = 1, ..., n) is a solution for the NLES (1),

and STOP. Else, determine x̄j , assign x̄j to x̄j ,

go to Step 5, and continue.

The flowchart of proposed approach is given in
Figure 1.

4. Numerical experiments

Example 1 [7] Consider the following NLES:

x1 + 2x2 − 3 = 0
2x21 + x22 − 5 = 0.

(5)

Linearize each equation in (5) by generating
Taylor series expansion at arbitrary nonnegative
point A(3, 5). Thus, we have the following lin-
earized equations system as

x1 + 2x2 = 3
12x1 + 10x2 = 48.

(6)

The solution of linearized system (6) is (x1, x2) =
(4.7143,−0.8571). Then, introduce new variables
x1 = 4.7143 + u1 − v1, x2 = −0.8571 + u2 − v2,
respectively, and substitute these variables in the
NLES (5). After linearizing the NLES (5) by gen-
erating Maclaurin series expansion, the following
LP problem is constructed:
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Figure 1. The flowchart of finding solution of NLES.

Min
2
∑

j=1
(uj + vj)

s.t.
1(u1 − v1) + 2(u2 − v2)

+ f1L(0, 0, 0, 0) = 0

18.8572(u1 − v1)− 1.7142(u2 − v2)

+ f2L(0, 0, 0, 0) = 0.

(7)

Optimal solution of the LP problem (7) is found
as
(u1, v1, u2, v2) = (0, 2.0383, 1.0191, 0), and it is
used to determine new variables as x1 = 2.6760+
u1 − v1, x2 = 0.1620 + u2 − v2, respectively. This
approach is applied recurrently until all balancing
variables are found zero. The summarized results
are given in Table 1.

Table 1. Summarized Results of Ex-
ample 1 (k is the number of itera-
tions).

k xk1 xk2 ||xk − xk−1||
0 3.0000 5.0000 -
1 2.6760 0.1620 4.8488
2 1.7892 0.6054 0.9915
3 1.5192 0.7404 0.3019
4 1.4884 0.7558 0.0344
5 1.4880 0.7560 0.0004
6 1.4880 0.7560 0.0000

Example 2 [7] Consider the following NLES:

x21 + x22 + x23 − 1 = 0
2x21 + x22 − 4x3 = 0
3x21 − 4x22 + x23 = 0.

(8)

Linearize each equation in (8) by generating
Taylor series expansion at arbitrary nonnega-
tive point A(1, 1, 1). The solution of linearized
equations system is found as (x1, x2, x3) =
(0.8269, 0.7308, 0.4423). New variables are intro-
duced as x1 = 0.8269+u1−v1, x2 = 0.7308+u2−
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v2 and x3 = 0.4423 + u3 − v3, respectively. Con-
structed LP problems are solved until all balanc-
ing variables are found zero, and the desired so-
lution is obtained after four iterations. The sum-
marized results are given in Table 2.

Table 2. Summarized Results of Ex-
ample 2 (k is the number of itera-
tions).

k xk1 xk2 xk3 ||xk − xk−1||
0 1.0000 1.0000 1.0000 -
1 0.7114 0.6371 0.3457 0.8019
2 0.6984 0.6286 0.3426 0.0158
3 0.6983 0.6285 0.3426 0.0001
4 0.6983 0.6285 0.3426 0.0000

Example 3 [2] Consider the following NLES:

expx1 − x2 − 2 = 0
cosx1 + x2 − 1 = 0.

(9)

Figure 2. The graph of Example 3.

Linearize each equation in (9) by generating Tay-
lor series expansion at point A(0, π/2). The so-
lution of linearized equations system is found as
(x1, x2) = (1, 0). New variables are introduced as
x1 = 1 + u1 − v1 and x2 = 0 + u2 − v2, respec-
tively. The approach is processed and the solution
of (9) is found that is illustrated in Figure 2. The
summarized results are given in Table 3.

Table 3. Summarized Results of Ex-
ample 3 (k is the number of itera-
tions).

k xk1 xk2 ||xk − xk−1||
0 0.0000 π/2 -
1 0.8622 0.3438 1.4996
2 0.8503 0.3402 0.0124
3 0.8502 0.3402 0.0001
4 0.8502 0.3402 0.0000

5. Conclusion

In this paper, a linearization approach is proposed
to solve NLESs. Although our approach based on
linearization using Taylor series involves more it-
erations than many other methods used in the lit-
erature, the fundamental of the approach is based
on a very basic and important formation. There-
fore, this proposed approach can be used to have
less computational complexity and easier applica-
tion and to obtain more accurate results. Numer-
ical experiments are presented from the literature
to demonstrate the ability and accuracy of the
proposed approach for solving NLES.
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1. Introduction

The main purpose of this essay is to introduce
an efficient approach for solving following optimal
control problem (OCP):

Problem A: Find optimal control u∗ and corre-
sponding optimal state x∗ that minimize the qua-
dratic performance index

J =

∫ T

0

(

x2(t) + u2(t) + f(t)x(t) + g(t)u(t)
)

dt,

(1)

subject to the fractional Volterra integro-
differential (FVID) equation

Dαx(t) = a(t)x(t)+b(t)u(t)+

∫ t

0
(K(t, s))ϕ(x(s))ds,

(2)

where a(t), b(t), g(t), f(t) are known and real
valued functions which are belonged to L2[0, T ]
and ϕ(x(s)) is a nonlinear function in terms of
the unknown function x(s).

In various problems of physics, mechanics and
engineering, fractional differential equations have
been proved to be a valuable tool in the modeling
of many phenomena. There are many applica-
tions in viscoelasticity, electrochemistry, control
and electromagnetic, [1, 2]. In consequence, the
subject of fractional equations is gaining much
importance and attention. Meanwhile, the study
of OCP governed by fractional integro differential
equations is also important as such systems oc-
cur in various problems of applied nature. Some
approaches for numerical solutions of fractional
optimal control problems can be found in [3–6].
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We need to be mindful only special cases of OCPs
can be solved analytically, so choosing the best
numerical schemes in terms of rapidity of conver-
gence and accuracy is significant. The method im-
plemented for discritizing mentioned OCP is spec-
tral method, which is one of the most accurate
method which used by several author and in dif-
ferent kind of functional problems for example see
the [7,8] and the references in. The idea is to write
the solution of OCP as a sum of Bernoulli poly-
nomials, substituting these approximations in the
OCP yields a NLP in the coefficients which can
be solved using any metaheuristic algorithm pre-
sented in the literature for solving an optimization
problem.

Among these algorithms, nature-inspired meta-
heuristic algorithms are appropriate for global
searches according to ability in exploring glob-
ally and exploiting locally. Mirjalili et al. [9]
proposed grey wolf optimizer (GWO) algorithm
inspired by the behavior of grey wolves in na-
ture. Indeed, the GWO algorithm simulated the
leadership hierarchy and hunting behavior of grey
wolves. GWO has shown a good performance
when applied to solve nonlinear continuous op-
timization problems. The GWO algorithm is also
compared with particle swarm optimization, grav-
itational search algorithm, differential evolution,
evolutionary programming, and evolution strat-
egy to confirm its results.

So, GWO is theoretically able to solve our NLP.
Some points on the advantages of the GWO have
been expressed:

• The social hierarchy helped GWO to
visit the best solutions generated over the
course of iteration.

• The encircling procedure determined a
circle-shaped neighborhood around the
solutions which can be developed to
higher dimensions as a hyper-sphere.

• The random parameters helped candidate
solutions to have hyper-spheres with dif-
ferent random radii.

• The hunting approach accepted candidate
solutions to detect the probable location
of the prey.

• Exploration and exploitation are war-
ranted by the adaptive values of two pa-
rameters.

• The adaptive values of parameters helped
GWO to efficiently trade off between ex-
ploration and exploitation.

• The GWO had only two main parameters
to be controlled.

The paper is organized as follows: In section 2,
the basic concepts about the Bernoulli polyno-
mials and how to approximate the functions in
terms of these polynomials is interpreted. Also,
the operational matrices of fractional integration
are mentioned. As we have provided some defini-
tion of fractional calculus. In section 3, the out-
line of our spectral scheme for discretizing afore-
mentioned optimal control problem and obtaining
the resulted NLP is presented. Section 4 is de-
voted to explain the grey wolf optimizer algorithm
for solving the problem under consideration.

In section 5, numerical results are reported to ver-
ify the applicability of the presented method in
comparison with the other methods in the liter-
ature. Through these examples, the superiority
of these three bases functions are also discussed.
Finally, section 6 ends this paper with a brief con-
clusion and some remarks.

2. Preliminaries

In this section, we give some basic concepts we
require.

2.1. Fractional Calculus

This section, reviews some basic definitions and
notations of fractional integral and derivative
which are applied further in this work [10].

Definition 1. The Riemann-Liouville fractional
integral operator of order α, is defined by

Iαξ(t) =
1

Γ(α)

∫ t

0
(t−s)α−1ξ(s)ds, α > 0, t > 0.

(3)

in which Γ(.) denotes the Gamma function and
for α = 0, we set I0ξ(t) = ξ(t).

Definition 2. Let n = ⌈α⌉ (⌈.⌉ denotes ceiling
function, ⌈t⌉ = min{z ∈ Z : z ≥ t}), the operator
Dα, defined by

Dαξ(t) = DnIn−αξ(t),

is called the Riemann-Liouville fractional differ-
ential operator of order α. For α = 0, we set
D0 = I, the identity operator.

The one type of fractional derivative is Caputo
fractional derivative, which is frequently used in
applications.

Definition 3. The Caputo fractional derivative
of f , is defined as
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Dα
∗
ξ(t) =

{

In−αDnξ(t), n− 1 < α < n, n ∈ N,
dn

dtn
ξ(t), α = n.

(4)

Lemma 1. Let α, β ≥ 0, c1, c2 ∈ ℜ and
f(t), g(t) ∈ L1[0, T ]. Then

1) IαIβf(t) = IβIαf(t),
2) IαIβf(t) = Iβ+αf(t),
3) Dα(c1f(t) + c2g(t)) = c1D

α(f(t)) +
c2D

β(g(t))

Note that for n− 1 < α < n, n ∈ N

IαDα
∗
ξ(t) = ξ(t)−

n−1
∑

k=0

ξ(k)(0+)
tk

k!
. (5)

hold almost everywhere on [0, T ].

2.2. An overview on Bernoulli

polynomials

Bernoulli polynomials of order m can be defined
with the following formula [11],

βm(t) =
m
∑

i=0

(

m

i

)

αit
m−i, (6)

where αi, i = 0, 1, · · · ,m are Bernoulli numbers.
These numbers are a sequence of signed rational
numbers which arise in the series expansion of
trigonometric functions [12] and can be defined
by the identity

t

et − 1
=

m
∑

i=0

αi
ti

i!
. (7)

The first few Bernoulli numbers are

α0 = 1, α1 = −
−1

2
, α2 = −

1

6
, α4 =

−1

30
. (8)

with α2i+1 = 0, i = 1, 2, 3, · · · . Bernoulli polyno-
mials form a complete basis over the interval [0,
1] [13]. These polynomials satisfy the following
formula [12]

∫ 1
0 βn(t)βm(t)dt = (−1)n−1 m!n!

(m+n)!αn+m, (9)

m,n ≥ 1

The first few Bernoulli polynomials are

β0(t) = 1,

β1(t) = t−
1

2
,

β2(t) = t2 − t+
1

6
,

β3(t) = t3 −
3

2
t2 +

1

2
t.

Presume that H := L2[0, 1] and

Y = span{β0, β1, . . . , βm},

wherem ∈ N∪{0} and βi’s are the Bernoulli poly-
nomials. Since Y ⊂ H is a finite dimensional vec-
tor space, for every f ∈ H, there exists a unique
y0 ∈ Y such that

‖f − y0‖2 ≤ ‖f − y‖2 ∀y ∈ Y,

in which ‖f‖2 =
√

〈f, f〉. Here, the function y0 is
called the best approximation to f out of Y . As
y0 ∈ Y , we may conclude that

f(t) ≈ y0(t) =
m
∑

j=0

cjβj(t) = CTΨ(t),

where

ΨT (t) = (β0(t), β1(t), . . . , βm(t)), (10)

and

CT = (c0, c1, . . . , cm) such that C uniquely calcu-
lated by

C = Q−1

∫ 1

1
f(t)Ψ(t)dt, (11)

where Q ∈ R
(m+1)×(m+1) is said the dual matrix

of Ψ(t) and given by

Q =

∫ 1

0
Ψ(t)ΨT (t)dt.

For more details about best approximation see
[13].

2.3. Bernoulli operational matrix of the

fractional integration

In in recent years, the operational matrices have
attracted researchers attention and applied to
solving problems consisted of continuous oper-
ators (such as integral, derivative, delay, etc.).
Moreover, the numerical methods via these oper-
ational matrices are easily implemented and have
the following characteristics:

⋄ play a significant role as a preconditioner
in inverse problems,

⋄ have higher accuracy due to their sparsity.

The RiemannLiouville fractional integration of
the vector Ψ(t) given in Equation (10) can be ex-
pressed by [4]
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IγΨ(t) = F γΨ(t), (12)

in which F γ is the (m+1)×(m+1) RiemannLiou-
ville fractional operational matrix of integration.
Although F γ given in [4] we use the different way
and notations to show this matrix. For this pur-
pose, Assume that S

Iγβi(t) = Iγ(

i
∑

k=0

(

i

k

)

αk t
i−k)

=
i

∑

k=0

(

i

k

)

αk I
γti−k

=
i

∑

k=0

(

i

k

)

Γ(i− k + 1)αk

Γ(i− k + 1 + γ)
ti−k+γ

(13)

Now if ti−k+γ approximated in terms of Bernoulli
polynomials we can define each elements of S =
[sij ](m+1)×(m+1) as

sij =
i
∑

k=0

j
∑

l=0

Γ(i−k+1)

(

i

k

)(

j

l

)

αk αl

Γ(i−k+1+γ) (−l−k+α+1+i+j) , i, j = 0, 1, . . . ,m.

(14)

As a results F γ can be expressed as

F γ = SQ−1 (15)

3. Bernoulli polynomial collocation

method

For discretization of the integro-differential dy-
namic system (2), we express the fractional state
rate Dγx(t) and control variable u(t) in terms of
Bernoulli polynomial as

Dγx(t) ≃ XTΨ(t),

u(t) = UTΨ(t),
(16)

where XT and UT are unknown vectors and Ψ(t)
given in (10). Using Lemma 2.1. Equation (12),
x(t) can be represented by

x(t) = IγDγx(t) + x(0) ≃ (XTF γ + ET )Ψ(t).
(17)

F γ is the fractional operational matrix of inte-
gration and ET = [x0, 0, . . . , 0](1×(m+1). Now we
replace (16) and (17) in dynamic system (2)

XTΨ(t)− a(t)(XTF γ + ET )Ψ(t)− b(t)UTΨ(t)

−

∫ t

0
k(t, s)ϕ((XTF γ + ET )Ψ(s)) ds = 0,

(18)

In order to specify the unknown coefficients in
(18), we collocate this equation at m+ 1 colloca-
tion points. So (18) can be rewrite as

XTΨ(ti)− a(ti)(X
TF γ + ET )Ψ(ti)− b(ti)U

TΨ(ti)

−

∫ ti

0
k(ti, s)ϕ((X

TF γ + ET )Ψ(s)) ds = 0.

(19)

In above equation, ti, i = 0, . . . ,m are the
Chebyshev-Gauss-Lobatto nodes in [0, 1] which
we chose them as suitable collocation points. In
order to utilize the Gauss-Legendre (GL) quad-
rature formula, by means of transformation s =
ti
2 (τ + 1), (19) convert to

XTΨ(ti)− a(ti)(X
TF γ + ET )Ψ(ti)

− b(ti)U
TΨ(ti)−

ti

2

N
∑

j=0

ωjk(ti,
ti

2
(τj + 1))

×ϕ((XTF γ + ET )Ψ(
ti

2
(τj + 1))) = 0,

(20)

where τjs are GL nodes, zeros of Legendre polyno-
mials in the interval [−1, 1] and ωjs are the cor-
responding weights. Although explicit formulas
for quadrature nodes are not known, the weights
can be expressed in closed form by the following
relation consequently, the controlled FVID (2) is
reduced to m+ 1 nonlinear algebraic.

For discritization of the performance index stated
in (1) , we approximate f(t) and g(t) by Bernoulli
polynomials respectively as

f(t) = F TΨ(t), g(t) = GTΨ(t). (21)

Substituting (21) in (1) conclude that

J =

∫ 1

0
(XTΨ(t)ΨT (t)X + UTΨ(t)ΨT (t)U

+ F TΨ(t)ΨT (t)X +GTΨ(t)ΨT (t)U) dt
(22)
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Integrating (21) on [0, 1] results

J = XTQX + UTQU + F TQX +GTQU, (23)

in which Q given in (11). So, The OCP given in
(1) and (23) is converted to a NLP with objective
functional (22) and constraints (20).

The resulted NLP problem is also large scale. So,
it is of great importance to use an efficacious and
compatible metaheuristic algorithm which gener-
ates the solutions with high computational deci-
sions. This research utilizes a new metaheuristic
algorithm, called grey wolf optimizer (GWO) to
solve the problem under consideration. The next
section describe the GWO and its elements and
mechanisms to solve NLP governed by OCP.

4. Grey wolf optimizer

The proposed mathematical programming prob-
lem is the nonlinear and large scale. So, we need
to solve the problem by studying both local and
metaheuristic approaches. Among the local al-
gorithms, the trust region method plays a vital
role in solving large-scale nonlinear optimization
problems because of its efciency [14, 15]. How-
ever, it finds local solutions in a long amount of
time as the T >> 1 or the problem dimension
increases. To prevent this type of imperfection, a
grey wolf optimizer (GWO) algorithm is proposed
in this research. The GWO algorithm is a nature-
inspired metaheuristic algorithm which mimitates
the leadership hierarchy and hunting structure
of grey wolves.Therefore, high-performing meta-
heuristic approach with high computational high-
precision numerical solutions and short execution
time is implemented to solve the problem. The
GWO obtains near-optimal solutions or the global
minimum of objective functional in more efcient
way. About the proposed algorithm, it is nec-
essary to note that the GWO is really suitable
and appropriate for the nonlinear optimization
problems with the number of more variables and
constraints, specially when solving large-sized in-
stances of the problems [16–19]. For the prob-
lem, the values of objective functionals show that
GWO’s performance is better than local method
in terms of the approximate solution of functions
x(t) and u(t). So, on the base of above-mentioned
points, one can come to the conclusion that the
GWO is a favorable candidate for solving the
problem if T >> 1.

The GWO algorithm has derivation-free proce-
dures. In contrast to gradient-based optimization

algorithms, this metaheuristic algorithm mini-
mizes the problems stochastically. The optimiza-
tion mechanism begins with random solution, and
there is no need to compute the derivative of
search regions or gradient information of the ob-
jective functionals to obtain the global minimum
of the problem. This makes the GWO algorithm
highly applicable for the NLP problems with un-
known derivative information. On the other hand,
the simplicity of the GWO is particularly advan-
tageous in the presence of non-smooth objective
functionals, for which exact algorithms may fail to
reach their global solutions. Viability of the GWO
is analyzed using some non-smooth mathemat-
ical functions and engineering design problems
[20–22].So, the GWO algorithm is a favorable
choice and a competitive algorithm when consid-
ering non-smooth, and non-linear functions.

In this section, the essential nature of the GWO
algorithm is explained. GWO algorithm is an new
nature-inspired metaheuristic algorithm which
was first introduced by Mirjalili et al. [9].

GWO is a technique inspired from the nature and
grey wolves. The GWO algorithm simulated the
leadership hierarchy and hunting behavior of grey
wolves.

In leadership hierarchy, alpha, beta, delta, and
omega were applied as four grey wolves. Also,
hunting, searching for prey, encircling prey, and
attacking prey were as the three main components
of GWO. These new steps are discussed in the fol-
lowing section.

4.1. Social hierarchy

To formulate the social hierarchy of wolves, the
fittest solution is considered as the alpha (α). Ac-
cordingly, the second and third best solutions are
called beta (β) and delta (δ), respectively. The re-
maining candidate solutions are then represented
as omega (ω). Also, the hunting mechanism is
constructed by α, β, and δ. The ω wolves fol-
lowed these three wolves.

4.2. Encircling prey

As seen in nature, grey wolves surround prey dur-
ing the hunt. This surrounding behavior is given
by:

~D = | ~C. ~Xp(t)− ~X(t)| (24)

~X(t+ 1) = ~X(t)− ~A. ~D (25)

where t shows the current iteration, ~A and ~C are

coefficient vectors, ~Xp is the position vector of the
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prey, and ~X shows the position vector of a grey

wolf. The vectors ~A and ~C are computed followed
by:

~A = 2~a.~r1 − ~a (26)

~C = 2.~r2 (27)

where r1 and r2 are random vectors in [0, 1]. Over
the course of iterations, components of ~a are lin-
early reduced from 2 to 0.

4.3. Hunting

Grey wolves have the capability to identify the
position of prey and envelop them. The hunt is
normally conducted by the alpha. The beta and
delta also partake in hunting sometimes. So, the
first three best solutions is saved and the other
search agents (including the omegas) is performed
to update their positions based on the position of
the best search agents. This process is stated with
the following equations:

~Dα = | ~C1. ~Xα − ~X|, ~Dβ = | ~C2. ~Xβ − ~X|,

~Dδ = | ~C3. ~Xδ − ~X|, (28)

~X1 = ~Xα − ~A1.( ~Dα), ~X2 = ~Xβ − ~A2.( ~Dβ),

~X3 = ~Xδ − ~A3.( ~Dδ), (29)

~Xt+1 =
~X1 + ~X2 + ~X3

3
(30)

4.4. Attacking prey

At the end of the hunt, grey wolves rush at the
prey when it stops moving. To model nearing
the prey, the value of ~a is reduced from 2 to 0.

Then, the variation range of ~A is also reduced by

~a. Especially, ~A is a random value in the interval
[−2a, 2a].

4.5. Search for prey

Grey wolves chiefly explore based on the position
of the alpha, beta, and delta. They get away from
each other to search for prey and converge to rush

prey. To formulate divergence, ~A with random
values greater than 1 or less than −1 is applied
to enforce the search agent for diverging from the
prey. So, the GWO algorithm employing global
search strategy and this confirms exploration.

As it is seen in Eq. (27), the ~C vector is also
another factor of exploration. This factor obtains
random weights for prey to stochastically accentu-
ate (C > 1) or unaccentuate (C < 1) the efficacy

of prey in determining the distance in Eq. (24).
The C vector can be also considered as the efficacy
of barriers to nearing prey in nature. Usually, the
barriers in nature exist in the hunting paths of
wolves and impede them from swiftly and com-
fortably nearing prey.

Briefly, the search procedure starts with generat-
ing a random population of grey wolves. Over the
course of iterations, alpha, beta, and delta wolves
suggest the possible location of the prey. The
distance from the prey is updated by each candi-
date solution The parameter a is reduced from 2
to 0 to accentuate exploration and exploitation,
respectively.

Candidate solutions favor divergence of the prey

when | ~A| > 1 and move towards (converge) the

prey when | ~A| < 1. Finally, the GWO algorithm
stops when an end criterion is satisfied.

The pseudo code of the GWO algorithm is pre-
sented in Algorithm 1.

Algorithm 1. GWO algorithm

1: Initialize the grey wolf population Xi =
(xi(t), ui(t))(i = 1, · · · , n)

2: Initialize a, A, and C

3: Calculate the fitness of each search agent
4: Xα=the best search agent
5: Xβ=the second best search agent
6: Xδ=the third best search agent
7: while (k < Max number of iterations) do

8: for each search agent do
9: Update the position of the current

search agent by equation (30)
10: end for

11: Update a, A, and C

12: Calculate the fitness of all search agents
13: Update Xα, Xβ, and Xδ

14: k = k + 1
15: end while

16: return Xα

5. Numerical experiments

In these examples, firstly the OCP is converted to
a NLP with proposed method in section 3. The
resulted NLP is solved by using fmincon func-
tion in MATLAB and GWO algorithm to find lo-
cal and global minimum of constrained nonlinear
function, respectively.

For ease of references in tables, we use the pro-
posed method and local method to demonstrate
the results obtained from solving NLP with fmin-
con function and GWO algorithm, respectively.

In order to demonstrate and justify the perfor-
mance and the accuracy of our scheme on OCPs
governed by fractional integro-differential equa-
tion, we consider the following examples.
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Example 1. Consider the following OCP

J =

∫ 1

0

(

(x(t)− et)2 + (u(t)− e3t)2
)

dt (31)

subject to the nonlinear fractional integro-
differential equation

Dαx(t)−
3

2
x(t) +

1

2
u(t)−

∫ t

0

(

et−sx3(s)
)

ds = 0,

x(0) = 1.
(32)

The problem is to find the optimal control u∗(t),
which minimizes the quadratic performance index
(31). For this problem, the exact solution in the
case of α = 1 is given by [23]

x(t) = et, u(t) = e3t.

In Table 1, one can compare the optimal value
of objective functional by utilizing GOW algo-
rithm as well as local method in M = 7
and different values of α. The numerical re-
sults for x(t) and u(t) in M = 7 and α =
0.5, 0.7, 0.9 and 1 are plotted in Figures 1-2.
In these figures, we see that our approximate
solutions converge to exact solution. The re-
sults obtained with GOW method demonstrate
validity and effectiveness of proposed method.

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
(t

)

1

1.5

2

2.5

3

3.5

4

Exact

0.9

0.7

0.5

0.952 0.954 0.956

2.59

2.6

2.61

Figure 1. State x(t) as a function of
t for the Example 1 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9.
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Figure 2. Control u(t) as a function
of t for the Example 1 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9.

Example 2. Consider the following nonlinear
problem [23]

min J =

∫ 1

0

(

(x(t)− et
2

)2

+ (u(t)− (1 + 2t))2dt,

Dαx(t) + x(t)− u(t)

−

∫ t

0

(

t(1 + 2t)es(t−s)x(s)
)

ds = 0

The optimal control u∗ and corresponding optimal

state x∗ for α = 1 are respectively 1 + 2t and et
2

.

Figures 3-4 show the approximate solution of
functions x(t) and u(t) using GWO algorithm and
local method for M = 7 and α = 0.5, 0.7, 0.9.
The exact solution for α = 1 is also represented.
The value of objective function with GWO and lo-
cal methods for M = 7 and different values of α
are given in Table 2. It is obvious that we can
achieve a better approximation with GWO algo-
rithm against local method.
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Table 1. The value of J∗ for Example 1 (m = 7 and different α).

Local Method Proposed Method

α = 0.7 α = 0.9 α = 1 α = 0.7 α = 0.9 α = 1

J∗ 0.389877 0.0946404 4.17536× 10−11 2.45× 10−5 8.64× 10−8 7.74× 10−12

Table 2. The value of J∗ for Example 2 (m = 7 and different α).

Local Method Proposed Method

α = 0.7 α = 0.9 α = 1 α = 0.7 α = 0.9 α = 1

J∗ 0.0515124 0.00494284 1.29× 10−11 2.50× 10−6 1.22× 10−8 4.70× 10−12
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Figure 3. State x(t) as a function of
t for the Example 2 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).
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Figure 4. Control u(t) as a function
of t for the Example 2 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).

Example 3. Consider the minimization of frac-
tional [23]

J =

∫ 1

0

(

(x(t)− t)2 + (u(t)− tet
2

)2
)

dt,

subject to dynamic state

Dαx(t)− x(t)− u(t) + 2

∫ t

0

(

tse−x2(s)
)

ds = 0.

The optimal control u∗(t) and corresponding op-
timal state x(t) for α = 1 are as follows:

x∗(t) = t,

u∗(t) = 1− te−t2

We solve this OCP using GWO and local methods
for for M = 7 and various α. Figures 5-6 show
that as α → 1, the approximate solutions with
GWO algorithm tend to the exact solution in the
case of α = 1. The value of objective function with
GWO and local methods for M = 7 and differ-
ent values of α, is shown in Table 3. From Table
3, we can see that the value of objective function
based on GWO is all less than the least value of
objective function obtained by local method.
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Table 3. The value of J∗ for Example 3 (m = 7 and different α).

Local Method Proposed Method

α = 0.7 α = 0.9 α = 1 α = 0.7 α = 0.9 α = 1

J∗ 0.0366084 0.00374084 8.84× 10−14 4.71× 10−7 9.37× 10−8 2.12× 10−14
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Figure 5. State x(t) as a function of
t for the Example 3 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).
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Figure 6. Control u(t) as a function
of t for the Example 3 for m = 7 and
different values of α (green: α = 0.5,
blue: α = 0.7, red: α = 0.9).

6. Conclusions

By utilizing spectral method, OCP governed by
fractional Volttera-integro differential equation is
converted to a NLP.

In this research, a powerful and efficacious meta-
heuristic algorithm called Grey Wolf Optimizer
(GWO) is utilized to obtain the solutions of the
optimal control and state as well as the optimal
value of the objective function.

The GWO algorithm imitated the leadership hier-
archy with four types of grey wolves and hunting
procedure with searching for prey, encircling prey,
and attacking prey. These strategies confirmed
the preferable exploitation, exploration capabil-
ity and efficient escape from local optimum of the
GWO.

Numerical experiments verify the validity and the
applicability of the proposed method. Compar-
isons with the exact solution and other methods
show that this technique is a powerful and effi-
cient tool for solving the fractional OCP.
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We present a new type of activation functions for a complex-valued neural net-
work (CVNN). A proposed activation function is constructed such that it fixes
a given ellipse. We obtain an application to a complex-valued Hopfield neural
network (CVHNN) using a special form of the introduced complex functions
as an activation function. Considering the interesting geometric properties
of the plane curve ellipse such as focusing property, we emphasize that these
properties may have possible applications in various neural networks.
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1. Introduction

Recently, complex-valued neural networks
(CVNN) have been used in various fields such as
optoelectronics, imaging, signal processing, quan-
tum neural devices and artificial neural informa-
tion processing by many researchers (see [1–8]
for more details). For example, Gandal et al.
tried to evaluate and compare the relative per-
formance of CVNN using different error func-
tions [3]. Hirose studied what merits of CVNNs
arise from [4]. Jalab and Ibrahim introduced a
new type of complex-valued sigmoid function for
a fully multi-layered CVNN [5]. Zimmerman et
al. gave the differences between complex-valued
and real-valued neural networks and studied the
problems of CVNNs gradients computations by
combining the global and local optimization al-
gorithm [8]. Oladipo and Gbolagade investigated
modified logistic sigmoid as relates to analytic
univalent functions by means of subordination
properties in terms of starlikeness, convexity and
close-to-convexity [6]. In [7], it was proposed a

wind prediction system for the wind power gener-
ation using ensemble of multiple complex extreme
learning machines and used the elegant theory of
conformal mapping to find better transformations
in the complex domain for enhancing its predic-
tion capability.

In a CVNN, one of the main problems is select-
ing of nodes activation function (see [9]). In this
paper, we propose a new type of complex-valued
functions as an activation function for a complex-
valued Hopfield neural network (CVHNN). These
functions fix a given ellipse on the complex plane.
To construct an appropriate activation function,
a suitable ellipse can be chosen according to the
particular problem. The main advantage of this
choice is the increase in the number of fixed points
of a neural network with a geometrical meaning.

On the other hand, an ellipse has some interesting
properties such as the focusing property (see [10]).
We recall the focusing property of an ellipse. Let
E be the ellipse of the normal form with semi-
major axis a and semi-minor axis b:

E :
x2

a2
+

y2

b2
= 1. (1)
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The foci of the ellipse E of the form (1) are as
follows:

c1,2 = ∓
√

a2 − b2.

The radius of the ellipse E is r = 2a and so we
rewrite the equation of the ellipse of the form (1)
as

E : |z − c1|+ |z − c2| = r.

It is a well-known fact from geometry that a light
ray which leaves a focus c1 of an ellipse will be re-
flected to other focus c2 (see [10] and [11] for more
details). Using this interesting property and the
following proposition, Frantz proposed an appli-
cation to the open problem about trapped reflec-
tions described in [12]. It was seen that the light
ray gradually approaches a horizontal trajectory
and never leaves the container (see [10] for more
details).

Proposition 1. [10] Let a light ray leave a focus
of an ellipse with departure angle θ0 ∈ (0, π) and
let the successive departure angles of the ray be
θ1, θ2, . . .. Then θn ↑ π.

Therefore, it is possible to get some applications
of these kind properties of an ellipse in neural
networks. It is known that the plane curve el-
lipse has appeared in many applications in real life
problems (for example, see [13–21]). We expect
that our study will help to generate some new re-
searches and applications on complex-valued neu-
ral networks.

2. Complex Functions That Fix an

Ellipse

In this section, we investigate a new type of
complex-valued function which fixes an ellipse.
We begin with the following definition.

Definition 1. Let E be any ellipse on the complex
plane. If a complex function T satisfies the con-
dition T (z) = z for each complex number z ∈ E,

then the ellipse E is called the fixed ellipse of T .

Now we consider an ellipse E of the form (1). If
we take x = z+z

2
and y = z−z

2i
, then we can rewrite

the equation of this ellipse as

α
(

z2 + z2
)

+ βzz − 1 = 0, (2)

where α = 1
4a2

− 1
4b2

and β = 1
2a2

+ 1
2b2

.

Conversely, let us consider the following general
equation

α
(

z2 + z2
)

+ βzz + γ = 0. (3)

The equation (3) defines an ellipse if the following
conditions hold:

(1) α, β, γ ∈ R and β > 0,

(2) γ < 0, 2α+ β > 0 and 2α− β < 0.

Indeed, if we write z = x+ iy then we have

α
(

z2 + z2
)

+ βzz + γ = 0

⇒ α
[

(x+ iy)2 + (x− iy)2
]

+ β
(

x2 + y2
)

+ γ = 0

⇒ 2αx2 + βx2 − 2αy2 + βy2 + γ = 0
⇒ (2α+ β)x2 + (β − 2α)y2 + γ = 0

⇒ 2α+β
−γ

x2 + β−2α
−γ

y2 = 1

⇒ x2

−γ
2α+β

+ y2
γ

2α−β

= 1.

If we choose a and b such as

a =

√

−γ

2α+ β
and b =

√

γ

2α− β
, (4)

then the equation (3) defines the ellipse x2

a2
+ y2

b2
=

1.

Now we present a complex function which fixes an
ellipse of the form (3). For any complex number
z on the ellipse E, we get

α
(

z2 + z2
)

+ βzz + γ = 0

⇒ −αz2 − βzz = αz2 + γ

⇒ z (−αz − βz) = αz2 + γ

⇒
−γ − αz2

αz + βz
= z.

Hence we obtain the following theorem.

Theorem 1. Let E be any ellipse with the equa-
tion (3). If we define the transformation T1 as

T1(z) =
−γ − αz2

αz + βz
, (5)

then T1 fixes the ellipse E.

If we consider the following transformation T2 de-
fined as

T2(z) =
−γ − αz2 − αz2

βz
,

then it can be easily seen that T2 also fixes the el-
lipse E. Clearly, the transformations T1 ◦ T2 and
T2 ◦T1 fix also the ellipse E. The transformations
T1 and T2 are not always commutative, that is,
it can be T1 ◦ T2 6= T2 ◦ T1. For example, if we
consider γ = −1, α = 1, β = 3 and z = 1 then we
get

T1 ◦ T2(1) = −
2

3
and

T2 ◦ T1(1) = ∞.

Consequently, we can give the following corollary.

Corollary 1. For each ellipse E, there are at
least three transformations T such that

E = {z ∈ C : T (z) = z} .

Then E is exactly the set of fixed points of each
T .
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Figure 1. The ellipses Eβ for β ∈ {3, 4, 5, 6, 7}.

Taking α = 0, γ = −1, that is, a = b in the
equation (4), then we get the transformation

T3(z) =
1

βz

and E becomes the circle with the center z0 = 0
and the radius r = 1√

β
. Hence, the transforma-

tion T3 fixes the circle E and it is known that
the transformation T3 is an anti-conformal map
on the complex plane.

Now we consider the following two families of el-
lipses:

1) Let α = c be fixed in the equation (5). Then
we get β ∈ (2c,∞) when c ≥ 0 and β ∈ (−2c,∞)
when c < 0. For example, if we choose α = 1 in
the equation (5), we get β ∈ (2,∞). In this case,
the transformation T1 fixes the following ellipses
Eβ defined according to β:

Eβ :
x2

a2β
+

y2

b2β
= 1,

where aβ =
√

1
β+2

and bβ =
√

1
β−2

for each

β ∈ (2,∞). In the following figure, which has
been drawn by Mathematica [22], it is seen how
the ellipses Eβ change (see Figure 1). The ellipses
Eβ are indicated with different colors: E3 is the
red ellipse, E4 is the blue ellipse, E5 is the orange
ellipse, E6 is the green ellipse and E7 is the pink
ellipse.

2) Let β = c be fixed in the equation (5). Then
we get α ∈

(

− c
2
, c
2

)

. For example, if we consider

β = 1 in the equation (5), we get α ∈
(

−1
2
, 1
2

)

. In
this case, the transformation T1 fixes the following
ellipses Eα defined according to α:

Eα :
x2

c2α
+

y2

d2α
= 1,

where cα =
√

1
1+2α

and dα =
√

1
1−2α

for each

α ∈
(

−1
2
, 1
2

)

. It is seen from Figure 2 that how
the ellipses Eα change. The ellipses Eα are indi-
cated with different colors: E 1

4

is the red ellipse,

E 1

8

is the blue ellipse, E 1

10

is the orange ellipse,

E 1

12

is the green ellipse and E 1

14

is the pink ellipse.

3. An Application to Complex-Valued

Hopfield Neural Networks

Möbius transformations and some related (anti-
conformal) maps have been used as activation
functions in complex-valued neural networks us-
ing some different point of views such as fixed
points or fixed circles. It is known that Möbius
transformations are the conformal mappings of
the complex plane C. A Möbius transformation
is a rational function of the form

T (z) =
az + b

cz + d
, (6)

where a, b, c, d are complex numbers satisfying
ad − bc 6= 0. A point z on the complex plane
is said to be a fixed point of the Möbius transfor-
mation T (z) if T (z) = z. A Möbius transforma-
tion T (z) has at most two fixed points if it is not
identity transformation (see [23], [24] and [25] for
the basic properties of Möbius transformations).
In [26], it was identified the activation function
of a neuron and a single-pole all-pass digital fil-
ter section as Möbius transformations and then,
the existence of fixed points of a neural network
were guaranteed by the underlying Möbius trans-
formation. In [27], Özdemir et al. proposed new
types of activation functions which fix a circle for
a CVNN. The usage of these types of activation
functions leads us to guarantee the existence of
the fixed points of a CVHNN.



New complex-valued activation functions 69

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 2. The ellipses Eα for α ∈
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.

In this section, we consider the special form of the
transformation (5) defined as follows:

Sα(z) =
1− αz2

αz + (2α+ 1)z
, (7)

where α ≥ 0 (notice that γ = −1 and β is cho-
sen as 2α + 1). We propose this function as an
activation function for a CVHNN.

If we take α = 0 in the equation (7), then we
get the following activation function used in a
CVHNN in [27]:

S0(z) =
1

z
.

Therefore, the transformation Sα defined in (7)
which fixes an ellipse of the form (3) with γ = −1,
α ≥ 0, β = 2α+ 1 > 0 becomes a transformation
S0 which fixes the unit circle. The transformation
S0(z) =

1
z
was used to guarantee the existence of

the fixed points of a complex-valued Hopfield neu-
ral network (CVHNN). The transformation Sα(z)
is not injective while S0(z) is injective. Also this
transformation Sα(z) maps an ellipse of the form
(3) onto itself, outside of the ellipse to its inside
and inside of the ellipse to its outside. For exam-
ple, in the following Figure 3, we see the image of
the outside of the ellipse E : 5x2 + y2 = 1 under
the transformation defined as

S1(z) =
1− z2

z + 3z
.

At first, we give a brief summary about CVHNNs.
In [28], Hopfield presented a recurrent neural net-
work model referred to as the Hopfield neural
network (HNN). HNN has been generalized to
CVHNN and this generalized neural network has
been studied by many authors using different as-
pects. For example, Kobayashi defined the con-
cept of a hyperbolic neuron and constructed hy-
perbolic Hopfield neural network [18]. Also he

described the symmetric complex-valued Hopfield
neural networks using the complex-valued multi-
state neurons [29].

Following the studies given in [27], here we con-
sider the class of system in C in order to interest
CVHNN given by

.
z(t) = −H(z(t))(−Tz(t) + F (z(t))− U), (8)

where T ∈ C
n×n, U ∈ C

n are matrices,
z(t) ∈ C

n is state vector, H(z) : C
n →

C
n×n is a nonlinear function and F (z) =

(S1(z1), S2(z2), . . . , Sn(zn))
T : Cn → C

n is an ac-
tivation function with

Sk(zk) = Sα(zk) =
1− αzk

2

αzk + (2α+ 1)zk
, (9)

for some fixed α ≥ 0 and all k ∈ {1, 2, . . . , n}.
We note that the parameter α can be chosen ap-
propriately according to the studied problem. We
choose T ∈ R

n×n and U = 0 in the equation (8) to
obtain a relationship between the fixed points of
the activation function F (z) and the fixed points
of the network. Fixed points of the equation
.
z(t) = −H(z(t))(−Tz(t) + F (z(t))) can be ob-
tained by the equation −H(z)(−Tz + F (z)) = 0.
Suppose that H(z) is a nonsingular matrix then
the fixed points are F (z) = Tz, which correspond
to the fixed points of the activation function.

In our approach, we increase the number of fixed
points using the activation function defined in (9)
by a point of geometric view. We use the Lya-
punov stability to determine whether the fixed
points are stable or not (see [27], [30] and [31]
and for more details). The fixed points of the
CVHNN are isolated since they are on an ellipse.
Following the steps used in the proof of Theorem
2 on page 4701 in [27] and using the property
Sk(zk) = Sk(zk), it can be easily obtained that

.

E(z) = −Re [(Tz − F (z))(Tz − F (z))∗H(z)∗] ,
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Figure 3. The geometric interpretation of the transformation S1(z) for the outside of the ellipse.

which is negative for positive definite matrix
Re [H(z)] and also equal to zero if and only if
.
z(t) = 0. So the following theorem gives the sta-
bility of the fixed points.

Theorem 2. Let the inner product be defined on
C
n as 〈z1, z2〉 = z∗2z1 where z1, z2 ∈ C

n and (.)∗

denotes the conjugate transpose. Assume that the
matrix T ∈ R

n×n is symmetric and the matrix
Re [H(z)] is positive definite. Then the function

E(z) = −
1

2
z∗Tz +Re





n
∑

k=1

zk
∫

0

Sk(s)ds





is a Lyapunov function of the CVHNN given by
the equation

.
z(t) = −H(z(t))(−Tz(t) + F (z(t))).

4. Remarks and Conclusion

We note that a general activation function for a
CVHNN can be obtained using the transforma-
tion T1 given in (5). The fixed points of this ac-
tivation function are on an ellipse with the form

(3). This allows us to choose the appropriate acti-
vation function according to the considered prob-
lem on a neural network. This activation function
can be helpful to construct several neural nets and
lead to interesting applications. Proposed activa-
tion functions can be considered as the general-
izations of ones used in [27].

Finally, we emphasize that the properties of the
ellipse, which is fixed by the chosen activation
function, are applicable to the neural networks.
Therefore, our results have possible applications
in real life problems.
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[2] Ceylan, M., Yaşar, H. (2016). A novel ap-
proach for automatic blood vessel extraction
in retinal images: complex ripplet-I transform
and complex valued artificial neural network.
Turk. J. Elec. Eng. and Comp. Sci., 24(4),
3212-3227.

[3] Gandal, A.S., Kalra, P.K., Chauhan, D.S.
(2007). Performance evaluation of complex
valued neural networks using various error
functions. International Journal of Electrical,
Computer, Energetic, Electronic and Com-
munication Engineering, 1(5), 732-737.

[4] Hirose, A. (2009). Complex-valued neural net-
works: The merits and their origins. Proceed-
ings of the Internatinal Joint Conference on
Neural Networks (IJCNN), Atlanta, June 14-
19, 1237-1244.

[5] Jalab, H.A., Ibrahim, R. W. (2011). New ac-
tivation functions for complex-valued neural
network. International Journal of the Physi-
cal Sciences, 6(7), 1766-1772.

[6] Oladipo, A.T., Gbolagade, M. (2014). Some
subordination results for logistic sigmoid acti-
vation function in the space of univalent func-
tions. Advances in Computer Science and En-
gineering, 12(2), 61-79.

[7] Singh, R.G., Singh, A.P. (2015). Multi-
ple complex extreme learning machine using
holomorphic mapping for prediction of wind
power generation system. International Jour-
nal of Computer Applications, 123(18), 24-33.

[8] Zimmermann, H.G., Minin, A., Kusherbaeva,
V. (2011). Comparison of the complex val-
ued and real valued neural networks trained
with gradient descent and random search al-
gorithms. ESANN 2011 proceedings, Euro-
pean Symposium on Artificial Neural Net-
works, Computational Intelligence and Ma-
chine Learning. Bruges (Belgium) 27-29 April
2011.

[9] Kim, T., Adalı, T. (2002) Fully complex
multi-layer perceptron network for nonlinear

signal processing. J. VLSI Sig. Process., 32,
29-43.

[10] Frantz, M. (1994). A focusing property of the
ellipse. Amer. Math. Monthly, 101(3), 250-
258.

[11] Wilker, J.B. (1995). Further thoughts on a
focusing property of the ellipse. Bull. Belg.
Math. Soc., 2, 153-159.

[12] Connett, J.E. (1992). Trapped reflections?.
Amer. Math. Monthly, 99, 178-179.

[13] Di Concilio, A., Guadagni, C., Peters, J.F.,
Ramanna, S. (2018). Descriptive proximi-
ties. Properties and interplay between clas-
sical proximities and overlap. Math. Com-
put. Sci., 12(1), 91-106. arXiv:1609.06246.
MR3767897.

[14] Ferrer, S., Hanßmann, H., Palacián, J., Yan-
guas, P. (2002). On perturbed oscillators in
1-1-1 resonance: the case of axially symmet-
ric cubic potentials. J. Geom. Phys., 40(3-4),
320-369.

[15] Grandon, J., Derpich, I. (2011). A Heuris-
tic for the Multi-knapsack Problem. WSEAS
Transactions on Mathematics, 10(3), 95-104.

[16] Kanan, H.R., Faez, K., Ezoji, M. (2006).
An efficient face recognition system using a
new optimized localization method, In Pat-
tern Recognition. ICPR 2006, 18th Interna-
tional Conference on Vol. 3, 564-567.

[17] Kellner, M.A., Hanning, T., Farr, H. (2002).
Real-time analysis of the grain on wooden
planks, Machine Vision Applications in In-
dustrial Inspection X. Vol. 4664. Interna-
tional Society for Optics and Photonics.

[18] Kobayashi, M., (2013). Hyperbolic Hopfield
neural networks. IEEE Trans. Neural Netw.
Learn Syst. 24(2), 335-341.

[19] Li, J., Zhang, J. (2004). Bifurcations of trav-
elling wave solutions for the generalization
form of the modified KdV equation. Chaos
Solitons Fractals 21(4), 889-913.

[20] Peters, J.F. (2018). Proximal Vortex Cycles
and Vortex Nerves. Non-Concentric, Nesting,
Possibly Overlapping Homology Cell Com-
plexes. Journal of Mathematical Sciences and
Modelling, 1 (2), 80-85. arXiv:1805.03998.

[21] Zhang, G., Jayas, D.S., White, N.D. (2005).
Separation of touching grain kernels in an im-
age by ellipse fitting algorithm. Biosystems
engineering, 92(2), 135-142.

[22] Wolfram Research. (2019). Inc., Mathemat-
ica, Version 12.0, Champaign, IL.

[23] Beardon, A.F. (1983). The geometry of dis-
crete groups. Graduate texts in mathematics,
vol 91. Springer, New York.
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(2011). Complex valued neural network with
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In this work, we have used reduced differential transform method (RDTM)
to compute an approximate solution of the Two-Dimensional Convection-
Diffusion equations (TDCDE). This method provides the solution quickly in
the form of a convergent series. Also, by using RDTM the approximate so-
lution of two-dimensional convection-diffusion equation is obtained. Further,
we have computed exact solution of non-homogeneous CDE by using the same
method. To the best of my knowledge, the research work carried out in the
present paper has not been done, and is new. Examples are provided to support
our work.
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1. Introduction

We consider two-dimensional convection-diffusion
equation as follows:

∂u(a,b,t)
∂t

+ βa
∂u(a,b,t)

∂a
+ βb

∂u(a,b,t)
∂b

= αa
∂2u(a,b,t)

∂a2
+ αb

∂2u(a,b,t)
∂b2

+ f(a, b, t),
in Ω× (0, T ] , u(a, b, t) = g(a, b, t),
(a, b) ∈ ∂Ω, t∈(0, T ], u(a, b, 0) = h(a, b),
(a, b) ∈ Ω,

(1)

where βa and βb are progressive velocity compo-
nents in the direction of a and b respectively, and
αa > 0 and αb > 0 are the coefficients of diffu-
sivity in the a and b directions, respectively. And
αa > 0 and αb > 0 are g(a, b, c) and h(a, b) are
smooth functions and Ω is a subset of R2 and
(0, T ] is the time interval, and ∂Ω is the bound-
ary of Ω.

This equation is frequently used in applied sci-
ences and engineering especially in modeling and

simulations of various complex phenomena in sci-
ence and engineering. This paper first describes
RDTM and then uses it to solve the Convection-
diffusion equation. In recent years, studies con-
ducted on findings new analytical solutions of dif-
ferential equations have attracted attention of sci-
entists from all over the world (see [1]- [9]).

And some numerical solutions have been devel-
oped to solve these types of convection-diffusion
problems. likes: Higher-Order ADI method [10]
or rational high-order compact ADI method [11],
the alternating direction implicit method [12],
the finite element method [13], fourth-order com-
pact finite difference method [14], decomposition
Method [15], the finite difference method [16], re-
strictive taylors approximation [17], The funda-
mental solution [18], finite difference method [19],
combined compact difference scheme and alter-
nating direction implicit method [20], higher or-
der compact schemes method [21], the finite vol-
ume method [22], the finite difference and le-
gendre spectral method [23] and even the Monte
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Carlo method [24]. Keskin in [25] proposed the
RDTM to solve various PDE and fractional non-
linear partial differential equations.

This method is a repetitive procedure for the solu-
tion of a Taylor series differential equations. This
technique reduces the size of the computational
work and can be easily applied to numerous phys-
ical problems. We organize the paper as follows.
In section RDTM is used to four types of TDCDP,
and section 4 concludes the paper.

2. Analysis of the RDTM

We have a function with three variables u(a, b, t),
and presume that it can be shown as an in-
vention of multiple of two functions u(a, b, t) =
v(a, b)w(t). u(a, b, t) can be denoted as

u(a, b, t) =

(

∞
∑

n1=0

∞
∑

n2=0

V (n1, n2)a
n1bn2) · (

∞
∑

n3=0

W (n3)t
n3)

=
∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

V (n1, n2)W (n3)a
n1bn2tn3

=
∞
∑

k=0

Uk(a, b)t
k, (2)

where Uk(a, b) is called t-dimensional spec-
trum function of u(a, b, t). The three-dimensional
RDTM are introduced are defined in [26] as fol-
lows:

Definition 1. Assume u(a, b, t) is an analytic
function in the domain of interest. The RDTM
of u(a, b, t) is defined as

Uk(a, b) =
1

k!
[
∂k

∂tk
u(a, b, t)]t=0. (3)

Definition 2. The differential inverse transform
of Uk (a, b) is defined as:

u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k. (4)

By inserting equation (3) in (4), we obtain

u(a, b, t) =
∞
∑

k=0

1

k!
[
∂k

∂tk
u(a, b, t)]t=0t

k, (5)

Some basic properties of RDTM are presented in
Table1 below.

Table 1. The operations for the re-
duced differential transform method.

Original function Transformed function
g(a, b, t)± h(a, b, t) Gk(a, b)±Hk(a, b)

eγt γk

k!
∂c

∂tc
g(a, b, t) (k+c)!

K! Gk+c(a, b)

g(a, b, t)h(a, b, t)
∑k

l=0Gl(a, b)Hk−l(a, b)
∂w

∂aw
g(a, b, t) ∂w

∂aw
Gk(a, b)

awbvtc awbvδ(k − c) =

{

awbv, k = c

0, k 6= c
∂w+v+c

∂aw∂bv∂tc
g(a, b, t) ∂w+v

∂aw∂bv
(k+c)!

k! Gk+c(a, b)

3. Applications

We used the basic definitions (in Section 2) of the
three-dimensional RDTM for solving four exam-
ples of Convection-diffusion equations (CDE).

Example 1. Consider the TDCDP (see [15])

∂u

∂t
−

∂2u

∂a2
−

∂2u

∂b2
= 0, (a, b, t) ∈ Ω× J, (6)

with the initial condition

u(a, b, 0) = sin(πa) sin(πb). (7)

By using the RDTM in equations (6) and (7), we
obtain

(k+1)Uk+1(a, b)−
∂2

∂a2
Uk(a, b)−

∂2

∂b2
Uk(a, b) = 0,

(8)

from initial condition(7), we have

U0(a, b) = sin(πa) sin(πb). (9)

By using Eq. (9) in Eq. (8), we obtain Uk(a, b)
values for k = {0, 1, 2, 3, · · · } as follows:

U1(a, b) = −2π2sin(πa)sin(πb),
U2(a, b) = 2π4sin(πa)sin(πb),
U3(a, b) = −4

3π
6 sin(πa)sin(πb),

U4(a, b) = 2
3π

8sin(πa)sin(πb),
U5(a, b) = − 4

15π
10 sin(πa)sin(πb),

U6(a, b) = 4
45π

12 sin(πa)sin(πb),
U7(p, q) = − 8

315π
14 sin(πa)sin(πb), . . . ,

(10)

by using the differential inverse reduced transform
of Uk(a, b) ,we get
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u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k

= U0(a, b) + U1(a, b)t+ U2(a, b)t
2 + . . .

= sin(πa)sin(πb)(1− 2π2t+ 2π4t2 − 4
3π

6t3

+2
3π

8t4 − 4
15π

10t5 + 4
45π

12t6 + . . . ),
(11)

by using the closed form in the solution of (11),
we obtain following approximate solution

u(a, b, t) = sin(πa)sin(πb)e−2π2t. (12)

Example 2. We consider the non-homogeneous
convection-diffusion problem see ( [15])

∂u

∂t
+

∂u

∂a
+

∂u

∂b
−

∂2u

∂a2
−

∂2u

∂b2
= 3a2 − 6a+ 2t+ 1,

(a, b, t) ∈ Ω× J, (13)

subject to the initial condition

u(a, b, 0) = a3 + b. (14)

By using the basic properties of RDTM in equa-
tions (13) and (14), we obtain the following rela-
tions

(k + 1)Uk+1(a, b) +
∂
∂a
Uk(a, b) +

∂
∂b
Uk(a, b)

− ∂2

∂a2
Uk(a, b)−

∂2

∂b2
Uk(a, b)

= 3a2δ(k)− 6aδ(k) + 2δ(k − 1) + δ(k),
(15)

Taking the differential transform of Eq.(14), we
write

U0(a, b) = a3 + b. (16)

By using Eq. (16) in Eq. (15), we obtain Uk(a, b)
values fork = {0, 1, 2, 3, · · · } as follows

U1(a, b) = 0, U2(a, b) = 1, Ui(a, b) = 0,
for(i = 3, 4, 5, . . . ).

(17)

The exact solution of the equation (13) will as-
sume the following form:

u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k = a3 + b+ t. (18)

Example 3. We consider the non-homogeneous
CDE (see [14])

∂u

∂t
−
∂2u

∂a2
−
∂2u

∂b2
+
∂u

∂a
= (2π2−1)e−tsin(πa) cos(πb)

+ πe−tcos(πa) cos(πb), (a, b, t) ∈ Ω× J, (19)

with the initial condition

u(a, b, 0) = sin(πa) cos(πb). (20)

By using the basic properties of RDTM in equa-
tions (19) and (20), we obtain the following rela-
tions

(k + 1)Uk+1(a, b)−
∂2

∂a2
Uk(a, b)

− ∂2

∂b2
Uk(a, b) +

∂
∂a
Uk(a, b)

= (2π2 − 1) (−1)k

k! sin(πa)cos(πb)

+ π
(−1)k

k! cos (πa)cos(πb),

(21)

from initial condition(20), we have

U0(a, b) = sin(πa)cos(πb). (22)

By using Eq. (22) in Eq. (21), we obtain Uk(a, b)
values for k = {0, 1, 2, 3, · · · } as follows:

U1(a, b) = −sin(πa)cos(πb),
U2(a, b) = 1

2sin(πa)cos(πb),
U3(a, b) = −1

6sin(πa)cos(πb),
U4(a, b) = 1

24sin(πa)cos(πb),
U5(a, b) = − 1

120sin(πa)cos(πb),
U6(a, b) = 1

720sin(πa)cos(πb),
U7(a, b) = − 1

5040sin(πa)cos(πb), . . . ,

(23)

by using the differential inverse reduced transform
of Uk(a, b),we get

u(a, b, t) =
∞
∑

k=0

Uk(a, b)t
k = U0(a, b)+U1(a, b)t+. . .

= sin(πa)cos(πb)(1−t+
t2

2!
−
t3

3!
+
t4

4!
−
t5

5!
+
t6

6!
−. . . ),

(24)

by using the closed form in the solution of (24),
we obtain the following exact solution

u(a, b, t) = e−tsin(πa)cos(πb). (25)

Example 4. Consider the TDCDP (see [14])

∂u
∂t

= ∂2u
∂a2

+ ∂2u
∂b2

− ∂u
∂a

+e−t(2π2 − 1)sin(πa)sin(πb)
+πe−tcos(πa)sin(πb), (a, b, t) ∈ Ω× J,

(26)

with the initial condition

u(a, b, 0) = sin(πa)sin(πb). (27)
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By using the basic properties of RDTM in equa-
tions (26) and (27), we obtain the following rela-
tions

(k + 1)Uk+1(a, b) =
∂2

∂a2
Uk(a, b) +

∂2

∂b2
Uk(a, b)

−
∂

∂a
Uk(a, b) + (2π2 − 1)

(−1)k

k!
sin(πa)sin(πb)

+ π
(−1)k

k!
cos(πa)sin(πb), (28)

from initial condition(28), we have

U0(a, b) = sin(πa)sin(πb). (29)

By using Eq. (29) in Eq. (28), we obtain Uk(a, b)
values for k = {0, 1, 2, 3, · · · }

U1(a, b) = −sin(πa)sin(πb),
U2(a, b) = 1

2sin(πa)sin(πb),
U3(a, b) = −1

6sin(πa)sin(πb),
U4(a, b) = 1

24sin(πa)sin(πb),
U5(a, b) = − 1

120sin(πa)sin(πb),
U6(a, b) = 1

720sin(πa)sin(πb),
U7(a, b) = − 1

5040sin(πa)sin(πb), . . . ,

(30)

by using the differential inverse reduced transform
of Uk(a, b),we get

u(a, b, t) = sin(πa)sin(πb)(1− t+ t2

2

− t3

6 + t4

24 − t5

120 + t6

720 − . . . ),
(31)

by using the closed form in the solution of (31)
we obtain the following exact solution

u(a, b, t) = e−tsin(πa)sin(πb). (32)

4. Conclusion

In this study, we used RDTM to solve convection-
diffusion problems and showed that RDTM is an
effective and appropriate technique for finding ex-
act solutions of the TDCDP which we have inves-
tigated here. On the other hand the results are
quite reliable for solving this problem. The exact
closed form solution was obtained for all the ex-
amples presented in this paper. RDTM offers an
excellent opportunity for future research.
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1. Preliminaries

Inequalities present an attractive and active field
of research. In recent years, various inequalities
for convex functions and their variant forms are
being developed using innovative techniques. For
some inequalities, generalizations and applica-
tions concerning convexity see [1, 2]. Recently, in
the literature there are so many papers about P -
function, quasi-convex and m-convex functions.
Many papers have been written by a number
of mathematicians concerning inequalities for P -
function, quasi-convex functions and m-convex
functions see for instance the recent papers [3–8]
and the references within these papers.

Definition 1. A function ω : I ⊆ R → R is said
to be convex if the inequality

ω (tλ+ (1− t)µ) ≤ tω (x) + (1− t)ω(y)

is valid for all λ, µ ∈ I and t ∈ [0, 1]. If this
inequality reverses, then ω is said to be concave

on interval I 6= ∅ . This definition is well known
in the literature. Denote by C(I) the set of the
convex functions on the interval I.

Definition 2. Let ω : I ⊆ R → R be a convex
function defined on the interval I of real numbers
and λ, µ ∈ I with λ < µ. The following inequality

ω

(

λ+ µ

2

)

≤
1

µ− λ

∫ µ

λ

ω(x) dx ≤
ω (λ) + ω (µ)

2
(1)

holds.

The inequality (1) is known as Hermite-
Hadamard (H-H) integral inequality for convex
functions in the literature.

Some refinements of the H-H inequality on con-
vex functions have been extensively studied by re-
searchers (e.g., [1,9]) and the researchers obtained
a new refinement of the H-H inequality for convex
functions.
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Definition 3. A function ω : I ⊆ R → R is said
to be quasi-convex if the inequality

ω (tλ+ (1− t)µ) ≤ max {ω (λ) , ω(µ)}

holds for all λ, µ ∈ I and t ∈ [0, 1]. Denote by
QC(I) the set of the quasi-convex functions on
the interval I.

Definition 4. A nonnegative function ω : I ⊆
R → R is called P -function if the inequality

ω (tλ+ (1− t)µ) ≤ ω (λ) + ω (µ)

holds for all λ, µ ∈ I and t ∈ (0, 1).

We will denote by P (I) the set of P -function on
the interval I. Note that P (I) contain all nonneg-
ative quasi-convex and convex functions.

In [10], Dragomir et al. proved the follow-
ing inequality of Hadamard type for class of P -
functions.

Theorem 1. Let ω ∈ P (I), λ, µ ∈ I with λ < µ

and ω ∈ L [λ, µ]. Then

ω

(

λ+ µ

2

)

≤
2

µ− λ

∫ µ

λ

ω(x) dx ≤ 2 [ω (λ) + ω (µ)] .

(2)

Definition 5. [11] The function ω : [0, τ ] → R,
τ > 0, is said to be an m-convex function, where
m ∈ [0, 1]; if we have

ω (tλ+m (1− t)µ) ≤ tω (λ) +m (1− t)ω (µ)

for all λ, µ ∈ [0, τ ] and t ∈ [0, 1]. We say that f is
an m-concave function if (−ω) is m-convex. De-
note by Km(τ) the set of the m-convex functions
on [0, τ ] for which ω(0) ≤ 0.

Obviously, this definition recaptures the concept
of standard convex functions on [0, τ ] for m = 1;
and the concept star-shaped functions for m = 0.

2. Some new definitions and their

properties

In this section, we will define the (P,m) and
quasi-m-convex function supply several properties
of this kind of functions.

Definition 6. A function ω : [0, τ ] → R is called
quasi-m-convex if the inequality

ω (tλ+m (1− t)µ) ≤ max {ω (λ) ,mω(µ)}

holds for all λ, µ ∈ [0, τ ], m ∈ [0, 1] and t ∈ [0, 1].
We will denote by QmC(τ) the set of quasi-m-
convex function on the interval [0, τ ].

It is clear that quasi-convexity obtained in quasi-
m-convexity for m = 1.

Definition 7. A nonnegative function ω :
[0, τ ] → R is called (P,m)-function if the inequal-
ity

ω (tλ+m (1− t)µ) ≤ ω (λ) +mω (µ)

holds for all λ, µ ∈ [0, τ ], m ∈ [0, 1] and t ∈
(0, 1). We will denote by Pm(τ) the set of (P,m)-
function on the interval [0, τ ].

It is clear that P -function obtained in (P,m)-
function for m = 1. Note also that Pm(τ)
contain all nonnegative m-convex and quasi-m-
convex functions. Since

ω (tλ+m (1− t)µ) ≤ tω (λ) +m (1− t)ω (µ)

≤ ω (λ) +mω (µ) ,

ω (tλ+m (1− t)µ) ≤ max {ω (λ) ,mω (µ)}

≤ ω (λ) +mω (µ) .

Theorem 2. Let m ∈ [0, 1] and ω : [0, τ ] → R

. If ω is a quasi-m-convex function, then, for
c ∈ R (c ≥ 0), cω is a quasi-m-convex function.

Proof. For c ∈ R (c ≥ 0),

(cω) (tλ+m (1− t)µ)

≤ c.max {ω (λ) ,mω (µ)}

= max {(cω) (λ) ,m (cω) (µ)} .

�

Remark 1. If ω and ϕ are quasi-m-convex func-
tions, then it is not necessary that the function
ω + ϕ is a quasi-m-convex function.

Example 1. Let ω, ϕ : [0, τ ] → R, ω (u) =
u, ϕ (u) = 1 . Then ω and ϕ are quasi-m-
convex functions. Now, if we choose λ, µ ∈ [0, τ ],
m ∈ [0, 1] as numbers which satisfy the condi-
tions mµ ≥ λ and m (µ+ 1) ≤ λ + 1. Then,
(ω + ϕ) (u) = u + 1. Moreover, ω + ϕ is not
quasi-m-convex function. Indeed, we can write
following equality: for all t ∈ [0, 1],



80 M. Kadakal / IJOCTA, Vol.10, No.1, pp.78-84 (2020)

(ω + ϕ) (tλ+m (1− t)µ)

= tλ+m (1− t)µ+ 1

= t (λ+ 1) + (1− t) (mµ+ 1) .

Since mµ ≥ λ,

(ω + ϕ) (tλ+m (1− t)µ)

= t (λ+ 1) + (1− t) (mµ+ 1)

≥ t (λ+ 1) + (1− t) (λ+ 1)

= λ+ 1,

and since m (µ+ 1) ≤ λ+ 1,

(ω + ϕ) (tλ+m (1− t)µ)

= t (λ+ 1) + (1− t) (mµ+ 1)

≥ tm (µ+ 1) + (1− t) (mµ+ 1) .

Since m ≤ 1,

(ω + ϕ) (tλ+m (1− t)µ)

≥ tm (µ+ 1) + (1− t) (mµ+m)

= tm (µ+ 1) +m (1− t) (µ+ 1)

= m (µ+ 1) .

So,

(ω + ϕ) (tλ+m (1− t)µ)

≥ max {λ+ 1,m (µ+ 1)}

= max {(ω + ϕ) (λ) ,m (ω + ϕ) (µ)} .

Theorem 3. Let m ∈ [0, 1] and ωα : [0, τ ] → R be
an arbitrary family of quasi-m-convex functions
and let ω (x) = supα ωα (x) for all x ∈ [0, τ ]. If

J = {u ∈ [0, τ ] : ω (u) < ∞}

is nonempty, then J is an interval and ω is a
quasi-m-convex functions on J .

Proof. Let t ∈ [0, 1] and λ, µ ∈ J be arbitrary.
Then

ω (tλ+m (1− t)µ)

= sup
α

ωα (tλ+m(1− t)µ)

≤ sup
α

[max {ωα (λ) ,mωα (µ)}]

≤ max

{

sup
α

ωα (λ) ,msup
α

ωα (µ)

}

≤ max {ω (λ) ,mω (µ)} < ∞

This shows that J is an interval since it contains
every point between any two of its points and ω

is a quasi-m-convex functions on J . �

Theorem 4. Let m ∈ [0, 1] and ω : [0, τ ] → R

be a m-convex function. If ϕ is a quasi-m-convex
functions and increasing on [0, τ ], then the func-
tion ϕ ◦ ω is a quasi-m-convex function.

Proof. For λ, µ ∈ [0, τ ] and t ∈ [0, 1],

(ϕ ◦ ω) (tλ+m (1− t)µ)

= ϕ (ω (tλ+m (1− t)µ))

≤ ϕ (ω (λ) +m(1− t)ω(µ))

≤ max {(ϕ ◦ ω) (λ) ,m (ϕ ◦ ω) (µ)} .

�

Theorem 5. Let m ∈ [0, 1] and ω, ϕ : [0, τ ] → R.
If ω is a quasi-m-convex and non-negative func-
tion, ϕ is a (P,m)-function. Then, ω + ϕ is a
(P,m)-function.

Proof. For λ, µ ∈ [0, τ ] and t ∈ [0, 1],

(ω + ϕ) (tλ+m (1− t)µ)

= ω (tλ+m (1− t)µ) + ϕ (tλ+m (1− t)µ)

≤ max {ω (λ) ,mω (µ)}+ ϕ (λ) +mϕ (µ)

≤ ω (λ) +mω (µ) + ϕ (λ) +mϕ (µ)

= (ω + ϕ) (λ) +m (ω + ϕ) (µ) .

�

Theorem 6. Let m ∈ [0, 1] and ω, ϕ : [0, τ ] → R.
If ω and ϕ are (P,m)-functions, then

(1) ω + ϕ is a (P,m)-function ,
(2) For c ∈ R (c ≥ 0), cω is a (P,m)-

function .

Proof. i) For λ, µ ∈ [0, τ ] and t ∈ [0, 1],

(ω + ϕ) (tλ+m (1− t)µ)

= ω (tλ+m (1− t)µ) + ϕ (tλ+m (1− t)µ)

≤ ω (λ) +mω (µ) + ϕ (λ) +mϕ (µ)

≤ (ω + ϕ) (λ) +m (ω + ϕ) (µ) .
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ii) For c ∈ R (c ≥ 0),

(cω) (tλ+m (1− t)µ) ≤ c [ω (λ) +mω (µ)]

= (cω) (λ) +m (cω) (µ) .

�

Theorem 7. Let m ∈ [0, 1] and ωα : [0, τ ] → R

be an arbitrary family of (P,m)-functions and let
ω (x) = supα ωα (x) for all x ∈ [0, τ ]. If

J = {u ∈ [0, τ ] : ω (u) < ∞}

is nonempty, then J is an interval and ω is a
(P,m)-functions on J .

Proof. Let t ∈ [0, 1] and λ, µ ∈ J be arbitrary.
Then

ω (tλ+m (1− t)µ)

= sup
α

ωα (tλ+m(1− t)µ)

≤ sup
α

[ωα (λ) +mωα (µ)]

≤ sup
α

ωα (λ) +msup
α

ωα (µ)

= ω (λ) +mω (µ) < ∞.

This shows simultaneously that J is an interval
since it contains every point between any two of
its points and ω is a (P,m)-function on the in-
terval J . �

Theorem 8. Let m ∈ [0, 1] and ω : [0, τ ] → R

be an m-convex function. If the function ϕ is a
(P,m)-function and increasing, then the function
ϕoω is a (P,m)-function.

Proof. For λ, µ ∈ I and t ∈ [0, 1],

(ϕ ◦ ω) (tλ+m (1− t)µ)

= ϕ (ω (tλ+m (1− t)µ))

≤ ϕ (tω (λ) +m(1− t)ω(µ))

≤ ϕ (ω (λ)) +mϕ (ω (µ))

= (ϕ ◦ ω) (λ) +m (ϕ ◦ ω) (µ) .

�

3. Hermite-Hadamard integral

inequality for (P ,m)-function and

quasi-m-convex functions

The main purpose of this paper is to develop con-
cepts of the (P,m)-function and quasi-m-convex
functions and to obtain some inequalities of H-H
type for these classes of functions.

Theorem 9. Let m ∈ [0, 1] and ω : [0, τ ] → R

be a (P,m)-function. If 0 ≤ λ < µ < τ and
ω ∈ L [λ, µ], then the following inequalities holds:

1

mµ− λ

∫ mµ

λ

ω(x)dx

≤ min {ω (λ) +mω (µ) , ω (µ) +mω (λ)} .

Proof. By using (P,m)-function property of ω

and changing variable as u = tλ+m (1− t)µ

∫

1

0

ω (tλ+m (1− t)µ) dt

=
1

mµ− λ

∫ mµ

λ

ω(u)du

≤

∫

1

0

[ω (λ) +mω (µ)] dt

= ω (λ) +mω (µ)

and similarly for z = tµ+m(1− t)λ, then

∫

1

0

ω(tµ+m(1− t)λ) dt

=
1

mµ− λ

∫ mµ

λ

ω(z)dz

≤

∫

1

0

[ω (µ) +mω (λ)] dt

= ω (µ) +mω (λ) .

So, we have

1

mµ− λ

∫ mµ

λ

ω(x)dx

≤ min {ω (λ) +mω (µ) , ω (µ) +mω (λ)} .

�

Remark 2. Under the conditions of Theorem 9,
if m = 1 then, the following inequality holds:

1

µ− λ

∫ µ

λ

ω(x)dx ≤ ω (λ) + ω (µ)

The above inequality is the right hand side of the
inequality 2.

Theorem 10. Let m ∈ (0, 1] and ω : [0, τ ] → Rbe
an (P,m)-function. If 0 ≤ λ < µ < τ and
ω ∈ L [λ, τ ], then the following inequalities holds:

ω

(

λ+mµ

2

)

≤
2

mµ− λ

∫ mµ

λ

ω(x)dx.
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Proof. By the (P,m)-function property of ω, we
have

ω

(

λ+mµ

2

)

= ω

(

[tλ+m(1− t)µ] + [(1− t)λ+mtµ]

2

)

= ω

(

1

2
[tλ+m(1− t)µ] +

1

2
[(1− t)λ+mtµ]

)

≤ ω (tλ+m(1− t)µ) + ω ((1− t)λ+mtµ) .

Now, if we take integral in the last inequality on
t ∈ [0, 1] and choose x = tλ + m(1 − t)µ and
y = (1− t)λ+mtµ, we deduce

ω

(

λ+mµ

2

)

≤
1

mµ− λ

∫ mµ

λ

ω(x) dx

+
1

mµ− λ

∫ mµ

λ

ω(y) dy.

�

Remark 3. Under the conditions of Theorem 10,
if m = 1, then, the following inequality holds:

ω

(

λ+ µ

2

)

≤
2

µ− λ

∫ µ

λ

ω (x) dx

This inequality is the left hand side of the inequal-
ity 2.

Theorem 11. Let m ∈ (0, 1] and ω : [0, τ ] → R

be a (P,m)-function. If 0 ≤ λ < µ < τ and
ω ∈ L [λ, µ], then the following inequalities holds:

ω

(

λ+ µ

2

)

≤
1

µ− λ

∫ µ

λ

[

ω (x) +mω
( x

m

)]

dx

≤ min {I1, I2}. (3)

where

I1 = ω (λ) +mω
( µ

m

)

+mω

(

λ

m

)

+m2ω
( µ

m2

)

and

I2 = ω (µ)+mω

(

λ

m

)

+mω
( µ

m

)

+m2ω

(

λ

m2

)

.

Proof. Using the (P,m)-function property of ω,
we have

ω

(

x+ y

2

)

≤ ω (x) +mω
( y

m

)

for all x, y ∈ [0, τ ]. If we take x = tλ +
(1− t)µ, y = (1− t)λ+ tµ, we get

ω

(

λ+ µ

2

)

≤ ω (tλ+ (1− t)µ) +mω

(

(1− t)
λ

m
+ t

µ

m

)

for all t ∈ [0, 1]. Here, if we take integral over
t ∈ [0, 1] , we get

ω

(

λ+ µ

2

)

≤

∫

1

0

ω(tλ+ (1− t)µ) dt (4)

+m

∫

1

0

ω

(

(1− t)
λ

m
+ t

µ

m

)

dt.

Taking into account that

∫

1

0

ω(tλ+ (1− t)µ) dt =
1

µ− λ

∫ µ

λ

ω(x)dx,

and

∫

1

0

ω

(

(1− t)
λ

m
+ t

µ

m

)

dt

=
m

µ− λ

∫
µ

m

λ
m

ω(x)dx

=
1

µ− λ

∫ µ

λ

ω
( x

m

)

dx,

we deduce from (4) the first part of (3). That is

ω

(

λ+ µ

2

)

≤
1

µ− λ

∫ µ

λ

[

ω (x) +mω
( x

m

)]

dx.

By the (P,m)-function property of ω we also have

ω (tλ+ (1− t)µ) +mω

(

(1− t)
λ

m
+ t

µ

m

)

(5)

≤ ω (λ) +mω
( µ

m

)

+mω

(

λ

m

)

+m2ω
( µ

m2

)

.

for all t ∈ [0, 1] . Integrating the last equality (5)
over t on [0, 1], we deduce

1

µ− λ

∫ µ

λ

[

ω (x) +mω
( x

m

)]

dx (6)

≤ ω (λ) +mω
( µ

m

)

+mω

(

λ

m

)

+m2ω
( µ

m2

)

.

By a similar argument, if we take
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ω (tµ+ (1− t)λ) +mω

(

t
λ

m
+ (1− t)

µ

m

)

(7)

≤ ω (µ) +mω
( µ

m

)

+mω

(

λ

m

)

+m2ω

(

λ

m2

)

,

we have

1

µ− λ

∫ µ

λ

[

ω (x) +mω
( x

m

)]

dx (8)

≤ ω (µ) + ω

(

λ

m

)

+ ω
( µ

m

)

+m2ω

(

λ

m2

)

.

From (6) and (8), we obtain

1

µ− λ

∫ µ

λ

[

ω (x) +mω
( x

m

)]

dx ≤ min {I1, I2} .

�

Remark 4. For m = 1, (3) exactly becomes the
inequality 2 (the Hermite-Hadamard integral in-
equality for P -functions given in [10]).

Theorem 12. Let m ∈ (0, 1] and ω : [0, τ ] → R

be a (P,m)-function. If 0 ≤ λ < µ < τ and
ω ∈ L [λ, µ], then the following inequalities holds:

1

mµ− λ

∫ mµ

λ

ω(x)dx+
1

µ−mλ

∫ µ

λm

ω(x)dx

≤ (m+ 1) [ω (λ) + ω (µ)] (9)

Proof. By the (P,m)-function property of ω we
have that

ω (tλ+m (1− t)µ) ≤ ω (λ) +mω (µ) ,

ω (tµ+m(1− t)λ) ≤ ω (µ) +mω (λ)

for all t ∈ [0, 1] and λ, µ ∈ [0, τ ]. By adding the
above inequalities we get

ω (tλ+m (1− t)µ) + ω (tµ+m(1− t)λ)

≤ (m+ 1) [ω (λ) + ω (µ)] .

Integrating over t ∈ [0, 1], we obtain

∫

1

0

ω(tλ+m (1− t)µ) dt (10)

+

∫

1

0

ω(tµ+m(1− t)λ) dt

≤ (m+ 1) [ω (λ) + ω (µ)] .

As it is easy to see that

∫

1

0

ω(tλ+m (1− t)µ) dt

=
1

mµ− λ

∫ mµ

λ

ω(x)dx

and

∫

1

0

ω(tµ+m(1− t)λ) dt

=
1

µ−mλ

∫ µ

mλ

ω(x)dx,

from (10) we deduce the desired result, namely,
the inequality (9). �

Remark 5. For m = 1, (9) exactly becomes the
right hand side of the inequality 2.
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A dengue epidemic model with fractional order derivative is formulated to an-
alyze the effect of temperature on the spread of the vector-host transmitted
dengue disease. The model is composed of a system of fractional order differ-
ential equations formulated within Caputo fractional operator. The stability
of the equilibrium points of the considered dengue model is studied. The cor-
responding basic reproduction number Rα0 is derived and it is proved that if
Rα0 < 1, the disease-free equilibrium (DFE) is locally asymptotically stable. L1
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1. Introduction

A deeper understanding of mathematical models
is essential to represent and to reliably control the
transmission of the (epidemic/pandemic)diseases.
The vector-borne diseases becomes an extensive
threat with a significant affect on human and ani-
mal health. Distribution of vector-borne diseases
is determined by complex demographic, environ-
mental and social factors. Vector-borne diseases
are responsible from more than 700 000 deaths
annually as taking a part of 17% of all infectious
diseases. Dengue fever, as a severe, flu-like ill-
ness influences infants, young children and adults,
is mainly faced in urban and semi-urban areas
of the countries in tropical and sub-tropical cli-
mates [1,2]. Dengue fever disease has no concrete
treatment but early detection and efficient medi-
cal treatment reduces the death rates below 1%.

Dengue virus is carried from vector-host-vector
mainly by the bites of infected female mosquitoes
of the type Aedes aegypti. After virus incuba-
tion for 410 days, an infected mosquito is able to
transmit the virus for the rest of its life [2].

All mosquito species go through four distinct
phases during their life cycle: Egg, Larva (plural:
larvae), Pupa (plural: pupae), Adult. The first
three phases take place in water, but the adult is
an active flying insect (see Figure 1). Only the fe-
male mosquitoes bite and they feed on the blood
of humans or other animals.

Figure 1. Mosquito Life Cycle [3].

In order to keep the dengue infection under con-
trol some adequate and powerful mathematical
(compartmental) models and analysis have been
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suggested (see [4–15]). Abdelrazec et al. [15] de-
veloped a model for the dynamic study of trans-
mission of dengue fever by means of a nonlin-
ear rate of recovery to analyze the spread and
control of the disease. A mathematical model
for dengue is constructed in [8] to determine the
chain of two epidemic diseases with different hu-
man populations. The reproduction number Rα0
as a threshold quantity of the epidemics is ex-
plained by means of the stability analysis. Their
model shown that the ecological administration
alone as a the vector control is not enough; it
may postpone the spread of epidemics. The usage
of a vaccine may control simultaneously against
some serotypes. In Andraud et al. [16], deter-
ministic models of dengue transmission are sur-
veyed in terms of the assumptions for parameters,
threshold values and control measures. The effect
of seasonal variations in temperature and some
other climate factors on the transmission dynam-
ics of dengue diseases are epidemiologically dis-
cusses in several experimental research (e.g. see
[17] the references therein) and mathematically
analyzed in the recent studies [18–21]. The math-
ematical analysis in these references are based on
the compartmental integer-order epidemic mod-
els that contain a system of ODE’s. However,
in general, integer-order systems are memoryless
( [4–8,10,11,15–20]).

Fractional calculus is the study of an extended
form of integrals and derivatives in fractional or-
ders. The most vital aspect of fractional deriva-
tives is that, the models based on these operators
hold memory which provides an important advan-
tage for a well understanding of the behaviour
of the entomological factors and so the dynamics
of the epidemic diseases. Sardar et al. [12] in-
vestigated a compartmental dengue transmission
model having the memory, in which the memory
incorporated in the model exhibiting an arbitrary
order differential operator. A threshold quantity
Rα0 is derived, having the similarity with elemen-
tary reproduction number and determined that
although the value of Rα0 is less than one, the
disease-free equilibrium would not be constantly
stable, and the system reveals a Hopf-type bifur-
cation. The SIR model of the fractional order
differential equation of the dengue fever is inves-
tigated in [22], and a fractional order SEIR model
with vertical transmission in a nonconstant pop-
ulation is studied by [23]. In [24] and [25], three
definitions of fractional operators are carried out
for MSEIR models of some other type of epi-
demics as varicella disease validated by an out-
break data. Moreover, in the studies of [26–29],
dengue fever epidemics is modeled within real

data by the help of fractional operators of some
types that varies by the definition of their ker-
nel. Our goal in this study is to investigate the
fractional order dynamical model of the dengue
fever with temperature effect centered at the dis-
tribution of the human population into three cat-
egories (susceptible, infected, and resistant hu-
mans), whereas the population of the Aedes ae-
gypti pre-adult female mosquitos (eggs and lar-
vae) is distributed in two parts (susceptible and
infected) and adult mosquitos population is di-
vided in three parts (susceptible, infected but not
infectious, and infectious) to understand the dy-
namics of dengue disease in a more accurate and
realistic way.

The manuscript is organized as follows: after
the related literature info in Introduction part
in Section 1, the generalized non-integer order
mathematical model of the temperature effect in
the vector-host (vertical) transmission dynamics
of dengue fever epidemics is introduced in Sec-
tion 2 with a preliminary info about its param-
eter list and initial conditions. The disease-free
equilibrium points of the system are newly ob-
tained and the local asymptotic stability condi-
tions are derived correspondingly which results
the basic reproduction number of the system. Sec-
tion 3 is dedicated to the numerical solution of the
discretized version of generalized Caputo-based
dengue model. Followingly, the numerical simu-
lations are performed for the model (for different
temperature values and fractional orders) in order
to analyze the temperature effect on the dengue
transmission dynamics by using the real data of
the FongShan district, Kaohsiung, Taiwan. The
discussions of the simulations are provided in Sec-
tion 3 and the concluding remarks are given in
Section 4.

2. Preliminaries and the proposed
generalized dengue model

In this part, we present fractional operators where
the Caputo fractional derivative is mainly consid-
ered. For a function x(t) defined on a time inter-
val [0, T ], the Caputo derivative and integral of
x(t) are denoted by CDαx(t) and CIαx(t), respec-
tively, and defined as [30]

CDαx(t) :=
1

Γ(1− α)

∫ t

0
(t− ξ)−αẋ(ξ)dξ, (1)

CIαx(t) :=
1

Γ(α)

∫ t

0
(t− ξ)α−1x(ξ)dξ, (2)

where 0 < α < 1 represents the order of the frac-
tional operator.
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We will examine a mathematical model of the
dengue fever having arbitrary order, the parame-
ter values used in this mathematical model are es-
timated based on the demographic data of Fong-
Shan district, Kaohsiung in southern Taiwan (
[20], [31]). Kaohshiung is the second largest cos-
mopolitan city of Taiwan. The data showed that
Kaohsiung was at high risk for dengue fever from
1998 to 2010 and in total 2415 number of cases
of dengue fever were reported. According to the
WHO Dengue situation update by July 2019, ap-
prox. 29 300 cases reported in 2019 only in the
Western Pasific Region ( [1], [2]). In this study, a
set of weekly meteorological data has been used
which belongs to Kaohsiung district that was
recorded by 11 supervising observatory locations
of the Taiwan Environmental Protection Agency
[3] in 2011, further weekly maximum, minimum
and mean temperatures between the years of 2001
and 2010 are incorporated [20].

2.1. Fractional order vector-host dengue
model

This study is based upon the model of vector-
host transmission dynamics proposed in [32] to
represent the transmission patterns of the dengue
fever. The population has been separated into
three main parts as host (human), vector (pre-
adult female mosquito), and vector (adult female
mosquito) population. There are two compart-
ments of Aedes aegypti pre-adult female mosquito
population (effective eggs and larvae) namely sus-
ceptible Es and infected Ei. The three compart-
ments of vector (adult) population are stated ac-
cordingly as: Ms,Me, and Mi, which are the
values evaluated at time t of susceptible, in-
fected (but not being infectious) and infectious fe-
male mosquitoes. Also, host (human population)
is divided into three compartments as: Hs, Hi,
and Hr, these are the numbers at the time t
of the susceptible, infected/infectious and recov-
ered/immune human populations, respectively.
This way dengue model defined by the following
system [32] and correspondingly the model pa-
rameters are listed in Table 1:

CDαEs = eαv (1− p( Mi

Ms+Me+Mi
))− ηαEs,

CDαEi = eαv p(
Mi

Ms+Me+Mi
)− ηαEi,

CDαMs = ηαEs − bα HiNhMs − δαMs,
CDαMe = bα HiNhMs − γαMe − δαMe,
CDαMi = γαMe + ηαEi − δαMi,
CDαHs = RαhbNh − bα

Hs
Nh
Mi −RαhdHs,

CDαHi = bα HsNhMi − ξαHi −RαhdHi,
CDαHr = ξαHi −RαhdHr.

(3)

The initial values are Hs(0) = 341094 (total hu-
man population), Hi(0) = 26 (number of con-
firmed cases), and Hr(0) = 0 according to the
collected info in December, 2010 in FongShan dis-
trict (Kaohsiung, Taiwan). The transmissible bit-
ing rate was taken as 0.33 on a daily basis (mean-
ing that one bite occurs per three days for one
female mosquito). At an initial time t = 0, the
values for pre-adult and adult vector populations
are set as Es(0) = 0, Ei(0) = 0, Ms(0) = 341120,
Me(0) = 0, and Mi(0) = 0, respectively. The
total adult mosquito population Nm was 341120
female mosquitoes that is same value with the hu-
man population size. The detailed assumptions
of the considered (vertical) transmission dengue
dynamics model can be seen in [20] and the ref-
erences therein.

2.2. Equilibrium Points

The system has two types of disease free equi-
librium points namely trivial disease-free equilib-
rium (DFE) Eα0 and biologically realistic disease-

free equilibrium (BRDFE) Êα1 . To find equilib-
rium points, we will solve the following system:
CDαEs = 0,CDαEi = 0,CDαMs = 0,CDαMe = 0,
CDαMi = 0,CDαHs = 0,CDαHi = 0,CDαHr = 0.

By solving above system, we obtain the following
equilibrium points:

Eα0 = (0, 0, 0, 0, 0, Hs, 0, 0)

Êα1 = (Ês, 0, M̂s, 0, 0, Ĥs, 0, 0)

where

Hs =
RαhbNh

Rαhd
, Ês =

eαv
qα
, M̂s =

eαv
δα
, Ĥs =

RαhbNh

Rαhd
.

2.3. Stability analysis

Theorem 1. The biologically realistic disease-

free equilibrium (BRDFE) Êα1 of the system in
Eq. (3) is locally asymptotically stable if

Rα1 =
Nm + ηαeαv − ηαδαNm

Nm
< 1.

Proof. The Jacobian matrix of the system in
Eq. (3) evaluated biologically realistic disease-

free equilibrium (BRDFE) Êα1 is given by
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Table 1. Dengue model parameters (at temperature 25◦C)

Symbol Meaning and unit Range of values References

p “proportion of eggs” 0.028 [33]
η “pre-adult mosquito maturation rate (per day)” 0.099 Estimated
b “the biting rate (per day)” 0.33 [32]
ev “Oviposition rate (per day)” 6.218 Estimated
γ “Virus incubation rate in mosquito (per day)” 0.0607 Estimated
δ “Adult mosquito death rate (per day)” 0.0331 Estimated
ξ “Human recovery rate (per day)” 1/7 [32]
Rhd “Human death rate (per day)” 0.000016 [31]
Rhb “Human birth rate(per day)” 0.00002 [31]
Nm “Total number of mosquitoes” 341120 Assumed
Nh “Total size of human population” 341120 [31]

J(Êα1 ) =

ηα 0 0 0
eαv p

Nm
0 0 0

0 −ηα 0 0
eαv p

Nm
0 0 0

ηα 0 −δα 0 0 0 0 0
0 0 0 −γα − δ

α
0 0 0 0

0 ηα 0 γ
α −δα 0 0 0

0 0 0
−bαRαhb
Rαhd

0 −Rαhd 0 0

0 0 0 0
bαRαhb
Rαhd

0 −ξα − R
α
hd 0

0 0 0 0 0 0 ξ
α −Rαhd


(4)

The calculated eigenvalues are given by

λ1 = −ηα, λ2 = −δα, λ3 = −Rαhd,
λ4 = −Rαhd, λ5 = −(ξα +Rαhd), λ6 = −(γα + δα),

remaining eigenvalues are the roots of the qua-
dratic polynomial

λ2 + (ηα + δα)λ+ (1−Rα1 ) = 0,

by the Routh-Hurwitz stability criterion, Êα1 is
locally asymptotically stable if and only if
Rα1 < 1. �

2.4. The basic reproduction number (Rα0 )

The basic reproduction number Rα0 of the epi-
demic disease is known as the number of sec-
ondary infections caused by a unique infected
individual. Hypothetically, when Rα0 < 1 the
transmissions chains are not beneficial and dis-
ease will eradicate from the population. Although
if Rα0 > 1, each generation will be raised by the
number of infected humans and infection will be
taken advantage of with the usage of next gen-
eration matrix approach. In this situation Rα0 is
equal to the spectral radius of K = FV −1, where
F is a non-negative matrix of the infection items,

and V is the M -Matrix of the corresponding tran-
sition terms given as in below [13]

F =


0 0 0 bα

0 0 0 pδ

bαNmNh 0 0 0

0 0 0 0

 ,

V −1 =


1

ξα+Rαhd
0 0 0

0 1
ηα 0 0

0 0 1
γα+δα 0

0 1
ηα

1
γα

1
δα

 ,

and so

FV −1 =


0 bα

δα
bα

γα
bα

δα

0 p pδα

γα p
bαNm
Nh

(ξα +Rαhd) 0 0 0

0 0 0 0

 .

The eigenvalues of FV −1 is:

p

2
± 1

2

√
p2 +

4bαNm

Nhγα(ξα +Rαhd)

Therefore, the dominant eigenvalue of FV −1 is

Rα0 =
p

2
+

1

2

√
p2 +

4b2αNm

Nhγα(ξα +Rαhd)
. (5)

3. Numerical method and simulations

In this section, we will construct the discretiza-
tion of the model given by Eq. (3) involving the
Caputo fractional operator.

First, we rewrite system in Eq. (3) in a compact
form so that the relations can be simplified{

CDαY (t) = F(Y (t)), 0 < t < b <∞,

Y (0) = Y 0,
(6)

where Y = (Es, Ei,Ms,Me,Mi, Hs, Hi, Hr) ∈
R8

+, where F , is a real-valued continuous vector
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function having the Lipschitz condition

‖F(Y1(t))−F(Y2(t))‖ ≤ L‖Y1(t)−Y2(t)‖, L > 0,
(7)

and Y 0 = (E0
s , E

0
i ,M

0
s ,M

0
e ,M

0
i , H

0
s , H

0
i , H

0
r ) is

the initial vector. By applying the fractional inte-
gral operator in Eq. (2) to Eq. (6) the following
result is obtained

Y (t) = Y0 +C IαF(Y (t)), 0 < t < b <∞, (8)

where CIα represents the Riemann-Liouville in-
tegral operator. In order to propose a numeri-
cal scheme, the discretization of the time interval
[0, b] is done by equally spaced nodes so that time
step size is τ = b

N . Let Yn denote the approxima-
tion of the true solution Y (tn) at point tn = nτ
and 0 = t0 < t1 < ... < tN = b, with tn+1 − tn =
τ, n = 0, 1, 2, ..., (N − 1). Then, we derive fol-
lowing numerical scheme for the Caputo operator
using Euler method [34]

Y n+1 = Y 0 +
τ q

Γ(α+ 1)

n∑
k=0

wk+1,jF(Yk), (9)

where ( n=0,1,2,...,(N-1)) and

wk+1,j = (k + 1− j)α − (k − j)α

are the weights of the fractional Euler method.
Thus, we obtain the following discretization of the
model in Eq. (3)

En+1
s = E0

s

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
eαv (1− p(M

k
i

Nm
))− ηαEks

)
,

En+1
i = E0

i

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
eαv p(

Mk
i

Nm
)− ηαEki

)
,

Mn+1
s = M0

s

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
ηαEks − bα

Hki
Nh
Mk
s − δαMk

s

)
,

Mn+1
e = M0

e

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
bα

Hki
Nh
Mk
s − γαMk

e − δαMk
e

)
,

Mn+1
i = M0

i

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
γαMk

e + ηαEki − δαMk
i

)
,

Hn+1
s = H0

s

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
RαhbNh − bα

Hks
Nh
Mk
i −RαhdHk

s

)
,

Hn+1
i = H0

i

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
bα

Hks
Nh
Mk
i − ξαHk

i −RαhdHk
i

)
,

Hn+1
r = H0

r

+ τq

Γ(α+1)

∑n
k=0 wk+1,j

(
ξαHk

i −RαhdHk
r

)
,

(10)

where n = 0, 1, 2, ..., (N − 1), and Nm = Ms +
Me +Mi.

3.1. Simulation results and discussion

We solve the newly proposed fractional dengue
model given by Eq. (3) numerically. The effect of
temperature on the dynamics of dengue epidemics

is presented by Fig 2 where the temperature val-
ues are considered as 18◦ C, 25◦ C and 28◦ C
since the parameter values in Table 1 are known at
these temperatures. It is stated that (see ref. [20]
and the related references therein) ev-oviposition
rate, γ-virus incubation rate in mosquito, δ-adult
mosquito death rate and η-pre-adult mosquito
maturation rate are found as temperature depen-
dent entomological parameters in the selected dis-
trict of Taiwan. It is seen that the temperature
is a significant environmental factor that affect
the transmission in dengue epidemics. The ob-
tained results in Fig 2 shows that the infected
human (host) population and infected (pre-adult
and adult) mosquito populations reached to their
peak values with a higher amount at the tem-
perature of 28◦ C approximately in the period
of 50-100 days. Correspondingly, the suscepti-
ble human population showed a sharper decrease
whereas the recovered human population size has
a sharper increase (after 100 days approx.) at 28◦

C.

The impact of the fractional order is depicted
in Fig 3. In this sense, the temperature effect
in vector-host (vertical) transmission dynamics in
dengue epidemics formulated by fractional order
dengue model is investigated for different values of
the fractional order such as α = 1, 0.8 and α = 0.6
at a fixed temperature of 25◦ C. The results for
all considered values of α reach to steady state
for each population and integer order case is re-
covered when α = 1. The susceptible human and
pre-adult mosquito populations, recovered human
populations reach to different values in the as-
ymptotic case as α differs for the fixed tempera-
ture value of 25◦ C. The fractional order α here
enables us to include the memory into the evolu-
tion of the epidemic dynamics and also it gives us
the opportunity to capture different behaviors of
the system components inside the same model.

Moreover, Table 2 verify the Theorem 1 as the
condition Rα1 < 1 is satisfied for the considered
3-different temperature cases which means that
the biologically realistic disease free equilibriums
of the system are all asymptotically stable.

Table 2. Stability of Êα1

Equilibrium R1
1 R0.8

1 R0.6
1

Êα1 at 18◦ C 0.9761 0.9931 0.9761

Êα1 at 25◦ C 0.9677 0.9897 0.9677

Êα1 at 28◦ C 0.9633 0.9878 0.9633
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Figure 2. Simulation results of the fractional order dengue model at temperature 18◦ C, 25◦

C and 28◦ C with α = 1.

4. Conclusion

A fractional order dengue model is newly inves-
tigated that incorporate temperature dependent
features in entomological parameters. In the mod-
eling process four entomological parameters are
used for this purpose, that includes the oviposi-
tion rate (ev), pre-adult mosquito maturing rate

η, adult mosquito death rate δ, and the virus
incubation rate in mosquitoes γ. Weekly mean
temperature data in Kaohsiung (2001-2010) [20]
has been utilized to perform the simulations. We
applied L1 method to solve the model numer-
ically for various fractional order and tempera-
tures. Further, the basic reproduction number is
derived for the newly considered fractional order
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Figure 3. Simulation results of the fractional order dengue model at α = 1, α = 0.8, α = 0.6
at temperature 25◦ C.

dengue model (that is formulated by using Caputo
fractional operators). Correspondingly, stability
analysis is performed and the local asymptotic
stability of the disease-free equilibria is obtained.
Simulation results refers that the highest danger
of dengue transmission exists at temperature 28◦

C. The control of dengue transmission is based

on the control of the aquatic and adult stages of
the mosquito and so this study can contribute to
adapt effective control strategies like the use of
pesticide and other techniques.
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In this study, an algebraic stability test procedure is presented for fractional
order time delay systems. This method is based on the principle of eliminating
time delay. The stability test of fractional order systems cannot be examined
directly using classical methods such as Routh-Hurwitz, because such systems
do not have analytical solutions. When a system contains the square roots of
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1. Introduction

The systems shown by differential equations with
real orders instead of integer orders are called
fractional order systems [1]. Fractional order sys-
tems (FOS) are one of the most popular research
topics of today. Although the mathematical anal-
ysis of such systems has been known since 1695,
mostly, it has been discussed and investigated
by mathematicians because of its complexity [1].
The most important feature of this subject is that
it expresses real systems better than integer order
ones [2]. As it is known time delays are intrinsic of
a variety of electrical, electronic, and communica-
tion systems, control applications, power systems
with long transmission lines, and many real world
applications [3–5]. In control applications, there
are many examples of neutral-type time-delay sys-
tems as well as discrete-continuous hybrid sys-
tems regarded as delay differential algebraic equa-
tions (DDAEs) [4]. Besides, power systems with
long transmission lines can be modeled as DDAEs

for certain assumptions [4]. Systems with neutral
delay differential equations (NDDEs) contains de-
lays in both the state variables and their time
derivatives [3]. If fractional order systems include
time delay, the analysis of such systems becomes
more and more complicated. And, the studies to
obtain analytical solutions of fractional order sys-
tems with delays are very restricted.

Many studies have been carried out in relation
to FOS, in the literature [6–14]. Analytical sta-
bility test procedures of FOS are still important
research topics. Analytical stability test proce-
dures such as the Routh-Hurwitz method cannot
be applied to FOS,directly. There are some stud-
ies on the stability of FOS in [1, 15–22]. In [15],
a method for stability analysis of distributed pa-
rameter systems having delay is presented. This
method is also applicable to FOS. In [18], internal
and external stabilities of fractional differential
systems in the state-space form are investigated.
In [16], stability for a certain class of linear and
nonlinear fractional order systems is presented. A
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test procedure based on the Nyquist stability cri-
terion is presented in [1]. However, the studies
related to the stability of FOS continue, and an
analytical stability test technique does not exist,
to the best of the author’s knowledge. In addi-
tion, examining of time response analysis of such
systems is very complicated since calculating in-
verse Laplace transforms of them is difficult, in
spite of this, time response analysis of FOS can
be made by using integer order approximations.
Some toolboxes designed to examine such systems
can be found in [23–26].The frequency domain
based methods can be considered advantageous
for FOS since the stability of FOS can be tested
thanks to frequency domain methods such as the
Nyquist curve.

In the literature, the most preferred method to in-
vestigate FOS is to use integer-order approxima-
tions [27, 28]. That is, in order to apply methods
in classical control to such systems, integer-order
equivalent transfer functions can be used. There
are many approximation methods to obtain inte-
ger order equivalencies of fractional order differ-
ential equations. For example, the continued frac-
tion expansion method (CFE), Oustaloup, Carl-
son and Matsuda’s method and Maclaurin series
etc. [29]. In this study, the CFE method is pre-
ferred to obtain integer order approximations of
FOS. Then, the proposed algebraic stability test
is applied to the system. According to results that
are obtained in [28], it is observed that when the
degree of used approach increases the obtained re-
sults are closer to the original system. However,
this makes the process mathematically more com-
plicated. As aforementioned, the analytical sta-
bility test of FOS cannot be performed by classical
methods, directly. Therefore, this study is aimed
to fill this gap. For this purpose,in the first step,
the integer order equivalents of fractional order
terms are used. In the second step, the stabil-
ity test is applied to the system by eliminating
time delay. As it is known, in general, analytical
stability test procedures of time delay systems re-
quire to use some approximation methods such as
Padé. Besides, we need to use higher order Padé
approximations instead of time delay term to ob-
tain more reliable results. This process makes the
analysis of time delay systems more complicated.
However, using the proposed method, it is not
necessary to use approximations instead of time
delay term since it is eliminated. Thus, the sta-
bility test procedure does not require the solution
of higher order equations. This makes the pro-
posed method practical and preferable. For the
future studies, this method can be extended for
systems with multiple time delays. It can also be

applied to systems controlled by fractional order
controllers. Besides, power systems modeled by
delayed differential equations can be investigated
by using the proposed method.

This paper is organized as follows: In the first sec-
tion, literature information has been presented.
In the second section, fractional order time delay
systems are introduced. In the third section, an
algebraic stability test procedure is presented for
fractional order time delay systems. In the last
section, concluding remarks have been presented.

2. Fractional order time delay systems

Systems where derivatives are expressed in frac-
tional orders instead of integer ones are called
fractional order systems. A unity feedback con-
trol system is given in Fig.(1).

Definition 1. Fractional order time delay sys-
tems are represented as follows.

G(s) = N(s)
D(s)e

−hs

= bmsβm+bm−1s
βm−1+...+b0s

β0

ansαn+an−1s
αn−1+...+a0s

α0
e−hs

(1)

Where, h represents time delay, ak (k = 0, ..., n),
and bk (k = 0, ...,m) are constants, αk (k =
0, ..., n), and βk (k = 0, ...,m) are arbitrarily real
numbers. Where, one can assume inequalities
αn > αn−1 > . . . > α0 and βm > βm−1 > . . . > β0
without loss of generality [30].

Time delay, which may cause poor performance
or even instability in system response, is a com-
mon case in many industrial processes. It can
be originated from the internal dynamics of the
system [31]. Since stability test of time delay sys-
tems cannot be performed directly, some approxi-
mations such as Padé are used instead of time de-
lay term. However, in some cases, the first order
Padé approximation may not give correct results
in terms of stability [31]. Therefore, to obtain
more correct results, it is necessary to increase
the degree of approach, which makes the processes
mathematically more complicated. Thus, a sta-
bility test eliminating time delay will be impor-
tant for simplicity.

3. A Stability test for fractional order

time delay systems

Definition 2. The characteristic equation for
a linear system having a single time delay is ex-
pressed as follows, where h is time delay [32].

∆(s, h) = ∆1(s) + ∆2(s)e
−hs = 0 (2)
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Figure 1. A feedback system.

Definition 3. The general representation of this
expression for systems having multiple commen-
surate time delay is given as follows [32].

∆n(s, h) =
n
∑

k=0

∆k(s)e
−ksh (3)

For zero delay systems, the necessary and suffi-
cient condition of asymptotic stability is known
as the presence of all the roots of the charac-
teristic equation on the left half of the complex
s plane. For systems with time delay, this re-
sult may be stable or unstable for some values
of h [32]. It has been concluded that the sys-
tem is asymptotically stable regardless of delay
for a particular case where all positive values of
time delay h are not negative [32]. Here, the main
problem is to determine h values when ∆(s, h) =
∆1(s) + ∆2(s)e

−hs = 0 has root/or roots on the
complex axis. ∆(s, h) = 0 is an implicit func-
tion of s and h, which may exceed or not exceed
the imaginary axis. Suppose that all the roots of
∆(s, 0) = 0 are in the left-half plane. So, the sys-
tem is stable for zero time delay. If ∆(s, h) = 0
has a root on the imaginary axis when s = jω for
some values of h, it can be said that ∆(−s, h) = 0
has also a root on the imaginary axis for the same
values of h and ω. Thus, with the same common
root ∆(s, h) = 0 and ∆(−s, h) = 0 for the deter-
mination of the roots on the imaginary axis, we
do not need to find h values. That is, a structure
independent of time delay is obtained.

Theorem. A system is asymptotically stable re-
gardless of delay for a particular case where all
positive values of time delay h are not negative.
If ∆(s, h) = ∆1(s)+∆2(s)e

−hs = 0 has root/roots
on the complex axis, the value range of h is cal-
culated for the stability.

Proof. ∆(s, h) = 0 is an implicit function of s
and h, which may exceed or not exceed the imag-
inary axis. If all the roots of ∆(s, 0) = 0 are in
the left-half of s plane, the system is stable for
zero time delay. If ∆(s, h) = 0 has a root on
the imaginary axis when s = jω for some val-
ues of h, ∆(−s, h) = 0 has also a root on the
imaginary axis for the same values of h and ω.
Thus, with the same common root ∆(s, h) = 0
and ∆(−s, h) = 0 for the determination of the

roots on the imaginary axis, it is not necessary to
find h values.

Corollary 1. The Eq.(6) is obtained by elimi-
nating the time delay h from Eq.(4) and Eq.(5).
It is clear that this structure is independent of
time delay.

∆(jω, h) = ∆1(jω) + ∆2(jω)e
−jωh = 0 (4)

∆(−jω, h) = ∆1(−jω) +∆2(−jω)e+jωh = 0 (5)

M(ω2) = ∆1(jω)∆1(−jω)−∆2(jω)∆2(−jω) = 0
(6)

Corollary 2. Where, it is clear that M(ω2) is a
polynomial in the form ω2 = −s2. If M(ω2) = 0
does not have positive roots, the system is stable
for all h ≥ 0.

The proposed stability test procedure is summa-
rized as follows:

(1) In the first step, Eq.(2) is turned into the
form of Eq.(7) for h=0.

∆(s, 0) = ∆1(s) + ∆2(s) = 0 (7)

It is tested whether the zeros of the char-
acteristic equation are in the left half of
s plane. The system is stable for h if all
the zeros are located in the left half of s
plane. If so, the second step is applied.

(2) The presence of positive roots of M(ω2) =
0 is investigated. The system is stable for
all h ≥ 0 if M(ω2) = 0 does not have
any positive roots. If M has at least one
positive root, the range of h must be in-
vestigated for the stability.

(3) If the second condition is met, the follow-
ing equations are used to determine the
range of h [32].

cos(ωh) = Re
{

−∆1(jω)
∆2(jω)

}

,

sin(ωh) = Im
{

∆1(jω)
∆2(jω)

} (8)
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For the given value of ω, h0(ω) is the smallest pos-
itive value of h providing Eq.(8), and the general
solution is given as follows.

h = h0(ω) + 2πn/ω, n = 0, 1, 2, 3, ... (9)

More information about the method can be found
in [32, 33]. Let handle some examples to better
understand the subject.

3.1. Example 1

Consider the characteristic equation given as fol-
lows.

∆(s, h) = s2 + 4s+ 4− e−hs = 0 (10)

When the procedure described above is applied,
one obtains

∆(s, 0) = s2 + 4s+ 3 = 0 (11)

for ∆(s, 0) = 0, we obtain s = −3 and s = −1.
It is clear that the system is stable for h = 0.
Thus, the second step is applied to the system as
follows.

M(ω2) = (−ω2 + 4jω + 4)(−ω2 − 4jω + 4)
−1 = ω4 + 8ω2 + 15

(12)

Since ω2 = −3 and ω2 = −5, there is no positive
root of M(ω2) = 0. It means that there is no any
point touching or crossing imaginary axis. Thus,
this system is stable independent of time delay h.

3.2. Example 2

For a unity feedback system given in Fig.(1), G(s)
is given by Eq.(13).

G(s) =
1

s1.1 + 2
e−hs (13)

The characteristic equation of the system is ob-
tained as follows.

∆(s, h) = s1.1 + 2 + e−hs = 0 (14)

In this equation, if we use the first order integer
approximation instead of fractional order term,
the characteristic equation is obtained as follows.

∆(s, h) = s2+2.46s+2+(0.82s+1)e−hs = 0 (15)

The characteristic equation is stable for h = 0 and
it is obtained as follows.

∆(s, 0) = s2 + 3.28s+ 3 = 0 (16)

In this case, the second stage is applied. There-
fore, M is obtained by Eq.(17)

M(ω2) = (−ω2 + 2.46jω + 2)(−ω2 − 2.46jω + 2)
−(1 + 0.82jω)(1− 0.82jω)

(17)

Since Eq.(17) does not have a positive solution,
the system is stable regardless of time delay. Let’s
examine the Nyquist curve of the system to con-
firm this result. The Nyquist diagrams of the
original system and the first order approximation
for ω = 0 : 0.01 : 5, and h = 1 are shown in
Fig.(2). As can be seen from the Fig.(2), the sys-
tem is stable because the curve does not contain
the critical point (−1, j0). Besides, the results
of original system and of first order approxima-
tion are very close to each other. In Fig.(3), the
Nyquist diagrams of the original system are given
for ω ∈ [0, 50], and h = 0.1 : 0.1 : 2. The Nyquist
diagrams of original system and of first order ap-
proximation for ω ∈ [0, 50], and h = 0.1 : 0.1 : 2
are shown in Fig.(4). As can be seen from Fig.(3)
and Fig.(4), the curves do not include the critical
point for increasing values of h. Therefore, if the
system is stable for condition 1 and 2, as stated
in the stability test procedure in section 3, it can
be said that it is stable for all values of h ≥ 0.
The Nyquist diagrams are shown in Fig.(3) and
Fig.(4) also support this result.

In this example, if we use second order integer ap-
proximation instead of fractional order term, the
characteristic equation is obtained as follows.

∆(s, h) = 1.351s3 + 6.67s2 + 10.34s+ 2.702
+(s2 + 4.67s+ 1.351)e−hs = 0

(18)

If the procedure is applied to the system, one ob-
tains

∆(s, 0) = 1.351s3 + 7.67s2 + 15.01s+ 4.053 = 0
(19)

where, s1,2 = −2.6791±j1.491, and s3 = −0.3191.
It is clear that the system is stable for h = 0.

In the second step, M is obtained by Eq.(20)

M(ω2) = (−1.351jω3 − 6.67ω2 + 10.34jω + 2.702)
×(1.351jω3 − 6.67ω2 − 10.34jω + 2.702)
−(−ω2 + 4.67jω + 1.351)(−ω2 − 4.67jω + 1.351)

(20)

Since Eq.(20) does not have a positive solution,
the system is stable regardless of time delay.
Fig.(5) shows unit step responses of the system
(using first order approximation) with the second
order Padé approximation for h = 0.1 : 0.1 : 1.2.

If we use a PI controller of the form C(s) =
(kps + ki)/s, as shown in Fig.(6), unit step re-
sponses of the system are depicted in Fig.(7) for
kp=ki=1. Here, It should be noted that M can
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ω ∈ [0, 5] and h = 1.

Figure 3. Nyquist diagrams of the original system for ω ∈ [0, 50] and h = 0.1 : 0.1 : 2.

Figure 4. Nyquist diagram of the original system (blue) and the first order approximation
(red) for ω ∈ [0, 50] and h = 0.1 : 0.1 : 2.
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Figure 5. Unit step responses of the system (the first order approximation) with the second
order Pade for h = 0.1 : 0.1 : 1.2.

have positive solutions. Thus, delay free sys-
tem can be unstable for some values of kp and
ki. In this case, it should be determined if the

root touches the imaginary axis. If not, it means
the system is unstable for h = 0, but it is sta-
ble for infinite small h, that is, it is stable for
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Figure 6. Feedback control system with PI controller.

Figure 7. Unit step responses of the first order approximation and the second order Padé for
h = 0.1 : 0.1 : 1.2, and kp=ki=1.

0 < h < h0(ω). If the root touches the imaginary
axis, then the system is unstable for h = 0 and
corresponding values of kp and ki for that h.

3.3. Example 3

In this example, G(s) is given by

G(s) =
1√

s(s+ 1)
e−hs (21)

By using the first order approximation, the char-
acteristic equation of the system is obtained as

∆(s, h) = 3s2 + 4s+ 1 + (s+ 3)e−hs = 0 (22)

The characteristic equation for h = 0 is obtained
as follows

∆(s, 0) = 3s2 + 5s+ 4 = 0 (23)

Where the roots of the characteristic equation are
s1,2 = −0.833 ± j0.8. Thus, the system is stable
for h = 0.

Thus, the second step of the procedure is applied
to the system. And one obtains

M(ω2) = (−3ω2 + 4jω + 1)(−ω2 − 4jω + 1)
−(3 + jω)(3− jω)

(24)

From Equation Eq.(24), we obtain ω2 = −1.5672,
and ω2 = 0.5672. Since M(ω2) = 0 has a positive
solution, there is a root touching the imaginary
axis. In this case, it is necessary to determine the
stability range of h. For this purpose, using the

Eq.(8) and Eq.(9) the range of h making the sys-
tem stable is calculated as 0 ≤ h < 2.1086. The
Nyquist curve for h = 1 and the critical point
h = 2.1086 are shown in Fig.(8) according to the
first order approximation. As can be seen from
the Fig.(8), h = 2.1086 is the critical point for
stability of the system. However, this value was
obtained according to the first order approxima-
tion. That is, when the second, third and fourth
order approximations are used, the range value of
h would change. Depending on results in [28], it
can be said that third and fourth order approxi-
mations provide the best results in capturing the
original system. Thus, the value of h obtained
using these approximations will probably provide
the best results for the system. But this change
may not involve big numerical differences. That
is, using first order approximation may be suffi-
cient to examine stability of the system in terms
of simplicity. The unit step responses of the sys-
tem according to the first order approximation are
given in Fig.(9) for h = 1, and according to the
critical point h = 2.1086. As can be seen from the
Fig.(9), the critical point gives an oscillatory re-
sponse as expected. Fig.(10) shows the unit step
responses of the system for h = 2.2 and h = 2.5
values exceeding the critical point. The system
becomes unstable after the critical point.

In this example, if we use the second order inte-
ger approximation instead of the fractional order
parameter, the characteristic equation is obtained
as follows.
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Figure 8. Nyquist diagram of the first order approximation for h = 1 and the critical point
h = 2.1086.
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Figure 9. Unit step responses of Example 3.
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Figure 10. Unit step responses of Example 3 for h=2.2 and h=2.5.

∆(s, h) = 5s3 + 15s2 + 11s+ 1
+(s2 + 10s+ 5)e−hs = 0

(25)

If the procedure is applied to the system, one ob-
tains

a.

∆(s, 0) = 5s3 + 16s2 + 21s+ 6 = 0 (26)

where, s1,2 = −1.4074 ± j1.0654, and s3 =
−0.3851. It is seen that the system is stable for
h = 0.

b. In the second step, M is obtained by Eq.(27)

M(ω2) = (−5jω3 − 15ω2 + 11jω + 1)
×(5jω3 − 15ω2 − 11jω + 1)−(−ω2 + 10jω + 5)
×(−ω2 − 10jω + 5)

(27)

From Equation Eq.(27), we obtain ω2 = −4.5038,
ω2 = −0.4906, and ω2 = 0.4344. That is,
M(ω2) = 0 has a positive solution. Using the
Eq.(8) and Eq.(9) the range of h making the sys-
tem stable is calculated as 0 ≤ h < 2.6962. The
unit step response of the system according to the
second order approximation is given in Fig.(11)
for the critical point h = 2.6962. As can be seen
from the Fig.(11), the critical point gives an os-
cillatory response as expected.

4. Conclusion

In this study, an algebraic stability test procedure
based on the principle of eliminating time delay
is presented for fractional order systems with a
single time delay. Thus, mathematical operations
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Figure 11. Unit step response of Example 3 for the second order approximation and the
critical point h = 2.6962.

that are already complicated for FOS have be-
come easier. The examples show that the pro-
posed method gives very reasonable results. For
this purpose, integer-order approximations have
been used. Thus, a fractional order equation has
been turned into an integer-order one, and then
the stability test has been applied to the sys-
tem. When using integer-order approximations,
there can be a difference depending on the de-
gree of approximation. Studies have shown that
good approximation results for FOS are obtained
when using third or fourth-order approximations.
Therefore, when determining the stability range
of h, the order of approximation can cause some
differences in the calculations. However, it can
be said that the first order approximation is suf-
ficient for determining whether a system is stable
or unstable because higher order approximations
make mathematical operations quite complicated.
Besides, too large values of the time delay can
produce unwanted results in system performance.
Thus, it is necessary to investigate of stability
range of h to obtain reasonable results. For fu-
ture works, stability analysis can be investigated
for FOS having parameter uncertainty or differ-
ent time delays. In addition, stability for different
types of controllers can also be investigated. As
there are no analytical methods in this area, the
studies on this subject will contribute significantly
to the field.
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The maximum cut problem is known to be NP-hard, and consists in deter-
mining a partition of the vertices of a given graph such that the sum of the
weights of the edges having one end node in each set is maximum. In this
paper, we formulate the maximum cut problem as a maximization of a simple
non-smooth convex function over the convex hull of bases of the polymatroid
associated with a submodular function defined on the subsets of vertices of a
given graph. In this way, we show that a greedy-like algorithm with O(mn

2)
time complexity finds a base of a polymatroid that is a solution to the maxi-
mum cut problem with different approximation ratio. Moreover, with respect
to a base of a polymatroid, we formulate the maximum cut problem as a max-
imum flow problem between a source and a sink. We then investigate the
necessary and sufficient conditions on the optimality of the base in terms of
network flow.
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1. Introduction

The well-known maximum cut problem consists in
determining a partition of the vertices of a given
graph such that the sum of the weights of the
edges having one end node in each set is maxi-
mum. The maximum cut problem is very easy
to state but hard to solve. This problem is one
of the first problems whose NP-hardness was es-
tablished in [1] by Karp. Note that the problem
remains NP-hard even for unit edge weights [2,3].

The solution of the maximum cut problem has
been approached by mathematical programming.
In terms of design variables for every vertex,
an integer quadratic programming formulation is
given in [4]. Further integer linear programming
formulations of the maximum cut problem using
the boolean design variables are given in [5]. The
algorithm in [6] for finding solutions of the max-
imum cut problem is an efficient method from a
practical point of view. Goemans and Williamson
use a semidefinite relaxation technique. Their ex-
periments show that exact solutions are obtained

in a reasonable time for any maximum cut in-
stance of size up to 100 vertices. Using a semidef-
inite relaxation, the authors achieve an approx-
imation ratio of 0.87856 for this difficult combi-
natorial optimization problem. Semidefinite pro-
gramming is a convex optimization approach with
a linear objective function of the design variables
for a symmetric matrix, subject to linear con-
straints, and also convex constraints requiring the
matrices to be positive semidefinite. Despite the
fact that the algorithm in [6] has one of the best
worst-case performance, Bertoni, Campadelli and
Grossi [7] show that the algorithm improved by
Goemans and Williamson has a complex design
and its computation time may be prohibitive on
large problem instances having more than 500 ver-
tices. By solving experimental test problems on
large random graphs, Bertoni et al. also show
that their algorithm is better than the semidefi-
nite programming algorithm of [6] and they define
cuts with the same values in less time on standard
benchmarks. Ben-Ameur et al. discuss the com-
plexity of the maximum cut problem and some
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cases where the problem can be solved in polyno-
mial time [8]. They also introduce some approx-
imation methods for the maximum cut problem,
both with and without guarantees.

In all references mentioned, the topological prop-
erties of a given graph did not play an essen-
tial role in proofs or in solving the maximum cut
problem. Differently from the investigations men-
tioned above, to solve the maximum cut problem,
some polynomial time algorithms have been de-
veloped based on topological properties of given
graphs such as planar graphs [9,10], weakly bipar-
tite graphs with non-negative edge weights [11],
graphs without K5 minors [12]. The problem is
solved using a linear time algorithm for series-
parallel graph [13].

For definitions used in the paper, we refer read-
ers to [14,15]. Following the success of the theory
of polymatroids in solving difficult combinatorial
problems, we apply a polymatroid approach to
the maximum cut problem.

Section 2 contains necessary notations and defini-
tions in the theory of polymatroids used through-
out the paper. In Section 3, we present the max-
imum cut problem as a maximization of a simple
non-smooth function over a special polytope P (f)
called a polymatroid [14, 16] associated with the
submodular function f(S) defined on subset S of
V of a given graph G = (V,E). This model in-
cludes variables for each node in V . The convexity
of the objective function implies that an optimal
solution to the maximum cut problem is among
extreme points (bases) of the polytope (polyma-
troid) P (f) [17].

It is well known that the greedy algorithm defines
bases of P (f) according to different linear order-
ing of vertices, in polynomial time (see [14, 16]).
One might say that for each maximum cut prob-
lem, an optimal linear ordering of vertices has to
be chosen such that an optimal base of P (f) (an
optimal solution) can be defined by the greedy
algorithm in polynomial time. Hardness of the
maximum cut problem implies that an optimal
linear ordering cannot be defined in polynomial
time. In [18], Sharifov proposes a O(mn2) time
algorithm which defines different linear ordering
and related bases of P (f) based on the topological
properties of a given graph. We show that a so-
lution to the maximum cut problem with the ap-
proximation ratio 0, 75λ can be defined in O(mn2)
time by this algorithm, where λ ≤ 1.3 is some pos-
itive number and m = |E|, n = |V |. In Section
4, we present a new model of the maximum cut
problem in terms of flows with respect to a base
of P (f). This model is used in the proof of new

necessary and sufficient conditions for optimality
of a base of P (f).

2. Basic notions and preliminary

results

Consider an undirected graph G = (V,E) with
non-negative weights ce ≥ 0 on the edges e ∈ E.
We assume that G is a graph without loops and
parallel edges. An edge with endpoints v and u
is denoted by (v, u) and uv denotes the arc whose
tail is v, and head is u. We use S = V \ S for
S ⊆ V and S + v for S ∪ {v} when v /∈ S, and
S − v for S \ {v} when v ∈ S.

Let γ(S) and κ(S) denote the subsets of edges
having at least one of endpoints in S ⊆ V and
both endpoints in S ⊆ V , respectively. Consider
functions

f(S) =
∑

(ce : e ∈ γ(S))

g(S) =
∑

(ce : e ∈ κ(S)).

Obviously f(S) and g(S) are monotone functions
by definitions, moreover, it is well known that f
is submodular, i.e.,

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

and g is supermodular, i.e.,

g(S) + g(T ) ≤ g(S ∪ T ) + g(S ∩ T )

for any S, T ⊆ V [16].

The cut given by a subset S ⊂ V is denoted by
δ(S). We will use c(E) for

∑
e∈E ce, and c(δ(S))

for
∑

(cij ; (i, j) ∈ E, i ∈ S, j ∈ S). The vector
d = (dv = c(δ(v)); v ∈ V ) is called the weighted
degree vector of the graph G. From the definition
of the sets γ(S) and κ(S) it follows that

f(S) + g(S) = d(S) =
∑

v∈S

dv,

and

f(S)− g(S) = c(δ(S))

for the cut δ(S) given by any S ⊂ V . Clearly,
f(S)− g(S) is a submodular function.

Let RV denote the set {(u(v) ∈ R : v ∈ V )}. For
u = (u(v) : v ∈ V ) ∈ R

V and a subset S ⊆ V , we
denote u(S) =

∑
v∈S uv. The following two sets

of vectors in R
V associated with the functions f
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and g are called polymatroid and superpolyma-
troid [14], respectively:

P (f) = {x ∈ R
V ; x(S) ≤ f(S), S ⊆ V },

Q(g) = {y ∈ R
V ; y(S) ≥ g(S), S ⊆ V }.

The following polytope associated with the func-
tion f − g is called extended polymatroid [14]:

EP (f−g) = {w ∈ R
V ; w(S) ≤ f(S)−g(S), S ⊆ V }.

Vectors x ∈ P (f) and y ∈ Q(g) are called bases
of the polymatroid and the superpolymatroid if
x(V ) = f(V ) and y(V ) = g(V ), respectively.
Note that, for any bases x ∈ P (f) and y ∈ Q(g),

x(V )− y(V ) = f(V )− g(V ) = 0,

since

γ(V ) = E = κ(V )

by definition of the sets γ(S) and κ(S). So, a
vector w ∈ EP (f − g) is a base of EP (f − g) if
w(V ) = 0.

Let xL ∈ P (f) and yL ∈ Q(g) be bases computed
by the greedy algorithm in [18] with respect to
any linear ordering L of the vertices. The first
observation is that the difference wL = xL−yL of
the bases xL and yL is a base of EP (f − g) which
can also be found by the greedy algorithm with
respect to the linear ordering L of the vertices. In
what follows, we will write x, y and w instead of
xL, yL and wL, respectively.

We write v ≺L u if v precedes u in the linear or-
dering L of the vertices. According to the linear
ordering L of vertices, one can orient the edges of
the graph G = (V,E) in such a way that the re-
sulting digraph G = (V,A) is an acyclic oriented
graph. This requires each edge (v, u) to be re-
placed by an arc vu if v ≺L u or an arc uv if
u ≺L v. The opposite is also true; each acyclic
orientation of the edges of the graph G = (V,E)
defines a linear ordering L of its vertices. In an
acyclic oriented graph G = (V,A) with weights
cvw on arcs, let δ+(v) be the set of arcs entering
to node v, and let δ−(v) be the set of arcs leaving
from node v.

Our key observation is that the bases x ∈ P (f)
and y ∈ Q(g) satisfy the equalities

∑

u∈δ+(v)

cvu = c(δ+(vi)) = xv, v ∈ V, (1)

∑

u∈δ
−
(v)

cuv = c(δ−(vi)) = yv, v ∈ V. (2)

In other words, xv is the sum of weights on the
leaving arcs from the node v, and yv is the sum
of weights on the entering arc to the node v.

All the above equalities are satisfied by any bases
of x ∈ P (f) and y ∈ Q(g) which are computed
with respect to any linear ordering of the vertices
in any graph. Their proof immediately follows
from the greedy algorithm formula for computing
bases of P (f) and Q(g) with respect to a given
linear ordering of the vertices. So, we can state
the following claims.

Claim 1. Let x ∈ P (f) and y ∈ Q(g) be any
bases computed by the greedy algorithm developed
in [18] with respect to any linear ordering L of the
vertices, then

x+ y = d

and the difference x−y = w is a base of EP (f−g),
for which the following the zero sum equality

∑
(wv;wv > 0) = −

∑
(wv;wv <= 0)

holds.

Proof. Since dv = c(δ+(vi)) + c(δ−(vi)) in the
graph, obtained by orientation of the edges G =
(V,E) according to the linear ordering L, then
xv + yv = dv for any node v ∈ V . From x(V ) =
y(V ) it follows that w(V ) = x(V ) − y(V ) = 0.
Since x ∈ P (f) and y ∈ Q(f), x(S) − y(S) ∈
EP (f − g). Besides, w(V ) = 0 can be written
as the zero sum equality by performing algebraic
operations. Therefore, x − y = w is a base of
EP (f − g). �

Claim 2. For a given linear ordering L =
{v1, ...vn} of the vertices in V , the bases x(L) ∈
P (f), y(L) ∈ Q(g) and w(L) ∈ EP (f − g) can be
found in O(m) time.

Proof. For Li = {v1, ...vi} and i = 1, ..., n, by
the greedy formula

xvi = f(Li)− f(Li−1) = c(δ+(vi)),

it follows that xvi is the sum of weights on the
edges (vi, vj) ∈ E for which vi ≺L vj in L. So,
each edge of E appears only once in comput-
ing the base x. From y = d − x ∈ Q(g) and
w = x − y ∈ EP (f − g), we obtain the bases y
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and w in O(m) time with respect to the linear
order L. �

We make the following useful observation whose
proof immediately follows from equalities (1) and
(2), for two graphs obtained after the orientation
of the edges in G with respect to linear orderings
L = {v1, v2, ..., vn} and I = {vn, ..., v2, v1}.

Claim 3. If the greedy algorithm defines the bases
x1 ∈ P (f) and x2 ∈ P (f) with respect to the L
and I, respectively, then x2 = y1 = d− x1 ∈ Q(g)
and x1 = y2 = d− x2 ∈ Q(g).

Proof. Consider two acyclic oriented graphs
G(L) and G(I) obtained after replacing edges in
E by arc according to L and I, as above. If
v ≺L u, then an edge (v, u) corresponds to arc
vu in G(L) and arc uv in G(I). Let x1v and
y1v = dv − x1v be bases defined by the greedy al-
gorithm [18] with respect to L, that is, equalities
(1) and (2) hold for x1v and y1v with respect to
G(L). Let x2v and y2v = dv − x1v be bases defined
by the greedy algorithm with respect to I. Since
an edge (v, u) corresponds to arc vu in G(L) and
arc uv in G(I), then x1 defined by (1) for G(L) is
y2 for G(I) and y1 defined by (2) for G(L) is x2

for G(I). By Claim 1, x1, x2 ∈ Q(g). �

The greedy algorithm [18] defines the following
bases with respect to the linear order L = (W,U)
for a bipartite graph H = (W,U,A):

xv = dHv , for v ∈ W, xu = 0, for u ∈ U,

yv = 0, for v ∈ W, yu = dHu , for u ∈ U.

Therefore,

∑

v∈W∪U

|xv − yv| (3)

is equal to the double weight of the maximum
cut separating the sets W and U , in the bipartite
graph H = (W,U,A). To the best of our knowl-
edge, there is no an algorithm to define a linear
ordering L of vertices for non-bipartite graph in
order to determine a maximum cut. Our goal in
the next sections is to develop some new ideas
for finding maximum cut in a non-bipartite graph
G = (V,E).

3. Models with convex objective

function

The maximum cut problem of a graph G = (V,E)
is to find the set of vertices S that maximizes
the weight of the edges in the cut (S, S), i.e., the
weight of the edges with one end node in S and the

other in S. In this section, we propose an alter-
native formulation for the maximum cut problem.
First, the relationship between cuts and bases of
the polymatroids P (f) is established. In a linear
ordering L of vertices, if v ≺L u for any vertices
v and u such that v ∈ S ⊂ V and u ∈ S, we write
it as L = (S, S) for short.

Theorem 1. The double weight of a cut δ(S) sep-
arating sets S and S is equal to

∑

v∈V

|xLv − yLv |, (4)

where bases xL ∈ P (f) and yL ∈ Q(g) are com-
puted by the greedy algorithm with respect to the
linear ordering L = (S, S) of vertices in V .

Proof. Consider the linear ordering L = (S, S)
of the vertices in V , that is, v ≺L u for any
node v ∈ S and u ∈ S, and let xL ∈ P (f) and
yL = d− xL. According to the linear ordering L,
we can direct each edge (v, u) of the graph as arc
vu, if v ≺L u or as uv if u ≺L v. Then all edges
in E will be directed as arcs v1v2, if v1 ≺L v2 for
vertices v1, v2 ∈ S, as arcs u1u2 if u1 ≺L u2 for
vertices u1, u2 ∈ S and as arcs vu, where v ∈ S
and u ∈ S. Clearly, after deleting the arcs v1v2
with end nodes v1, v2 ∈ S and the arcs u1u2 with
end nodes u1, u2 ∈ S, in G, the resulting subgraph
is a bipartite subgraph H = (S, S,A) (S ⊂ V
and A ⊆ E). With respect to H, one can de-
fine the functions f0 and g0, also the matroids
P (f0), Q(g0) and E(f0 − g0). Consider the bases
h ∈ P (f0) and t ∈ Q(g0) defined by the greedy
algorithm with respect to L, i.e.,

hv = dHv , for v ∈ S, hu = 0, for u ∈ S,

tv = 0, for v ∈ S, tu = dHu , for u ∈ S.

Hence, tv = dHv − hv for any node v ∈ V , and

2
∑

(u,v)∈A

cuv =
∑

v∈S

dHv +
∑

v∈S

dHv =

= h(S)− t(S) + |h(S)− t(S)|.

Since h is defined with respect to L and tv =
dHv − hv, then

h(T )− t(T ) = xL(T )− yL(T ), for T = S, S.

Therefore,

2
∑

(u,v)∈A

cuv = xL(S)− yL(S) + |xL(S)− yL(S)|
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=
∑

v∈V

|xLv − yLv |.

Thus, H is a maximum bipartite subgraph (the
sum of weights on its edges is maximum) of G,
if the last sum is maximum for the bases xL and
yL. �

Since f is a monotone submodular function, the
convex hull of bases P (f) is the following poly-
tope [14]

B(f) = {x;x ≥ 0, x(S) ≤ f(S), S ⊂ V, x(V ) = f(V )}.

We recall that x + y = d (Claim 1) for the bases
x and y generated by the greedy algorithm with
respect to any linear ordering L of vertices. Thus,
yv = dv − xv for all v ∈ V , and hence

|xv − yv| = |2xv − dv|.

We now present our original formulation of the
problem. By Theorem 1, the maximum cut prob-
lem can be formulated as the following special
convex program;

MaxCut∗ = max{Cut(x) =
∑

v∈V

|2xv − dv|} (5)

subject to

x ∈ B(f). (6)

In what follows, we propose further formulations
for the max-cut problem. To this end, we first
state the following lemma. Let

f+(x) =
∑

v∈V+(x)

(2xv − dv),

f−(x) =
∑

v∈V
−
(x)

(dv − 2xv),

where

V+(x) = {v ∈ V ; 2xv − dv > 0},

V−(x) = {v ∈ V ; 2xv − dv ≤ 0},

for any base x ∈ B(f).

Lemma 1. For any base x ∈ B(f)

Cut(x) = 2f+(x) = 2f−(x).

Proof. From the equality

f+(x)− f−(x) =
∑

v∈V

(2xv − dv) = 0

it follows that

Cut(x) = f+(x) + f−(x) + 0 = 2f+(x),

Cut(x) = f+(x) + f−(x)− 0 = 2f−(x).

�

By Lemma 1,

MaxCut∗ = f+(x
∗)+f−(x

∗) = 2f+(x
∗) = 2f−(x

∗),

where x∗ is an optimal solution to the problem
(5)-(6). Since z = 2x − d = x − y for any
z ∈ EP (f − g) and x ∈ B(f) by Claims 1-3, the
vector z+ = {z+v ; v ∈ V }, where z+v = max{zv, 0}
can be defined with respect to each base x ∈ B(f).
By the equality Cut(x) = 2f+(x), the following
problem

max{z+(V ); z ∈ EP (f − g)}

is equivalent to the maximum cut problem (5)-(6).
In addition to the above models, by the equality
Cut(x) = f+(x) + f−(x), the problem

max{f+(x) : x ∈ B(f)} = c(E)

−min{x(V−) + y(V+), x ∈ B(f), y = d− x} (7)

is also equivalent to the maximum cut problem
(5)-(6). The problem in the right hand side of
equality (7) can be considered as dual of the prob-
lem (5)-(6). We note that z = 2x− d = x− y for
x ∈ B(f) and y = d − x. We can also define the
vector z− = {z−v ; v ∈ V }, where z−v = min{zv, 0}
for any v ∈ V . It is easy to show that the follow-
ing problem

min{z−(V ); z ∈ EP (f − g)},

is equivalent to the above dual problem (7). Thus,
the latter problem can be considered as another
dual problem of the problem (5)-(6).

Moreover, Lemma 1 says that to solve the max-
imum cut problem on a given undirected graph,
one can find a base z ∈ EP (f − g)} for which ei-
ther z+(V ) is maximum or z−(V ) is minimum. It
is well known that the latter problem is used es-
sentially to design polynomial algorithms for min-
imizing a submodular function. For more details,
the reader can refer to [16].
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The above models are also useful for solv-
ing the maximum cut problem. For exam-
ple, since the algorithm in [18] defines O(n)
bases of B(f) in O(mn2) time, we can apply
it to handle different bases and related strings
Cut(x), V+(x), V−(x). Let LIST (Cuts) contains
strings Cut(x), V+(x), V−(x) for each these bases.

Theorem 2. In LIST (Cuts), if there are strings
for some pair of different bases x∗, x ∈ B(f) such
that

Cut(x∗) ≥ x(V+) + y(V−),

for y = d− x, V+ = V+(x) and V− = V−(x), then

MaxCut∗
2

≥
3

4
c(E).

Proof. If LIST (Cuts) contains the string for
base x, then Claim 3 implies that x(V+) = f(V+)
and y(V−) = f(V−). Let LIST (Cuts) contains
the string for the base x∗, too. Then

Cut(x∗) ≥ f(V+) + f(V−)

= f(V+) + g(V−) +
Cut(x)

2
= c(E) +

Cut(x)

2
.

To define Cut(x), the algorithm in [18] chooses a
node w 6= s for which 2xw−dw ≥ 2xv−dv > 0 for
v /∈ V+, and sets V+ := V+ +w, where V+ := s at
the beginning of the algorithm, and V− = V \V+.
This implies that Cut(x)/2 ≥ c(E)/2. Thus,

Cut(x∗) ≥ c(E) +
c(E)

2
=

3

2
c(E),

which completes the proof of the theorem. �

In LIST (Cuts), let

Cut(x∗) = max{Cut(x);Cut(x) ∈ LIST (Cuts)},

and let x(V+) + y(V−) be minimum for a base x
(y = d−x). In other words, Theorem 2 states that
Cut(x∗) is a solution to the maximum cut prob-
lem with the approximation ratio at least 0.75. In
this case, clearly the graph G has a cut with value
at least 3/4c(E). If the graph G does not have a
cut with value 3/4c(E), then Theorem 2 is not
true. In this case, we define λ from the equality

Cut(x∗) = λ(x(V+) + y(V−)).

Clearly, λ is a positive number and λ ≤ 1.3. By
the proof of Theorem 2, it can be shown that

MaxCut∗
2

≥ λ
3

4
c(E).

So, the graph G has a cut with value at least
3/4λc(E). In this case, the algorithm in [18] de-
fines a solution to the maximum cut with the ap-
proximation ratio at least 0.75λ for some positive
number λ < 1.

As a conclusion of this section, we note that sim-
plicity of the algorithm in [18] allows to solve real
practical large problems effectively by Theorem
2. In future, we plan to do some investigations in
this direction.

4. Maximum flow model

Now, we formulate the maximum cut problem
by another model. Let x ∈ B(f) be a base
generated by the greedy algorithm with respect
to a linear ordering L of vertices in V and let
z = 2x− d = x− y ∈ EP (f − g). Since z(V ) = 0,
we can define subsets

V+ = {v; zv = 2xv − dv > 0, v ∈ V }

and

V− = {w; zw = 2xw − dw < 0, w ∈ V }.

We consider an acyclic oriented graph G = (V,A)
obtained after replacing all edges by arcs accord-
ing to the linear ordering of L. The capacity on
each arc vu equals to the given weight of the edge
(v, u) ∈ E. We add two new vertices, a source
s and a sink r, to the graph G = (V,E). For
each vertex v ∈ V+ and w ∈ V−, we add arcs sv
and wr with capacity zv and |zw| to the graph
G = (V,E), respectively. In the resulting net-
work Gz = (Vz, Ez), let δ+(S) denote the set of
entering arcs to the vertices S ⊂ Vz and δ−(S)
denote the set of leaving arcs from the vertices of
the subset S. Recall that the capacity of the cut
separating a subset of S is defined as the sum of
the flows on the leaving arcs entering to vertices
v ∈ S minus the sums of the flows on the enter-
ing arcs to vertex v ∈ S. A cut with a minimum
capacity is called a minimum cut.

Theorem 3. In the network Gz = (Vz, Ez), any
maximum s − r flow (source s, and sink r) satu-
rates all arcs, i.e., on all arcs vu with end node
v, u ∈ V , the value of the maximum flow equals to
cvu, and on all arcs sv and rw, the value of the
maximum flow equals to zv and |zw|, respectively.

Proof. Let x be a base generated by the linear
ordering of L and y = d − x. From the defini-
tions of the capacity of arcs sv and rw, it follows
that c(δ+(v)) = c(δ−(v)) in the network Gz. This
means that the sums of capacities of arcs in the
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sets δ+(v) and δ−(v) are the same for each ver-
tex v ∈ V . Therefore, to maintain a balance be-
tween leaving and entering flows for each vertex
v ∈ V , the value of the maximum flow on arcs
of the acyclic oriented graph G = (V,A) must be
equal to its capacity. In addition, since

z(δ+(s)) = x(V+)− y(V+) = y(V−)− x(V−)

= |z(δ−(r))|

it follows that zv and |zw| are the maximum flow
values on the arcs sv and rw, respectively. �

By Theorem 3, since the value of the flow on all
arcs is equal to its capacity, that is, any cut sep-
arating the source s and the sink r are the mini-
mum cut in the network Gz = (Vz, Ez). Thus, we
obtain that f+(x) is the value of the maximum
flow from the source s to the sink r in the con-
structed network Gz = (Vz, Ez) according to the
base z = 2x− d ∈ EP (f − g).

So, Theorem 3 implies that to solve the maxi-
mum cut problem on a given undirected graph
G = (V,E), it needs to find a base z ∈ EP (f − g)
such that the capacity of any minimum cut sepa-
rating the source and sink is maximum in the con-
structed network Gz = (Vz, Ez). Such a model of
the maximum cut problem can have applications
for transportation of natural products from time
to time in different directions through pipelines of
the transport network.

Definition 1. Let Gz = (Vz, Ez) be a network
constructed for the base z = 2x− d ∈ EP (f − g).
The flow on each arc vw is called transit, if ver-
tices v, w are either in V+(x) or in V−(x).

Theorem 4. A base z = 2x − d ∈ EP (f − g) is
an optimal solution to the problem (5)–(6) if and
only if a maximum flow from source to sink has
a minimum sum of transit flows in the network
Gz = (Vz, Ez) constructed for the base z.

Proof. Let x be the base generated by the lin-
ear ordering of L and the network Gz constructed
for z = 2x − d contains the minimum sum of
transit flows on the arcs vw. By definition of a
cut in the graph G with respect to the bases x
and y = d − x, if v, w ∈ V+(x), then y(V+(x)) if
v, w ∈ V+(x), then x(V−(x)) are the total number
of transit flows on the arcs vw. Therefore, from
the dual equality (7), we obtain that δ(V+(x)) is
a maximal cut in the graph G.

If we consider that y(V+(x))+x(V−(x)) is the sum
of the transit flows in the network Gz constructed
for arbitrary bases z = 2x−d and x ∈ B(f), then

the opposite also follows from the dual equality
(7). �

In other words, Theorem 4 states that if the min-
imum number of variables satisfies inequalities
0 < xv < dv in solving the problem (5)-(6), then
a definite cut for xv is maximal in the graph G.
It is relatively difficult to design an effective al-
gorithm based on this theorem. At a first glance,
one might think that the network Gz = (Vz, Ez)
should not contain much more transit flows if
x(V+(x)) = y(V−(x)). However, the situation is
very complicated, since it is easy to design some
small maximum cut problems for which this is not
true. Indeed, this theorem states some connec-
tion between the maximum independent set and
the maximum cut problems, that require new in-
vestigations on network flow problems.

5. Concluding remarks

The value of applications of the theory of poly-
matroids ensures that the optimal solution of
many combinatorial optimization problems can
be found in polynomial time bounded algorithms.
For example, the vector z ∈ P (f) maximizes cz
in polynomial time for the monotonic submodular
function f . A deep understanding of this theory
makes it possible to use known methods devel-
oped for solving the network flows, as a solver
of subtasks enumerating in solving optimization
problems with a nonlinear objective function over
polymatroids structures (see [14]). Considering
topological properties of graphs under considera-
tion in solving combinatorial problems over poly-
matroids leads to a polynomial algorithm as a
solver for the maximum cut problem. In [10],
topological properties of planar graphs namely
the geometric duality is used to develop a polyno-
mial time bounded for finding a maximal cut of
these graphs. Since we do not know about unam-
biguous connections between NP and P , it is dif-
ficult to come up with a polynomial time bounded
algorithm for solving (5)-(6), only using the above
described and other specifics of the problem. But,
with respect to the specifics of the objective func-
tion (5) and constraints (6), we hope that the next
two weaker questions can be solved by a polyno-
mial time algorithm.

(1) Is it possible to design greedy type algo-
rithm by using the subgradient of the ob-
jective function at a current point (base)
x to compute the next point xk such that
(5) will be strongly increased?

(2) How topological properties of a given
graph and the techniques described in the
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paper could be combined for finding an ex-
act upper bound of the objective function
(5)?

Based on positive answers to these two questions
a polynomial time algorithm can be developed for
finding an optimal solution to (5)-(6) on graphs
with unit edge weights and as a result, we could
get NP = P .
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1. Introduction

In recent years, studies conducted on findings
new analytical solutions of differential equations
have attracted attention of scientists from all
over the world [1–21]. Especially the dynam-
ics of optical soliton is one of the most fascinat-
ing areas of research in the field of mathematical
physics. There are a great number of models that
studies the dynamics of optical soliton propaga-
tion through a large variety of waveguides such
as optical fibers, optical couplers, crystals, opti-
cal metamaterials and metasurfaces. The com-
plex Ginzburg-Landau equation (CGLE) is one
of these models and it is extended kind of the
nonlinear Schrodinger equation that is the gov-
erning model of this context.The CGLE describes
various phenomena including nonlinear optical
waves, second-order phase transitions, Rayleigh–
Bnard convection superconductivity, superfluid-
ity, Bose–Einstein condensation and liquid crys-
tals [1–4]. It is studied widely all over the world
by a variety researchers [1–12]. A wealth of re-
sults have been reported in this context. Some

of the integration methods that have been im-
plemented to this model are trial solution ap-
proach [7], modified simple equation method [8],
first integral method [9], semi-inverse variational
pirinciple [10] and others.The current paper will
use Jacobi elliptic functions to extract cnoidal and
snoidal wave solutions to the model.These will get
soliton solutions in the limiting case of the mod-
ulus of ellipticity.

2. Mathematical analysis

The dimensions form of CGLE is [5]- [8]

iqt + aqxx + bF
(

|q|2
)

q =
1

|q|2 q∗

[

α |q|2
(

|q|2
)

xx

−β
{(

|q|2
)

x

}2
]

+ γq, (1)

where q (x, t) is a complex-valued function which
represents the soliton molecule in an optical fiber.
The independent variables x and t show spatial
and temporal coordinates, respectively. Then a
and b represent coefficients of the group velocity
dispersion (GVD) and nonlinearity, respectively.
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Also α and β are additional nonlinear terms and
γ stem from the detuning effect [11].

In (1), if we think the complex plane C as a two-
dimensional linear space R2, it can be written

F
(

|q|2
)

q ∈ ∪∞

ℓ,n=1C
k
(

(−n, n)× (−ℓ, ℓ) ;R2
)

.

(2)

The initial hypothesis for (1) is taken by the fol-
lowing form:

q (x, t) = u (ξ) eiφ(x,t), (3)

In (3), u and φ represent amplitude and phase
component of the soliton respectively and here

ξ = x− vt, (4)

and
φ = −κx+ wt+ θ (5)

where v represents the soliton velocity, κ and w
represent the frequency and wave number of the
soliton respectively and θ is the phase constant.

Substituting (3) into (1) and then decomposing
real and imaginary parts, the real part is given

(a− 4β)u′′ −
(

w + aκ2 + γ
)

u+ F
(

u2
)

u

= 2 (α− 2β)
(u′)2

u
. (6)

It is also note that u′ = du/dξ, u′′ = d2u/dξ2 and
so on. The choice

α = 2β, (7)

Eq. (1) modifies to

iqt + aqxx + F
(

|q|2
)

q =
β

|q|2 q∗

[

2 |q|2
(

|q|2
)

xx

−
{(

|q|2
)

x

}2
]

+ γq, (8)

and the real part reduces

(a− 2α)u′′ −
(

w + aκ2 + γ
)

u+ F
(

u2
)

u = 0,
(9)

and then imaginary part of the Eq. (1) gives the
soliton velocity as:

v = −2aκ. (10)

The velocity of the soliton, given by (10), is in-
dependent of the type of nonlinearity. So it stays
the same for all forms of fiber in question.

2.1. Kerr law

In this case,
F (s) = bs, (11)

where b is the real-valued constant. So, Eq. (8)
reduces to

iqt + aqxx +
(

b |q|2
)

q =
β

|q|2 q∗

[

2 |q|2
(

|q|2
)

xx

−
{(

|q|2
)

x

}2
]

+ γq, (12)

and the real part equation (9) simplifies to

(a− 4β)u′′ −
(

w + aκ2 + γ
)

u+ u3 = 0. (13)

We assumed that u is in the form

u (ξ) = Asnρ (Bξ, ℓ) , ξ = x− vt, (14)

where ℓ is the modulus of Jacobi elliptic function
and 0 < ℓ < 1. Also A represents the amplitude,
B is the inverse width of the soliton and unknown
index ρ will be determined.

Substituting Eq. (14) and its necessary deriva-
tives in the real part Eq. (13), we have

(a− 4β) (ρ− 1) ρAB2snρ−2 (Bξ, ℓ)

− (a− 4β) ρ
[

ℓ2 (ρ− 1) + ℓ+ ρ
]

AB2snρ (Bξ, ℓ)

+ (a− 4β) ℓρ (ℓρ+ 1)AB2snρ+2 (Bξ, ℓ) (15)
(

w + aκ2 + γ
)

Asnρ (Bξ, ℓ)+bA3sn3ρ (Bξ, ℓ) = 0.

From Eq.(15), matching the exponents
snρ+2 (Bξ, ℓ) and sn3ρ (Bξ, ℓ) yields

ρ+ 2 = 3ρ, (16)

which gives
ρ = 1. (17)

Equating coefficients of them and setting coeffi-
cients of snρ+j (Bξ, ℓ), for j = −2, 0, to zero in
(15) as these are linearly independent functions
yields

A =

√

w + aκ2 + γ

bℓ
, (18)

B =

√

w + aκ2 + γ

(4β − a) (ℓ+ 1)
, (19)

which requires the constraints
(

w + aκ2 + γ
)

b > 0, (20)

(

w + aκ2 + γ
)

(4β − a) > 0. (21)

So, for Kerr law nonlinearity, the Jacobi elliptic
function solution is

q (x, t) =

√

w + aκ2 + γ

bℓ
.sn

[
√

w + aκ2 + γ

(4β − a) (ℓ+ 1)

(x+ 2aκt) , ℓ] .ei(−κx+wt+θ), (22)

If the modulus ℓ → 1 in Eq. (22), we obtain fol-
lowing dark optical soliton solution

q (x, t) =

√

w + aκ2 + γ

b
. tanh

[
√

w + aκ2 + γ

2 (4β − a)

(x+ 2aκt)] .ei(−κx+wt+θ). (23)
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In solutions (22) and (23), q (x, t) represents the
soliton molecule in fiber. κ and w are the fre-
quency and wave number of the soliton respec-
tively, θ is the phase constant. Also γ depicts
detuning effect, a , b and β are constants.

In order to construct exact solutions for Eq. (12);
we use hypothesis in the form

u (ξ) = Acnρ (Bξ, ℓ) , (24)

From (24), Eq. (13) reduces to

(a− 4β)
(

1− ℓ2
)

(ρ− 1) ρAB2cnρ−2 (Bξ, ℓ)

+ (a− 4β) ρ
[

ℓ2 (2ρ− 1) + ℓ− ρ
]

AB2cnρ (Bξ, ℓ)

− (a− 4β) ℓρ (ℓρ+ 1)AB2cnρ+2 (Bξ, ℓ) (25)

−
(

w + aκ2 + γ
)

Acnρ (Bξ, ℓ)+bA3cn3ρ (Bξ, ℓ) = 0,

Setting the exponents and coefficients of functions
cnρ+2 (Bξ, ℓ) and cn3ρ (Bξ, ℓ) equal to one an-
other, and again setting the coefficients functions
of cnρ+j (Bξ, ℓ) to zero for j = −2, 0, we acquire
the same value of which is in (17) and following
equations

A =

√

ℓ (ℓ+ 1) (w + aκ2 + γ)

b (ℓ2 + ℓ− 1)
, (26)

B =

√

w + aκ2 + γ

(a− 4β) (ℓ2 + ℓ− 1)
, (27)

with the conditions
(

w + aκ2 + γ
)

b
(

ℓ2 + ℓ− 1
)

> 0, (28)
(

w + aκ2 + γ
)

(a− 4β)
(

ℓ2 + ℓ− 1
)

> 0. (29)

Hence, we get the Jacobi elliptic function solution
for CGLE with Kerr law nonlinearity as

q (x, t) =

√

ℓ (ℓ+ 1) (w + aκ2 + γ)

b (ℓ2 + ℓ− 1)

.cn

[
√

w + aκ2 + γ

(a− 4β) (ℓ2 + ℓ− 1)
(x+ 2aκt) , ℓ

]

(30)

.ei(−κx+wt+θ).

When ℓ → 1, solution (30) reduces bright optical
soliton solution which is given by

q (x, t) =

√

2 (w + aκ2 + γ)

b

. sech

[
√

w + aκ2 + γ

(4β − a)
(x+ 2aκt)

]

(31)

.ei(−κx+wt+θ),

where κ represents the soliton frequency, while w
depicts the wave number of the soliton. θ, a, b and
β are constants and so γ arise from the detuning
effect.

2.2. Parabolic law

In this case,

F (s) = b1s+ b2s
2, (32)

where b1 and b2 are constants. So, Eq. (8) reduces
to

iqt + aqxx +
(

b1 |q|
2 + b2 |q|

4
)

q =
β

|q|2 q∗

.

[

2 |q|2
(

|q|2
)

xx
−
{(

|q|2
)

x

}2
]

+ γq, (33)

and the real part Eq. (9) simplifies to

(a− 4β)u′′ −
(

w + aκ2 + γ
)

u+ b1u
3 + b2u

5 = 0.
(34)

The initial hypothesis as given below

u (ξ) = A [D + sn (Bξ, ℓ)]ρ , (35)

So we get

(a− 4β) (ρ− 1) ρAB2
(

1−D2
) (

1− ℓ2D2
)

. [D + sn (Bξ, ℓ)]ρ−2 + (a− 4β) ρ
{

2ρ
(

1− ℓ2D2
)

+ℓ
(

1−D2
)

+ ℓ2
(

3D2 − 2
)

− 1
}

AB2D

. [D + sn (Bξ, ℓ)]ρ−1 + (a− 4β) ρ
{

ℓD2 (6ℓρ− 4ℓD + ℓ+ 2) + ℓ2 (1− 2D − ρ)

−ℓ− ρ}AB2 [D + sn (Bξ, ℓ)]ρ + (a− 4β) (36)

.ℓρ (−4ℓρ+ 3ℓ− 3)AB2D [D + sn (Bξ, ℓ)]ρ+1

+(a− 4β) ℓρ (ℓρ+ 1)AB2 [D + sn (Bξ, ℓ)]ρ+2

−
(

w + aκ2 + γ
)

A [D + sn (Bξ, ℓ)]ρ

+b1A
3 [D + sn (Bξ, ℓ)]3ρ+b2A

5 [D + sn (Bξ, ℓ)]5ρ = 0.

Setting the exponents and the coefficients
[D + sn (Bξ, ℓ)]ρ+1and [D + sn (Bξ, ℓ)]3ρ and also

[D + sn (Bξ, ℓ)]ρ+2 and [D + sn (Bξ, ℓ)]5ρ equal
to one another, again equating the coefficients of
[D + sn (Bξ, ℓ)]ρ+j to zero, for j = −2,−1, 0, in
the Eq. (36), yields

ρ =
1

2
, (37)

D = ±1, (38)

A =

√

b1 (ℓ+ 2)

2b2 (ℓ− 3)D
, (39)

B = 2

√

√

√

√

√

(w + aκ2 + γ)

(a− 4β) [4ℓ (1 + 2ℓ− 2ℓD)
+ℓ2 (1− 4D)− 2ℓ− 1

]

, (40)

with conditions

b1b2 (ℓ− 3)D > 0, (41)

and
(

w + aκ2 + γ
)

(a− 4β) [4ℓ (1 + 2ℓ− 2ℓD)

+ℓ2 (1− 4D)− 2ℓ− 1
]

> 0. (42)



116 E. Ates / IJOCTA, Vol.10, No.1, pp.113-117 (2020)

Thus, the Jacobi elliptic function solution for the
CGLE with parabolic law nonlinearity is given by

q(x, t) =

√

b1 (ℓ+ 2)

2b2 (ℓ− 3)D
.











D + sn











2

√

√

√

√

√

(w + aκ2 + γ)

(a− 4β) [4ℓ (1 + 2ℓ− 2ℓD)
+ℓ2 (1− 4D)− 2ℓ− 1

]

(43)

(x+ 2aκt), ℓ)] .ei(−κx+wt+θ)

When the modulus ℓ → 1 , we obtain following
dark optical soliton solution

q(x, t) =
b1
2

√

−3

b2D
.

[

D + tanh

(
√

2 (w + aκ2 + γ)

(a− 4β) (5− 6D)
(44)

(x+ 2aκt))] .ei(−κx+wt+θ).

In solutions (43) and (44), q (x, t) represents the
soliton molecule in fiber. κ and w are the fre-
quency and wave number of the soliton respec-
tively, θ is the phase constant. Also γ depicts
detuning effect, a, b1, b2, D are constants.

Now, if we take the starting assumption as

u (ξ) = A [D + cn (Bξ, ℓ)]ρ , (45)

Eq. (34) changes to

(a− 4β) (ρ− 1) ρAB2
(

1−D2
) (

ℓ2 + 1
)

. [D + cn (Bξ, ℓ)]ρ−2 + (a− 4β) ρ
{[

ℓ2(4ρ− 3) + ℓ
] (

D2 − 1
)

+ 2ρ− 1
}

.AB2D [D + cn (Bξ, ℓ)]ρ−1+(a− 4β) ρ
{

(1− 3D2)

(2ℓ2ρ− ℓ2 + ℓ)− ρ
}

AB2 [D + cn (Bξ, ℓ)]ρ (46)

+ (a− 4β) ℓρ (4ℓρ− ℓ+ 3)AB2D [D + cn (Bξ, ℓ)]ρ+1

− (a− 4β) ℓρ (ℓρ+ 1)AB2D [D + cn (Bξ, ℓ)]ρ+2

−
(

w + aκ2 + γ
)

A [D + cn (Bξ, ℓ)]ρ + b1A
3

[D + cn (Bξ, ℓ)]3ρ + b2A
5 [D + cn (Bξ, ℓ)]5ρ = 0.

Doing similar operations, value of the parameters
ρ and D obtained the same as Eq.s (37) and (38)
respectively and yields

A =

√

−b1 (ℓ+ 2)

2b2 (ℓ+ 3)D
, (47)

B = 2

√

w + aκ2 + γ

(a− 4β) [2ℓ (1− 3D2)− 1]
, (48)

where
b1b2D > 0, (49)

(

w + aκ2 + γ
)

(a− 4β)
[

2ℓ
(

1− 3D2
)

− 1
]

> 0.
(50)

So, we obtain

q(x, t) =

√

−b1 (ℓ+ 2)

2b2 (ℓ+ 3)D
[

D + cn

(

2

√

w + aκ2 + γ

(a− 4β) [2ℓ (1− 3D2)− 1]
(51)

(x+ 2aκt), ℓ)] .ei(−κx+wt+θ).

If the modulus ℓ → 1, we get following bright op-
tical soliton solution

q(x, t) =

√

−3b1
8b2D

.

[

D + sech

(

2

√

w + aκ2 + γ

(a− 4β) [1− 6D2]
(52)

(x+ 2aκt))] .ei(−κx+wt+θ).

where q(x, t) represents the soliton molecule in
fiber. κ represents the soliton frequency, while w
depicts the wave number of the soliton. θ, a, b and
β are constants and so γ arise from the detuning
effect.

3. Conclusion

This paper consider CGLE in kerr and parabolic
law media. Jacobi elliptic functions are used for
the integration scheme here. Bright and dark
optical soliton solutions are obtained using two
types Jacobi elliptic functions. The existence cri-
teria of these solutions are also indicated. These
solutions provide recognise physical phenomena
described by the equation. Due to the fact that
bright and dark optical soliton solutions always
help to address the soliton dynamics in long dis-
tance telecommunication system, the results of
the paper are useful in the fiber optics communi-
cation technology. It can be obtained different so-
lutions of the CGLE using the other Jacobi elliptic
functions. This technique is very useful and effec-
tive to get soliton solutions of nonlinear partial
differential equations in mathematical physics.
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In this research, an improved differential evolution algorithm with a restart
technique (DE-R) is designed for solutions of systems of nonlinear equations
which often occurs in solving complex computational problems involving vari-
ables of nonlinear models. DE-R adds a new strategy for mutation operation
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ing the evolutionary search to the basic DE algorithm. The proposed method
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1. Introduction

Difficult nonlinear problems arise in a variety
of fields in science and engineering, which de-
mands for the effective computational methods
and leads to the development of various intelli-
gence methods [1, 2] such as genetic algorithm,
particle swarm optimization, and differential evo-
lution algorithm. These methods are recognized
as the alternative approaches to the analytical
ones and have found applications in many areas.
For example, they have been applied to data clus-
tering problems in data science [3, 4], the weight
training of artificial neural networks [5,6], and nu-
merical treatments of nonlinear systems [7–11].
This research focuses on solving nonlinear systems
of equations which is common and important both
in theoretical and application aspects [12–16]. It
has been used as a key part of solving complex
problems involving decision variables of nonlin-
ear models. New systems of nonlinear equations
often emerge from computational problems and
can range from moderate problems with a few
variables to the hard ones with many variables.

For example, physical models that are expressed
as nonlinear partial differential equations become
large systems of nonlinear equations when dis-
cretized [17]. The systems may also have strongly
dependent variables or a large number of local so-
lutions, which makes them much more difficult to
solve. So the analytical solution approach aiming
to get the closed form solution is usually imprac-
tical or impossible.
There are two practical approaches to solving a
system of nonlinear equations: the local meth-
ods that directly solve the original system and the
global methods that transform the system into an
optimization problem (with box constraints of the
variables) and solve that equivalent optimization
problem instead. The local methods consist of
iterative procedures that require an approximate
solution as a starting vector point and use the lo-
cal information (the derivatives or gradients) from
the equational functions of the system to compute
a new better approximate solution point for the
next iteration. They include all various Newton-
type methods [12] and can produce solutions with
good computational speed and solution quality if

*Corresponding Author
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the functions satisfy some analytical properties
and an approximate solution sufficiently close to
a real solution is given. Since these critical re-
quirements of the local methods are often not full-
filled, the derivative-free global solution methods
are needed.

1.1. Related work

There are a few global methods proposed for solv-
ing nonlinear systems in the literature. In 1998,
Karr et al. [18] presented a hybrid scheme us-
ing a genetic algorithm to locate initial guesses
of solutions, which are then supplied to a Newton
method. Their results on one selected test prob-
lem of finding the nodes and weights for Gauss-
Legendre quadrature showed that the genetic al-
gorithm can effectively locate an initial guess that
allows the Newton method to converge to an ac-
curate solution. Later, Grosan and Abraham [19]
applied a multi-objective optimization approach
to solve nonlinear systems in 2008. They used
a genetic algorithm and considered the nondomi-
nated solutions stored in an external set. Several
problems are tested and the obtained solutions
of various qualities both in number of different
solutions and accuracy are reported. In 2009,
Hirsch et al. [20] used the continuous GRASP
optimization method, a multi-start local search
procedure, to find all roots of nonlinear systems.
In order to find different solutions, the objective
function is adaptively modified to create an area
of repulsion (or penalty region) around solutions
that have already been found, and the continu-
ous GRASP is run multiple times. The method
showed promising results on four selected nonlin-
ear systems from the literature. Jaberipour et
al. [21] used a particle swarm optimization algo-
rithm to solve nonlinear systems in 2011. They
proposed a new way of updating each particle
and a mechanism to replace some of the worst
particles. Several test problems including both
nonlinear systems of a single equation and a few
equations are tested, and the solutions and their
accuracies are reported. In 2012, Pourjafari and
Mojallali [22] proposed a hybrid scheme of a two-
phase root finder for a nonlinear system using an
invasive weed optimization algorithm and a clus-
tering technique. They also aimed to locate all
roots of the system. The approach gives success-
ful results on several constructed nonlinear equa-
tions in single variable that have many local so-
lutions and on three real world problems of small
size that have a few different solutions. Oliveira
and Petraglia [23] proposed a stochastic optimiza-
tion method known as fuzzy adaptive simulated
annealing (fuzzy ASA) to find many solutions of

a nonlinear system in 2013. The fuzzy ASA is
run several times to explore different regions dur-
ing different activations. The method is stopped
when the solutions with the predefined accuracy
are found. Several test problems are tested and
the obtained high accuracy solutions are reported.
In 2016, Raja et al. [24] presented a memetic algo-
rithm (GA-SQP), a hybrid of a genetic algorithm
and a local search method based on a sequen-
tial quadratic programming (SQP) technique, for
solving nonlinear systems. Several variants of
GA-SQPs are proposed and tested on six different
application problems. The results showed that
the hybrid approaches give higher precision solu-
tions and their proposed methods outperform sev-
eral methods: simulated annealing (SA), pattern-
search (PS), Nelder–Mead (NM) and Levenberg-
Marquardt (LM) algorithm.
Recently in 2018, Zhang et al. [25] proposed a
modified cuckoo search algorithm (CSA) for solv-
ing nonlinear equations and nonlinear systems.
Four application systems are used to evaluate
the CSA performance. By setting high preci-
sion tolerance as the termination condition, solu-
tions with high accuracies are obtained and re-
ported. They have shown that the CSA gives
more accurate solutions than those obtained by
GA-SQPs. And also in 2018, Raja et al. [10]
have presented the particle swarm optimization
hybrid with Nelder-Mead method (PSO-NMM) to
solve nonlinear benchmark models. PSO-NMM
exploits the strength of PSO as an efficient global
search method to find good initial solutions and
then applies the Nelder-Mead simplex method to
refine the solutions for rapid local convergence.
They have shown that for moderate to difficult
nonlinear system problems, the hybridization of
NMM can enhance the convergence and give qual-
ity solutions with high precision.

1.2. Innovative contribution

From the development of computational intelli-
gence and evolutionary optimization methods to
solve various complex real world and synthetic
test problems of nonlinear systems, it is clear that
the global methods become the essential tools and
need more researchers attentions. This approach
will also make solving nonlinear systems an im-
portant field of global optimization since it can
supply plenty of challenging test problems. In
addition, research contributions in this direction
still lack common ground of how to compare and
establish the obtained results.
In this research, we aim to apply the differential
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evolution algorithm (DE) to solve nonlinear sys-
tems. DE is a popular and efficient global opti-
mization method introduced by Storn and Price
during the years 1995-1997 [26, 27] and it is sur-
prising that no explicit research contributions on
using DE to solve the problems are found among
our extensive related literature reviews. We pro-
pose an improved differential evolution algorithm
with a restart technique (DE-R) for solving the
problems and offer a basic ground of applying DE
in this direction. The main features of the pro-
posed algorithm can be summarized as follows:

• The mixing strategy of the xbest-
mutation to the basic DE mutation that
utilizes the current best vector solution to
enhance the search and the convergence
to an optimal solution.

• The incorporating of a restart technique
to prevent premature convergence and
stagnation during the evolutionary search.

• Its performance both in term of the con-
vergence speed and the achievement of
high precision solutions are tested on
several nonlinear benchmark problems of
varying difficulty.

The remainder of the paper is organized as fol-
lows. The basic differential algorithm is presented
in the next section and the proposed algorithm is
described in Section 3. Section 4 gives details of
the experimental design and lists all the bench-
mark problems. In Section 5, the performances
of the DE-R method are compared with those of
the basic DE algorithms based on the setting of
the value to reach, and with those of the PSO and
PSO-NMM methods [10] based on the setting of
the maximum number of function evaluations. Fi-
nally, the conclusion are given in the last section.

2. The differential evolution algorithm
(DE)

The basic or classic DE algorithm [26,27] for solv-
ing a continuous optimization problem is a sto-
chastic search method using a population of real
vectors with four main operations: initialization,
mutation, crossover and selection. The pseudo
code of the basic DE is illustrated in Table 1. Its
main features are the differential mutation, the
combined binomial crossover and the greedy se-
lection. First, the initial population is generated
uniformly in feasible region. For each generation
and each target vector xi, three different random

population vectors xr1, xr2, xr3, which are also dif-
ferent from the target vector, are used to gener-
ate a mutant vector xm = xr1 + F (xr2 − xr3) by
adding the scaled difference of two vectors to an-
other one with the scaling factor F . Then, some
components of the target vector are exchanged
with those of the mutant vector according to the
crossover rate CR to produce the trial vector. The
trial vector will replace the target vector in the se-
lection process if it is fitter.
For more than two decades, DE has been shown
to be one of the most efficient methods for con-
tinuous optimization problems [28–30]. However,
DE’s performances depend on five main factors:
the population size NP , the control parameters F
and CR, the dimension D, the objective function
f to be solved, and the amount of computations
allowed [31,32]. There are numerous research con-
tributions on modifying DE to improve the per-
formances in solving practical problems. These
include the main approaches of adapting the con-
trol parameters and adjusting the basic mutation
operation [33–42].

3. An improved differential evolution
algorithm with a restart technique
(DE-R)

We propose an improved differential evolution al-
gorithm with a restart technique (DE-R) as a
general purpose method for solving nonlinear sys-
tems through their equivalent transformed objec-
tive functions. Let the form of a nonlinear system
be 

f1(x1, x2, ..., xn) = 0

f2(x1, x2, ..., xn) = 0

...
fm(x1, x2, ..., xn) = 0

where fi : [LB,UB]n ⊆ Rn → R for i = 1, ...,m
are nonlinear equations (including linear func-
tions) and x = (x1, x2, ..., xn) is a real vector. We
want to find a solution x∗ such that fi(x

∗) = 0
simultaneously for all i. The problem is trans-
formed into the corresponding optimization prob-
lem by defining the objective function f as the
sum of the absolutes or the squares of all fi.
For the smoothness of f , we use the sum of the
squares. So the objective function f is as follows:

f(x) =
m∑
i=1

f2i (x). (1)
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Table 1. Pseudo code of the DE algorithm.

The DE algorithm

(1) Inputs:
Objective function to be minimize (f), problem dimension (D), and population size (NP ).

(2) Initialization:
(2.1) Randomly initialize all (row) vectors of the population matrix P = [xij ] of size NP ×D with

real values between the lower and upper bounds LB and UB.
(2.2) Calculate the fitness (the objective function value) for each population vector and record the

best vector xbest and the best value fbest.
(3) Mutation:

For each target population vector xi, construct the mutant vector xm by

xm = xr1 + F (xr2 − xr3)

where r1, r2 and r3 are randomly generated distinct indices (in the range of 1 to NP ) which are
also different from the target index i, and F is a scaling factor.

(4) Crossover:
Construct the trial vector (the candidate vector) xc by replacing some components of xi with the
corresponding components of xm as follows:

xcj =

{
xmj ; rand() < CR or j = IC,
xij ; otherwise

where rand() is a uniform random number in [0, 1], CR is a crossover rate, and IC is a randomly
fixed index from 1 to D.

(5) Selection:
Apply the greedy selection and check for an update of xbest.
(5.1) Greedy selection:

If f(xc) < f(xi), then replace the target vector xi with xc.
(5.2) Updating xbest:

If f(xc) < fbest, then update xbest with xc and update fbest with f(xc).
(6) Stopping condition:

Repeat all the steps (3) - (5) until fbest is less than the value to reach (V TR) or the maximum
number of function evaluations (maxnf) is reached. Then report the obtained best solution.

To be able to optimize the objective function by
using small number of function evaluations, we
tend to use small population size. But optimiz-
ing with small populations will tend to loss diver-
sity and lead to premature convergence or stagna-
tion easily [31, 32, 43, 44]. We can also accelerate
the convergence by utilizing the information of
the population xbest but this again increases the
chance of those convergence problems. DE-R uti-
lizes the xbest information and at the same time
prevents premature convergence and stagnation
by incorporating an xbest-mutation and a restart
technique.
The pseudo code and the flowchart of the pro-
posed DE-R method are presented in Table 2 and
Figure 1, respectively. After initialization, the
DE-R creates a mutant vector by using the mix-
ing scheme of two mutation operations: the basic
mutation

xm = xr1 + F (xr2 − xr3) (2)

and the xbest-mutation [28] that uses the xbest
information

xm =xbest+ F1(xr1 − xr2) + F2(xr3 − xr4) (3)

where xr1, xr2, xr3, and xr4 are different random
vectors from the population and different from the
target vector xi. Each mutation operation is ran-
domly chosen and applied with the proportion of
50% : 50%. And instead of using a fixed value for
scaling factors, the DE-R algorithm uses random
values in the range of [0.5, 0.7] for F, F1 and F2.
These basic proportion and range of scaling fac-
tors are chosen from the preliminary experiments.
For the crossover operation, the fixed value of
crossover rate CR = 0.9 is used to generate the
trial vector. Then the same greedy selection as
in basic DE is applied. To prevent premature
convergence or stagnation, the restart technique
randomly restart PR of the population vectors
by replacing them with the new generated vec-
tors as in the initialization for every NRS gen-
erations. This incorporated restart operation pe-
riodically supplies small amount of new contents
to the evolving population. Note that the xbest
vector is kept, updated and used in the xbest-
mutation along the entire optimization process.
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Table 2. Pseudo code of the improved DE algorithm with a restart (DE-R).

The improved DE algorithm with a restart (DE-R)

(1) Inputs and control parameters:
Objective function to be minimize : f
Problem dimension: D
Lower and upper bounds of the problem: LB,UB
Population size: NP = 50
The value to reach: V TR = 10−20

Maximum number of function evaluations: maxnf
Scaling factors: F, F1, F2 in the range of [0.5, 0.7]
Crossover rate: CR = 0.9
Mixing rate of basic mutation and xbest-mutation: 0.5
The period to apply a restart (number of generations): NRS = 200
Restart rate (the percentage to restart the population vectors): PR = 0.2

(2) Initialization:
(2.1) Randomly initialize all (row) vectors of the population matrix P = [xij ] of size NP ×D with

real values between the lower and upper bounds LB and UB.
(2.2) Calculate the fitness (the objective function value) for each population vector and record the

best vector xbest and the best value fbest.
(3) Mutation:

(3.1) For each target population vector xi, generate a uniform random number u in [0, 1]. If u < 0.5,
apply the DE basic mutation in (3.2); otherwise, apply the xbest- mutation in (3.3).

(3.2) Basic mutation:
Randomly generate distinct indices r1, r2 and r3 (in the range of 1 to NP ) which are also
different from the target index i. Construct the mutant vector xm by

xm = xr1 + F (xr2 − xr3)

where F is randomly generated in [0.5, 0.7].
(3.3) The xbest-mutation:

Randomly generate distinct indices r1, r2, r3, and r4 (in the range of 1 to NP ) which are
also different from the target index i. Construct the mutant vector xm by

xm = xbest+ F1(xr1 − xr2) + F2(xr3 − xr4)

where xbest is the current best solution and F1, F2 are randomly generated in [0.5, 0.7].
(4) Crossover:

Construct the trial vector (the candidate vector) xc by replacing some components of xi with the
corresponding components of xm as follows:

xcj =

{
xmj ; rand() < CR or j = IC,
xij ; otherwise

where xm is the mutant vector from the step (3), CR is the crossover rate, rand() is a uniform
random number in [0, 1], and IC is a randomly fixed index from 1 to D.

(5) Selection:
Apply the greedy selection and check for an update of xbest.
(5.1) Greedy selection:

If f(xc) < f(xi), then replace the target vector xi with xc.
(5.2) Updating xbest:

If f(xc) < fbest, then update xbest with xc and update fbest with f(xc).
(6) Restart:

Apply the restart technique every NRS generations by randomly choosing PR × NP distinct
population vectors to be re-initialized as in the initialization where PR is the restart rate.

(7) Stopping condition:
Repeat all the steps (3) - (6) until fbest is less than V TR or maxnf is reached. Then report the
obtained best solution.
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Start

Set NP, maxnf, NRS and VTR.

Generate initial population.

Evaluate all vectors xi ; i=1,2,…,NP.

Find and set xbest and fbest.

Set the generation number G=1 and 

number of function evaluations nf=0.

i=1

Set a target vector xi.

(Mutation)

Generate the mutant vector xm.

(Crossover)

Generate the candidate vector xc from xi and xm.

(Selection)

Compute f(xc) and nf=nf+1.

Update xi by xc if f(xc)<f(xi).

Update xbest and fbest by xc and f(xc) if f(xc)<fbest.

fbest <VTR or

nf > maxnf

Report xbest and fbest.

G:=G+1

i:=i+1

Stop

Yes

No

No

Yes

i=NP

Yes

Modulo(G,NRS)=0

Apply the restart operation.

No

Figure 1. Flowchart of the proposed DE-R method.
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4. Experimental design

To evaluate the performance of the DE-R algo-
rithm, two experiments with different settings
and measurements are performed. The first ex-
periment assesses the proposed DE-R algorithm
against the basic DE algorithms on 10 nonlin-
ear benchmark models by setting the value to
reach (V TR) while the second experiment com-
pares the DE-R algorithm to the PSO and PSO-
NMMmethods [10] by setting the maximum num-
ber of function evaluations (maxnf).

4.1. Experiment 1: Performance
comparison of the DE-R with the
basic DE algorithms

The DE-R algorithm and the basic DE algorithms
are tested on 10 selected nonlinear systems con-
sisting of 6 real world problems (case study 1-6)
and 4 synthetic problems (case study 7-10). Their
definitions, parameters, variable bounds and the
solutions (for the case of synthetic problems) are
listed as follows.

Case study 1: Neurophysiology application [23,
45]. The system consists of the following six equa-
tions in six variables

f1(x) = x21 + x23 − 1 = 0
f2(x) = x22 + x24 − 1 = 0
f3(x) = x5x

3
3 + x6x

3
4 − c1 = 0

f4(x) = x5x
3
1 + x6x

3
2 − c2 = 0

f5(x) = x5x1x
2
3 + x6x

2
4x2 − c3 = 0

f6(x) = x5x
2
1x3 + x6x

2
2x4 − c4 = 0

where ci = 0 for all i as in [23] and −10 ≤ xi ≤ 10.

Case study 2: Robot kinematics application [46].
This problem concerns the indirect-position prob-
lem which is to find the desired position and ori-
entation of the robot hand and the relative joint
displacements. This problem can be reduced to
the following system of eight equations in eight
variables

f1(x) = 4.731× 10−3x1x3 − 0.3578x2x3

−0.1238x1 + x7 − 1.637× 10−3x2

−0.9338x4 − 0.3571 = 0

f2(x) = 0.2238x1x3 + 0.7623x2x3 + 0.2638x1

−0.07745x2 − 0.6734x4 − 0.6022 = 0

f3(x) = x6x8 + 0.3578x1 + 4.731× 10−3x2 = 0

f4(x) = −0.7623x1 + 0.2238x2 + 0.3461 = 0

f5(x) = x21 + x22 − 1 = 0

f6(x) = x23 + x24 − 1 = 0

f7(x) = x25 + x26 − 1 = 0

f8(x) = x27 + x28 − 1 = 0

where −1 ≤ xi ≤ 1.

Case study 3: Automative steering application
[20, 47]. This problem describes the kinematic
synthesis of a trailing six-member mechanism for
automotive steering. The system contains three
equations in three unknown as follows

fi(x) = [Ei(x2 sinϕi − x3)− Fi(x2 sinψi − x3)]
2

+[Fi(1 + x2 cosψi)− Ei(x2 cosϕi − 1)]2

−[(1 + x2 cosψi)(x2 sinϕi − x3)x1

−(x2 sinψi − x3)(x2 cosϕi − x3)x1]
2 = 0 ,

i = 1, 2, 3

where 0 ≤ xi ≤ 1 and

Ei = x2(cosψi − cosψ0)− x2x3(sinψi − sinψ0

−(x2 sinψi − x3)x1

Fi = −x2 cosϕi − x2x3 sinϕi + x2 cosϕ0

+x1x3 + (x3 − x1)x2 sinϕ0.

The constants ϕi and ψi are given as follows

ϕ0 = 1.3954170041747090114,

ϕ1 = 1.7444828545735749268,

ϕ2 = 2.0656234369405315689,

ϕ3 = 2.4600678478912500533,

ψ0 = 1.7461756494150842271,

ψ1 = 2.0364691127919609051,

ψ2 = 2.2390977868265978920,

ψ3 = 2.4600678409809344550.

Case study 4 : Economics modeling applica-
tion [23, 45]. This problem arises in economics
modeling. It can be extended for general dimen-
sions n as follows

fi(x) = (xi +
n−i−1∑
j=1

xjxj+i)xn − ci = 0,

i = 1, 2, ..., n− 1

fn(x) =
n−1∑
j=1

xj + 1 = 0

where ci = 0 for all i as in [23] and −10 ≤ xi ≤ 10.

Case study 5 : Chemical equilibrium applica-
tion [23, 46, 48]. This problem describes a chem-
ical equilibrium system. It concerns the combus-
tion of propane in air to form ten products, which
are transformed to ten equations in ten variables.
To solve this problem, the system can be reduced
to the following systems of five equations in five
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variables

f1(x) = x1x2 + x1 − 3x5 = 0

f2(x) = 2x1x2 + x1 + x2x
2
3 +R5x2 −R1x5

+2R7x
2
2 +R4x2x3 +R6x2x4 = 0

f3(x) = 2x2x
2
3 + 2R2x

2
3 − 8x5 +R3x3

+R4x2x3 = 0

f4(x) = R6x2x4 + 2x24 − 4R1x5 = 0

f5(x) = x1(x2 + 1) +R7x
2
2 + x2x

2
3 +R5x2

+R2x
2
3 + x24 − 1 +R3x3 +R4x2x3

+R6x2x4 = 0

where −100 ≤ xi ≤ 100 and the constants used
in this system are

R1 = 10, R2 = 0.193, R3 = 0.002597/
√
40,

R4 = 0.003448/
√
40, R5 = 0.00001799/40,

R6 = 0.0002155/
√
40, R7 = 0.00003846/40.

Case study 6 : Combustion application [23,45].
This problem is a typical chemical equilibrium
problem which represents a combustion problem.
The system consists of ten equations in ten un-
knowns as follows

f1(x) = x2 + 2x6 + x9 + 2x10 − 10−5 = 0

f2(x) = x3 + x8 − 3× 10−5 = 0

f3(x) = x1 + x3 + 2x5 + 2x8 + x9 + x10

−5× 10−5 = 0

f4(x) = x4 + 2x7 − 10−5 = 0

f5(x) = 0.5140437× 10−7x5 − x21 = 0

f6(x) = 0.1006932× 10−6x6 − 2x22 = 0

f7(x) = 0.7816278× 10−15x7 − x24 = 0

f8(x) = 0.1496236× 10−6x8 − x1x3 = 0

f9(x) = 0.6194411× 10−7x9 − x1x2 = 0

f10(x) = 0.2089296× 10−14x10 − x1x
2
2 = 0

where −20 ≤ xi ≤ 20.

Case study 7 : Rosenbrock function [49]. This
function is well-known for testing the perfor-
mance of the optimization methods. The two-
dimensional function has the global minimum in-
side a long, narrow, parabolic shaped flat val-
ley. It is unimodal for dimensions 2 and 3, and
has 2 minima for higher dimensions. The high-
dimensional function is highly nonseparable and is
used as one of the difficult test functions. Rosen-
brock function can be written in the form of sys-
tem of nonlinear equations in general dimensions
n as follows{

f2i−1(x) = 10(xi+1 − x2i ) = 0, i = 1, 2, ..., n− 1

f2i(x) = 1− xi = 0, i = 1, 2, ..., n− 1.

In this work, we set n = 10 and −100 ≤ xi ≤ 100.
The global solution is (1, 1, ..., 1).

Case study 8 : SINQUAD function [50]. This
function is multimodal and nonseparable and it is
one of the test functions from CUTE: Constrained
and Unconstrained Testing Environment. It can
be scaled up to arbitrary dimension n and can be
written in the form of the following system

f1(x) = (x1 − 1)2 = 0

fi(x) = sin(xi − xn)− x21 + x2i = 0, i = 1, ..., n− 1

fn(x) = x2n − x21 = 0.

We set n = 10 and −100 ≤ xi ≤ 100.
There are 2n−1 + 1 solutions in the forms
(1, 1, ..., 1, 1) and (1, a1, a2, ..., a8,−1) where aj ∈
{0.2357835607,−1}.
Case study 9 : Proposed function 1. This
function can be written in the form of the sys-
tem of three nonlinear equations in n variables
where n ≥ 3. The first two equations give the
intersection of two n-spheres which is an (n− 1)-
sphere. The last equation chooses the two in-
tersection points where x1 = 0.05. This system
is expected to be highly nonseparable since the
searching points must lie in the (n− 1)-sphere. It
is shown as follows

f1(x) = x21 + x22 + · · ·+ x2n − 100 = 0

f2(x) = (x1 − 0.1)2 + x22 + · · ·+ x2n − 100 = 0

f3(x) = x21 + (x2 − x3)
2 + (x3 − x4)

2 + · · ·

+(xn−1 − xn)
2 − 0.0025 = 0.

We set n = 10 and −100 ≤ xi ≤
100. There are two solutions which are
(0.05, a, a, ..., a) and (0.05,−a,−a, ...,−a) where

a =
√
(100− 0.052)/(n− 1).

Case study 10 : Proposed function 2. This func-
tion can be written in the form of the system of
three nonlinear equations in n variables where n
is even. The system has one obvious solution at
(n, n, ..., n). It is presented as follows

f1(x) = x1 + x2 + · · ·+ xn − n2 = 0

f2(x) = x21 + x22 + · · ·+ x2n − n3 = 0

f3(x) = x21 − x22 + x23 − x24 + · · ·+ x2n−1 − x2n = 0.

We set n = 10 and −100 ≤ xi ≤ 100.
For the first experiment, the proposed DE-R is
tested and compared with two basic DE algo-
rithms. The basic DEs follow the settings as rec-
ommended in [27] to use NP in the range of 5×D
to 10×D, F = 0.5 and CR = 0.9. Since the max-
imum D of all test problems is 10, NP = 50 and
NP = 100 are chosen. So we denote these ba-
sic DEs as DE59-50 and DE59-100, respectively.



126 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

The DE-R method, denoted by DE59-50-R, uses
NP = 50, F in [0.5, 0, 7] and the same CR = 0.9.
The settings and features of DE59-50, DE59-100
and DE59-50-R are summarized in Table 3. Each
algorithm is run 30 times for each problem. The
maximum number of function evaluations maxnf
is set to 1000000 and the V TR (value to reach)
for fbest is set to 10−20 to guarantee that each
fi(xbest) is less than 10−10. If the fbest value is
less than the V TR before reaching the maxnf ,
the successful run and the number of function
evaluations used (nf) are recorded. We report
the number of successful runs (NS), the mean of
function evaluations (Mean nf) and the percent-
age of standard derivation (%SD).

4.2. Experiment 2: Performance
comparison of DE-R with PSO and
PSO-NMM methods

The second experiment compares the perfor-
mance of the DE-R algorithm with those of the
PSO and PSO-NMM using the same setting as
in [10]. The objective function f is the mean
square defined by

f(x) =
1

m

m∑
i=1

fi(x)
2. (4)

We choose the following PSO and PSO-NMM
variants that obtain good results in [10]: PSO-12,
PSO-15, PSO-16, PSO-NMM-12, PSO-NMM-15,
and PSO-NMM-16. They are compared on the
case studies 1, 4, 5, and 6. Note that for the case
study 4, the parameters ci = 1 for i = 1, 2, ..., n−1
where n = 5. Each algorithm conducts 100 inde-
pendent runs for each problem. The Min, Mean
and SD values of fbest of DE-R at each maxnf
are compared with those of PSO and PSO-NMM.

The PSO-12 and PSO-15 methods use maxnf =
50000 while PSO-16 uses maxnf = 100000. The
PSO-NMM-12, PSO-NMM-15 and PSO-NMM-16
variants extend the corresponding PSO variants
respectively. For each PSO-NMM method, if its
PSO phase obtains the solution that reaches the
tolerance 10−15 or uses up all the maxnf with-
out reaching the tolerance, then it enters the
NMM phase by applying the local search using the
Nelder-Mead method with the additional func-
tion evaluations of 200000. To compare the DE-R
with each PSO-NMM method on each test prob-
lem, the maxnf for DE-R needs to be adjusted
properly. For the former case, Neurophysiology
and Economics modeling applications, the DE-R
method uses only 200000 as the maxnf . For the
latter case, Chemical equilibrium and Combus-
tion applications, DE-R uses the sum of the func-
tion evaluations of both two phases.

5. Results and discussion

This section shows performance comparison of
the DE-R with the basic DE algorithms and the
performance comparison of DE-R with PSO and
PSO-NMM methods. In each report table, the
best values are indicated in bold. The discussion
for each experiment is given as follows.

5.1. Performance comparison of the DE-R
with the basic DE algorithms

The performance comparison of DE59-50, DE59-
100 and DE59-50-R are shown in Table 4, Figure
2 and Figure 3. The table presents the NS, Mean
and %SD of each method for all 10 test systems.
For the ability and stability of solving each prob-
lem, the number of successful runs out of the
total 30 runs is considered first. From Table 4,
the results show that the DE59-50 algorithm can
successfully solve 6 out of 10 problems. It can-
not solve the problems 6, 8, 9 and 10, and gives
no successful runs out of total 30 runs for these
problems. It can solve problem 5 (Chemical Equi-
librium Applications) and problem 7 (Rosenbrock
problem), but gives high Means and %SDs. How-
ever, DE59-50 gives the best results for the first
four problems which appear to be relatively easy
problems. We can conclude that DE59-50 is good
for easy problems but cannot be recommended
for solving difficult problems. This is because of
its too small population size.
The DE59-100 algorithm can solve all 10 prob-
lems. This shows that the increased population
size of 100 can increase the solving ability of the
DE algorithm with F = 0.5 and CR = 0.9. How-
ever, DE59-100 gives very high Mean values. This
shows that its speed of convergence is rather slow.
The proposed DE59-50-R algorithm can success-
fully solve all 10 problems. It also gives the best
results (smallest Means) for the last 6 problems
which appear to be difficult problems. For the
first four easy problems, DE59-50-R gives the
second best results. This shows that the incor-
porated new mutation strategy and restart tech-
nique can prevent the premature convergence and
stagnation, and still gives fast convergence speeds
for difficult problems as clearly shown in Figure
2 and Figure 3.

Some solutions obtained by DE59-50-R for all
application systems and SINQUAD function are
reported. We show only 4 different solutions for
each problem. Since we set the V TR = 10−20,
the absolute values of each fi(x) must be less
than 10−10. Table 5 shows some solutions of Neu-
rophysiology application. Our method gives 30
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Table 3. The settings and features of DE59-50, DE59-100 and DE59-50-R.

DE algorithm NP F CR Mutation and other feature
DE59-50 50 0.5 0.9 basic mutation

DE59-100 100 0.5 0.9 basic mutation

DE59-50-R 50 [0.5, 0.7] 0.9 basic mutation & xbest-mutation
and a restart technique

Table 4. Performance comparison of DE59-50, DE59-100 and DE59-50-R using NS, Mean nf,
%SD values at V TR = 10−20 averaged over 30 independent runs.

Systems Methods NS Mean nf %SD
1: Neurophysiology DE59-50 30 27272.70 16.98

application DE59-100 30 76787.67 19.51
DE59-50-R 30 40233.67 16.99

2: Robot kinematics DE59-50 30 24942.53 28.27
application DE59-100 30 57355.60 18.13

DE59-50-R 30 34721.30 17.70

3: Automative steering DE59-50 30 2303.30 12.34
application DE59-100 30 4307.83 8.89

DE59-50-R 30 2682.10 12.03

4: Economics modeling DE59-50 30 12780.60 5.96
application DE59-100 30 30193.97 4.63

DE59-50-R 30 21831.93 7.96

5: Chemical equilibrium DE59-50 30 190249.03 47.06
application DE59-100 30 124793.33 5.70

DE59-50-R 30 30582.23 3.95

6: Combustion DE59-50 0 - -
application DE59-100 30 95503.70 3.79

DE59-50-R 30 59380.20 4.13

7: Rosenbrock DE59-50 30 193992.90 50.51
function DE59-100 30 110388.83 3.62

DE59-50-R 30 59565.40 2.52

8: SINQUAD DE59-50 0 - -
function DE59-100 30 173259.07 12.29

DE59-50-R 30 81755.37 8.90

9: Proposed DE59-50 0 - -
function 1 DE59-100 30 109782.20 6.95

DE59-50-R 30 65107.80 5.72

10: Proposed DE59-50 0 - -
function 2 DE59-100 30 638354.80 14.20

DE59-50-R 30 160827.47 12.69

different solutions for 30 runs. The values of each
variable can be positive or negative. There are
two trends of solutions. First, their magnitudes
are pairwise equal as |x1| = |x2|, |x3| = |x4| and
|x5| = |x6|. For another trend, all their compo-
nents are different. We notice that the absolute
values of x5 and x6 are quite smaller than other
components.
Some solutions of Robot kinematics application
are presented in Table 6. The authors in [46]
claimed that there are 16 solutions. Our results
show that the proposed method gives 10 different

solutions in 30 runs. All |xi| are not equal but
have roughly the same order. Table 7 shows some
solutions of Automative steering application. Our
method gives all 30 different solutions for 30 runs.
The absolute values of x1 are bigger than others
and the values of x2 and x3 have quite the same
order. For the Economics modeling application,
30 different solutions are obtained. Some of them
are reported in Table 8. Each variable can be pos-
itive or negative. The absolute values of x10 are
much smaller than others which have the same
order.
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Figure 2. Convergence graphs of DE59-50, DE59-100 and DE59-50-R for systems 1 - 6.

There are four real solutions of the Chemical
equilibrium application reported in [48]. Our
method gives all four solutions as shown in Table
9. For the Combustion application, the proposed
method gives 30 different solutions in 30 runs.
Some solutions are presented in Table 10. It
shows that the absolute values of x5, x6, x9 and
x10 are bigger than those of other components

which are rather small.
In case of the synthetic test problems, the num-
bers of solutions for each of Rosenbrock function,
proposed functions 1 and 2 are at most 2 and
all these solutions are found. Thus we show only
the solutions of SINQUAD function which has
2n−1 + 1 solutions. Some of them are shown in
Table 11. After running the proposed method 30
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Figure 3. Convergence graphs of DE59-50, DE59-100 and DE59-50-R for systems 7 - 10.

Table 5. Some solutions of Neurophysiology application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 9.7749269097E-01 - 4.2695388140E-02 9.2272247439E-02 - 8.2491292630E-01
x2 - 9.7749277453E-01 4.2695288767E-02 - 1.1674880868E-01 7.9424101299E-01
x3 - 2.1096928480E-01 9.9908813614E-01 9.9573381602E-01 5.6525981992E-01
x4 2.1096889745E-01 - 9.9908814042E-01 - 9.9316147514E-01 6.0760284168E-01
x5 - 2.9012525772E-05 1.0549841840E-04 1.0199560579E-09 - 4.1050316028E-11
x6 - 2.9012444215E-05 1.0549834938E-04 1.0098557221E-09 4.2217134911E-11

f1(x) 1.9671153595E-11 - 5.6388893555E-11 1.6900481015E-11 - 1.7983725620E-11
f2(x) - 4.6815662458E-11 1.6239010137E-11 3.8434810889E-11 - 7.0937811181E-11
f3(x) 2.2663307018E-12 6.7481831402E-11 1.7678400883E-11 2.0558188234E-12
f4(x) - 6.9223284026E-11 - 6.2704301665E-14 - 8.0570377011E-13 4.4194815939E-11
f5(x) - 8.0752967592E-12 - 1.3367709799E-11 - 2.2980110987E-11 2.3198700376E-11
f6(x) 2.6177939401E-11 1.0192828755E-12 - 5.0234619236E-12 3.9133806914E-13

times, it can give 27 different solutions.
To show that the proposed method can also give
high quality solutions, it is applied to solve two
difficult application systems and one difficult syn-
thetic function (Neurophysiology and Combus-
tion systems, and SINQUAD function) by setting
3 different levels of the V TR values: 10−20, 10−30

and 10−40. The solutions once reaching each
V TR level are recorded in the same run in or-
der to investigate their behaviors and accuracies.
The results are shown in tables 12, 13, and 14,
respectively. One set of three solutions (each one
at each accuracy level) from the same run is re-
ported for each problem.
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Table 6. Some solutions of Robot kinematics application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 1.6443166583E-01 1.6443166582E-01 6.7155426177E-01 6.7155426182E-01
x2 - 9.8638847688E-01 - 9.8638847685E-01 7.4095537891E-01 7.4095537883E-01
x3 - 9.5472843449E-01 2.3961601716E-01 - 2.3961165919E-01 9.5472976979E-01
x4 2.9747876626E-01 - 9.7086773778E-01 - 9.7086881339E-01 2.9747448069E-01
x5 - 9.1115479620E-01 - 9.9763539824E-01 9.5791710189E-01 - 1.2877823744E-01
x6 4.1206423943E-01 - 6.8728539911E-02 - 2.8704498935E-01 9.9167341678E-01
x7 9.9132241509E-01 - 6.1550840708E-01 - 5.2790902637E-01 9.6931180772E-01
x8 - 1.3145291671E-01 7.8813031971E-01 8.4930092421E-01 - 2.4583453656E-01

f1(x) - 2.4255042419E-12 4.6582404600E-11 2.1869284161E-11 - 1.5662637853E-11
f2(x) 3.1039615322E-11 4.5871084708E-12 - 1.3820167233E-11 5.0422999109E-12
f3(x) 2.1743830694E-12 1.2673250470E-11 1.4527121259E-11 - 5.7471936498E-11
f4(x) 1.5060341862E-11 2.7537028213E-11 5.3715809578E-11 - 2.9148350400E-12
f5(x) 4.0200731632E-11 - 1.2329803845E-11 3.2028157904E-11 - 1.9571233523E-11
f6(x) - 9.7184482684E-12 - 6.6788574671E-11 3.0616620350E-11 - 2.4448998381E-11
f7(x) 5.4400040028E-11 1.0798473227E-11 - 5.2414739216E-12 - 1.9850676658E-11
f8(x) - 2.2364221586E-11 2.5351054589E-11 - 1.3006706823E-11 - 3.8787306700E-11

Table 7. Some solutions of Automative steering application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 1.1192696492E-01 1.4669784820E-01 2.1001674043E-02 1.8459769700E-02
x2 3.8819470790E-05 2.5842964204E-05 1.0358260865E-05 2.5086298124E-05
x3 1.3969968025E-05 9.5393185049E-06 9.4604945191E-05 4.0484643474E-06

f1(x) - 2.4953389394E-12 5.1027141958E-13 1.5509436820E-11 1.0749400610E-12
f2(x) 6.2113867145E-12 - 1.8836413824E-12 2.9312085336E-11 1.9709660895E-11
f3(x) 9.1878352205E-11 3.1456991936E-11 4.8961749305E-11 6.6461220923E-11

Table 8. Some solutions of Economics modeling application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 - 6.1626101672E+00 6.0154692495E+00 5.1444125822E+00 3.5697160902E-01
x2 8.4423418690E+00 2.4451383666E+00 - 8.8035624273E-01 - 3.2209182844E+00
x3 - 6.0135423035E+00 - 4.3358334024E+00 1.8536153932E+00 6.4891799317E+00
x4 6.6724322251E+00 9.7533235680E-01 9.9392766203E-01 - 8.4197837365E+00
x5 1.4648933274E+00 - 6.7099720313E+00 8.8882743353E-01 3.8711746522E+00
x6 - 9.4952931192E+00 2.9005275369E+00 8.0171844852E-01 5.6239280280E+00
x7 - 1.8950537683E+00 - 2.0062068336E+00 - 3.9152883109E+00 6.0633634547E-01
x8 2.5753259373E+00 3.0111923766E+00 - 5.5692586733E-01 1.0345842326E+00
x9 3.4115059994E+00 - 3.2956476191E+00 - 5.3299310986E+00 - 7.3414727781E+00
x10 - 2.1904782760E-13 - 5.8674381000E-14 - 6.1325687030E-13 4.1496727200E-14

f1(x) 2.8765042169E-11 2.4583005293E-12 - 2.7179403893E-12 - 3.7642815954E-12
f2(x) 8.8232434540E-13 - 2.3163223689E-12 - 1.6660038822E-11 3.1943021197E-13
f3(x) 4.1467842031E-12 3.4719167082E-12 6.0666202644E-13 - 6.1741234660E-13
f4(x) 1.0720305561E-11 - 8.5259062950E-14 4.7145635625E-12 - 2.4212746954E-12
f5(x) - 1.1227997919E-11 6.1242977433E-13 - 1.3063316353E-12 3.0065629487E-12
f6(x) - 7.4689413357E-13 - 7.3251520844E-13 1.7618556611E-11 - 1.8728334542E-12
f7(x) - 2.4172620758E-12 - 4.7228264171E-13 1.2805457393E-12 1.0217298215E-12
f8(x) 4.0410941261E-12 9.8653194558E-13 1.7156652338E-11 - 6.5818503348E-14
f9(x) - 7.4728297801E-13 1.9337008404E-13 3.2686168644E-12 - 3.0464709312E-13
f10(x) 4.9998227780E-11 - 8.8817841970E-16 - 8.0000006619E-11 - 9.9991126490E-12

From tables 12 and 13, the solution for both ap-
plication problems at V TR = 10−20 are quite
different from those at V TR = 10−30 and 10−40

where at these higher accuracies we obtained sim-
ilar solutions with more accurate solutions at

V TR = 10−40. For the solutions of SINQUAD
function as in Table 14, we can see the same trend
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Table 9. All solutions of Chemical equilibrium application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 3.1141022831E-03 2.7571773851E-03 2.4710000144E-03 2.1533077099E-03
x2 3.4597924347E+01 3.9242289252E+01 4.3879222733E+01 5.0549570315E+01
x3 6.5041778861E-02 - 6.1387603945E-02 5.7784455215E-02 - 5.4144807517E-02
x4 8.5937805056E-01 8.5972442500E-01 - 8.6020547295E-01 - 8.6067132299E-01
x5 3.6951859146E-02 3.6985043297E-02 3.6965520015E-02 3.7000695742E-02

f1(x) 4.4613771011E-11 - 4.0732806017E-11 - 2.5496216249E-11 - 2.4678356580E-11
f2(x) 7.7566347442E-12 - 3.0284536164E-11 5.4004083757E-11 2.1900292344E-11
f3(x) - 5.7297743156E-11 - 7.1773320794E-12 - 2.5416176759E-11 8.9192338411E-12
f4(x) 1.4782175484E-11 - 2.1605606193E-11 - 7.5870421057E-11 - 2.4946711363E-11
f5(x) - 4.8531411962E-11 - 6.2299256465E-11 - 2.2982240893E-11 - 3.8321561636E-11

Table 10. Some solutions of Combustion application.

Solution 1 Solution 2 Solution 3 Solution 4

x1 - 2.1256693800E-07 - 1.2076437010E-06 - 8.2052168644E-08 - 2.9426051511E-07
x2 - 8.1757590664E-06 4.2644337543E-06 - 1.4477162217E-07 - 4.7401492243E-06
x3 - 6.7527163990E-04 - 4.2090672635E-05 5.1227964677E-05 - 6.0923109793E-05
x4 - 4.1833078103E-06 6.4157325619E-06 2.1289152054E-06 3.0404307410E-06
x5 1.6567014001E-04 4.5312194101E-04 - 2.2149062432E-04 3.2378004814E-04
x6 1.2934173578E-03 8.0745848233E-04 - 2.3204194677E-04 1.6392254306E-04
x7 7.0916610888E-06 1.7921487387E-06 3.9355599926E-06 3.4797831273E-06
x8 7.0527161222E-04 7.2090667874E-05 - 2.1227993570E-05 9.0923084400E-05
x9 5.3586029742E-04 - 3.0507240444E-04 4.9435402384E-04 - 1.1232728214E-03
x10 - 1.5522596511E-03 - 6.5205449512E-04 - 1.0062660059E-05 4.0508395318E-04

f1(x) - 4.8273876190E-11 3.7401625020E-12 3.8557848129E-11 2.1883831795E-11
f2(x) - 2.7678047280E-11 - 4.7604545021E-12 - 2.8892893645E-11 - 2.5393269464E-11
f3(x) - 5.6092310138E-11 1.8660651569E-12 4.0505311148E-11 2.6580721802E-11
f4(x) 1.4367258554E-11 3.0039278904E-11 3.5190617200E-11 - 3.0043345588E-12
f5(x) 8.4709844719E-12 2.1834044602E-11 - 1.1392318563E-11 1.6557120143E-11
f6(x) - 3.4477399301E-12 4.4934787964E-11 - 2.3406963800E-11 - 2.8432143924E-11
f7(x) - 1.7500064230E-11 - 4.1161624304E-11 - 4.5322799486E-12 - 9.2442190882E-12
f8(x) - 3.8015147210E-11 - 4.0044070424E-11 1.0271567782E-12 - 4.3230264589E-12
f9(x) 3.1455493138E-11 - 1.3747522017E-11 3.0610441206E-11 - 7.0974973960E-11
f10(x) 1.0965489675E-17 2.0599143169E-17 - 1.9304158566E-20 7.4580841134E-18

Table 11. Some solutions of SINQUAD function.

Solution 1 Solution 2 Solution 3 Solution 4

x1 1.0000013135E+00 1.0000020233E+00 9.9999578687E-01 9.9999635081E-01
x2 - 1.0000013135E+00 2.3578778570E-01 - 9.9999578691E-01 - 9.9999635080E-01
x3 2.3578630346E-01 2.3578778573E-01 2.3577476333E-01 - 9.9999635077E-01
x4 2.3578630350E-01 2.3578778572E-01 - 9.9999578687E-01 - 9.9999635077E-01
x5 2.3578630340E-01 - 1.0000020233E+00 - 9.9999578688E-01 - 9.9999635083E-01
x6 - 1.0000013135E+00 - 1.0000020234E+00 2.3577476328E-01 - 9.9999635075E-01
x7 2.3578630343E-01 2.3578778581E-01 - 9.9999578683E-01 - 9.9999635080E-01
x8 2.3578630341E-01 2.3578778575E-01 2.3577476333E-01 - 9.9999635085E-01
x9 - 1.0000013135E+00 2.3578778572E-01 - 9.9999578684E-01 - 9.9999635081E-01
x10 - 1.0000013135E+00 - 1.0000020233E+00 - 9.9999578686E-01 - 9.9999635083E-01

f1(x) 1.7252114825E-12 4.0939003788E-12 1.7750473715E-11 1.3316562876E-11
f2(x) 2.0599966177E-11 - 2.9519581224E-11 2.7519320156E-11 7.3162587100E-12
f3(x) 1.2524037363E-11 - 3.2059285782E-12 3.5025565781E-11 - 2.5635049639E-11
f4(x) 4.9083563602E-11 - 1.0487832824E-11 - 1.0218825786E-11 - 2.1720181209E-11
f5(x) - 2.9645889910E-11 - 1.5809797915E-11 - 4.2824632729E-12 3.1798563782E-11
f6(x) 5.6868731946E-11 - 7.3832051584E-12 - 1.0347889212E-11 - 4.7247761259E-11
f7(x) - 6.3057475908E-12 6.1809182772E-11 - 4.7515213986E-11 9.0893959026E-13
f8(x) - 2.4836653567E-11 1.0494015379E-11 3.5985284197E-11 5.4105275815E-11
f9(x) - 1.9166890297E-12 - 1.3320324010E-11 - 4.3021475271E-11 1.6147416737E-11
f10(x) 1.9149126729E-12 - 5.2741366829E-11 - 2.2285395751E-11 3.4775182733E-11
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Table 12. Solutions of Neurophysiology application at V TR = 10−20, 10−30 and 10−40.

Solution at V TR = 10−20 Solution at V TR = 10−30 Solution at V TR = 10−40

x1 9.774926909651037E-01 9.774910633733470E-01 9.774910827638724E-01
x2 - 9.774927745309928E-01 - 9.774910647465765E-01 - 9.774910827654670E-01
x3 - 2.109692848010614E-01 - 2.109768258014221E-01 - 2.109767359618408E-01
x4 2.109688974538331E-01 2.109768194390176E-01 2.109767359544526E-01
x5 - 2.901252577197261E-05 - 9.810715906270790E-08 2.444699263961000E-10
x6 - 2.901244421520325E-05 - 9.810715863387080E-08 2.444699263882000E-10

f1(x) 1.967115359491345E-11 2.220446049250313E-16 0
f2(x) - 4.681566245778868E-11 - 2.220446049250313E-16 0
f3(x) 2.266330701846849E-12 8.737850539388192E-17 - 3.153751293361295E-22
f4(x) - 6.922328402630745E-11 - 1.434521764580082E-17 6.260981755202151E-21
f5(x) - 8.075296759227116E-12 - 2.701156197524962E-16 1.071345911685355E-21
f6(x) 2.617793940060294E-11 6.272936219045604E-16 - 3.157529343873903E-21

Mean nf 40233.67 57500.57 77651.60
%SD 16.99 12.58 5.00

Table 13. Solutions of Combustion application at V TR = 10−20, 10−30 and 10−40.

Solution at V TR = 10−20 Solution at V TR = 10−30 Solution at V TR = 10−40

x1 - 2.125669379957560E-07 1.371784251667994E-07 1.379796690717610E-07
x2 - 8.175759066442083E-06 - 9.619976447815970E-08 - 1.024640702937120E-07
x3 - 6.752716398985501E-04 1.565137776437351E-05 1.560729129475898E-05
x4 - 4.183307810306110E-06 7.224452410444500E-09 6.565809411140000E-11
x5 1.656701400100495E-04 3.763180720674607E-07 3.703652200388360E-07
x6 1.293417357824663E-03 1.844925109281104E-07 2.085321794461283E-07
x7 7.091661088782333E-06 4.996387774070343E-06 4.999967170952946E-06
x8 7.052716122205029E-04 1.434862223559040E-05 1.439270870524103E-05
x9 5.358602974230222E-04 - 2.040883524405975E-07 - 2.282373401823797E-07
x10 - 1.552259651139891E-03 4.965651547579558E-06 4.956818525791918E-06

f1(x) - 4.827387619045422E-11 9.657869664593532E-17 0
f2(x) - 2.767804727950166E-11 - 3.609037981661123E-17 0
f3(x) - 5.609231013833449E-11 - 5.014435047745458E-18 0
f4(x) 1.436725855439561E-11 5.511287633945886E-16 1.694065894508601E-21
f5(x) 8.470984471899497E-12 5.264730829992297E-16 1.728855061170187E-21
f6(x) - 3.447739930109454E-12 6.835193007961348E-17 1.049095379878782E-21
f7(x) - 1.750006423022506E-11 - 5.218880731519356E-17 - 4.028719824372849E-22
f8(x) - 3.801514721037196E-11 - 1.388394783354915E-16 2.272081369646687E-21
f9(x) 3.145549313765976E-11 5.544608392318181E-16 - 3.954927090396494E-22
f10(x) 1.096548967520139E-17 9.105212626901849E-21 8.907628343995374E-21

Mean nf 59380.20 93172.65 129106.13
%SD 4.13 4.11 4.23

of behaviors at all 3 different V TR values.
From these 3 tables, we can conclude that the pro-
posed method DE-R can give more accurate solu-
tions by setting higher precision values of V TR.
From V TR = 10−20 to 10−30 and from 10−30 to
10−40, DE-R requires greater numbers of function
evaluations. The increased percentages of Means
are 35.83% and 35.04% for Neurophysiology ap-
plication. For Combustion application, they are
59.91% and 60.51%. And for SINQUAD function,
they are 41.08% and 58.25%, respectively.

5.2. Performance comparison of DE-R
with PSO and PSO-NMM methods

The performance comparison of DE-R, PSO vari-
ants, and PSO-NMM variants on 4 nonlinear
benchmark problems are presented in Table 15
and Table 16. The DE-R is the same as DE59-
50-R in the first experiment except that it uses
the setting of maxnf as described in Section 4.2.

Both tables report Min, Mean and SD of fbest
based on the corresponding maxnf ’s. From the
results, the first two problems are relatively easy
problems whereas the last two problems are more
difficult problems with the Chemical equilibrium



An improved differential evolution algorithm with a restart technique. . . 133

Table 14. Solutions of SINQUAD function at V TR = 10−20, 10−30 and 10−40.

Solution at V TR = 10−20 Solution at V TR = 10−30 Solution at V TR = 10−40

x1 1.000001313473061E+00 1.000000000741824E+00 9.999999999921714E-01
x2 - 1.000001313492704E+00 - 1.000000000741824E+00 - 9.999999999921714E-01
x3 2.357863034574390E-01 2.357835623069449E-01 2.357835607415836E-01
x4 2.357863035031185E-01 2.357835623069448E-01 2.357835607415836E-01
x5 2.357863034047495E-01 2.357835623069443E-01 2.357835607415836E-01
x6 - 1.000001313528972E+00 - 1.000000000741824E+00 - 9.999999999921714E-01
x7 2.357863034339120E-01 2.357835623069443E-01 2.357835607415836E-01
x8 2.357863034107586E-01 2.357835623069438E-01 2.357835607415836E-01
x9 - 1.000001313470187E+00 - 1.000000000741824E+00 - 9.999999999921714E-01
x10 - 1.000001313474019E+00 - 1.000000000741824E+00 - 9.999999999921714E-01

f1(x) 1.725211482508887E-12 5.503030808840126E-19 6.128739500341215E-23
f2(x) 2.059996617731485E-11 0 0
f3(x) 1.252403736273777E-11 4.232725281383409E-16 0
f4(x) 4.908356360244781E-11 3.677613769070831E-16 0
f5(x) - 2.964588990961303E-11 - 1.179611963664229E-16 0
f6(x) 5.686873194576947E-11 0 0
f7(x) - 6.305747590751309E-12 - 1.179611963664229E-16 0
f8(x) - 2.483665356711739E-11 - 4.371503159461554E-16 0
f9(x) - 1.916689029712870E-12 0 0
f10(x) 1.914912672873470E-12 0 0

Mean nf 81755.37 115341.27 182524.47
%SD 8.90 6.03 18.83

Table 15. Performance comparison of PSO, PSO-NMM and DE-R methods on Neurophysi-
ology and Economics modeling applications averaged over 100 independent runs.

Problems maxnf Methods Min Mean SD
Neurophysiology 50000 PSO-12 1.01E-29 1.41E-11 1.11E-10
application PSO-15 0 1.48E-11 1.39E-10

DE-R 3.75E-36 1.06E-13 1.03E-12
100000 PSO-16 0 2.37E-10 2.34E-09

DE-R 0 1.52E-37 1.49E-36
200000 PSO-NMM-12 0 6.14E-30 3.71E-29

PSO-NMM-15 0 3.09E-32 1.27E-31
PSO-NMM-16 0 2.36E-32 1.16E-31
DE-R 0 5.39E-96 5.39E-95

Economics modeling 50000 PSO-12 2.77E-30 2.52E-27 4.08E-27
application PSO-15 2.47E-33 1.03E-32 4.56E-33

DE-R 7.40E-33 1.36E-32 4.30E-33
100000 PSO-16 2.47E-33 9.69E-33 4.32E-33

DE-R 7.40E-33 1.35D-32 4.41E-33
200000 PSO-NMM-12 4.93E-33 4.91E-32 4.13E-32

PSO-NMM-15 2.47E-33 1.02E-32 4.46E-33
PSO-NMM-16 2.47E-33 9.60E-33 4.24E-33
DE-R 7.40E-33 1.37E-32 4.15E-33

application as the most difficult one. The DE-
R gives the best Mean values for all cases of
Neurophysiology application, Chemical equilib-
rium application, and Combustion application.
It shows much better performances on Chemical
equilibrium application and Combustion applica-
tion, especially on Chemical equilibrium applica-
tion where it gives the Mean values in the order
of 10−33 while the PSO and PSO-NMM give the
values in the order of 10−4. For the Economics

modeling application, all methods produce nearly
the same results with PSO-15, PSO-16 and PSO-
NMM-16 giving only slightly better results. Thus,
we can conclude that the DE-R outperforms all
the compared methods.

6. Conclusions

In this paper, we have proposed an efficient im-
provement of the differential evolution algorithm
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Table 16. Performance comparison of PSO, PSO-NMM and DE-R methods on Chemical
equilibrium and Combustion applications averaged over 100 independent runs.

Problems maxnf Methods Min Mean SD
Chemical equilibrium 50000 PSO-12 9.84E-06 5.79E-04 3.04E-03
application PSO-15 3.55E-06 1.61E-03 5.10E-03

DE-R 1.54E-34 1.05E-33 1.34E-33
100000 PSO-16 4.16E-07 5.73E-04 3.05E-03

DE-R 1.54E-34 1.08E-33 1.33E-33
250000 PSO-NMM-12 2.58E-34 5.33E-04 3.04E-03

PSO-NMM-15 1.22E-34 1.60E-03 5.11E-03
DE-R 1.54E-34 9.19E-34 1.26E-33

300000 PSO-NMM-16 5.93E-34 5.33E-04 3.04E-03
DE-R 1.54E-34 1.19E-33 1.60E-33

Combustion 50000 PSO-12 3.08E-11 2.76E-08 4.34E-08
application PSO-15 1.01E-11 4.88E-09 8.68E-09

DE-R 3.68E-21 3.56E-18 9.62E-18
100000 PSO-16 3.99E-12 2.22E-09 4.21E-09

DE-R 9.83E-37 4.41E-22 1.87E-21
250000 PSO-NMM-12 1.45E-33 4.69E-17 1.04E-16

PSO-NMM-15 1.28E-33 6.91E-17 2.37E-16
DE-R 1.29E-42 2.43E-23 1.17E-22

300000 PSO-NMM-16 4.69E-34 5.05E-17 1.09E-16
DE-R 2.49E-44 7.80E-24 3.34E-23

by using a mixing scheme of two mutation op-
erations and a restart technique for solving the
nonlinear systems. The designed algorithm has
the advantage of integrating both the global and
local search techniques to balance the exploration
and exploitation. It can successfully solve all ten
selected test problems with varying degrees of dif-
ficulty and outperforms the two basic differen-
tial evolution algorithms using the recommended
setting from the literature. It also outperforms
the compared methods recently developed in the
literature. This performance results from the
proper modification to the basic DE algorithms
and shows that the DE algorithm with the restart
technique is a promising tool for solving com-
plex systems of nonlinear equations. Future study
could investigate on designing and applying the
differential evolution algorithms to more compli-
cated nonlinear problems in high dimensions such
as those derived from difficult nonlinear ODEs
and PDEs, and those from learning models of ar-
tificial neural networks.
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linear Painlevé II systems in applications of
random matrix theory. Eur. Phys. J. Plus,
133(254), DOI 10.1140/epjp/i2018-12080-4.

[10] Raja, M. A. Z., Zameer, A., Kiani, A. K.,
Shehzad, A., & Khan, A. R. (2018). Nature-
inspired computational intelligence integra-
tion with Nelder-Mead method to solve non-
linear benchmark models. Neural Comput &
Applic, 29, 1169-1193.

[11] Ahmad, I., Zahid, H., Ahmad, F., Raja, M.
A. Z., & Baleanu, D. (2019). Design of com-
putational intelligent procedure for thermal
analysis of porous fin model. Chinese Journal
of Physics, 59, 641-655.

[12] Broyden, C. G. (1965). A class of meth-
ods for solving nonlinear simultaneous equa-
tions. Mathematics of computation, 19(92),
577–593.

[13] Mart́ınez, J. M. (1994). Algorithms for solv-
ing nonlinear systems of equations. In : E.
Spedicato, ed. Algorithms for Continuous
Optimization-The state of the art. Kluwer
Academic Publishers, London, 81–108.

[14] Kelley, C. T. (1995). Iterative methods for
solving linear and nonlinear equations. SIAM,
Philadelphia.

[15] Dennis, J. E., & Schnabel, R. B. (1996). Nu-
merical methods for unconstrained optimiza-
tion and nonlinear equations. SIAM, Philadel-
phia.

[16] Ortega, J. M., & Rheinboldt, W. C. (2000).
Iterative solution of nonlinear equations in
several variables. SIAM, Philadelphia.

[17] Kelley, C. T. (2003). Solving nonlinear equa-
tions with Newton’s method. SIAM, Philadel-
phia.

[18] Karr, C. L., Weck, B., & Freeman, L.
M. (1998). Solutions to systems of nonlinear
equations via a genetic algorithm. Eng. Appl.
Artif. Intell., 11(3), 369–375.

[19] Grosan, C., & Abraham, A. (2008). A new
approach for solving nonlinear equations sys-
tems. IEEE Transactions on Systems Man
and Cybernetics-Part A: Systems and Hu-
mans, 38(3), 698–714.

[20] Hirsch M. J., Pardalos, P. M., & Resende,
M. G. C. (2009). Solving systems of nonlinear
equations with continuous GRASP. Nonlinear
Analysis: Real World Applications, 10, 2000–
2006.

[21] Jaberipour, M., Khorram, E., & Karimi, B.
(2011). Particle swarm algorithm for solving
systems of nonlinear equations. Computers

and Mathematics with Applications, 62(2),
566–576.

[22] Pourjafari, E., & Mojallali, H. (2012). Solv-
ing nonlinear equations systems with a new
approach based on invasive weed optimization
algorithm and clustering. Swarm and Evolu-
tionary Computation, 4, 33–43.

[23] Oliveira, H. A., & Petraglia, A. (2013). Solv-
ing nonlinear systems of functional equations
with fuzzy adaptive simulated annealing. Ap-
plied Soft Computing, 13, 4349–4357.

[24] Raja, M. A. Z., Kiani, A. K., Shehzad,
A., & Zameer, A. (2016). Memetic com-
puting through bio-inspired heuristics inte-
gration with sequential quadratic program-
ming for nonlinear systems arising in different
physical model. SpringerPlus, 5:2063, DOI
10.1186/s40064-016-3750-8.

[25] Zhang, X., Wan, Q., & Fan, Y. (2019). Ap-
plying modified cuckoo search algorithm for
solving systems of nonlinear equations. Neu-
ral Comput & Applic, 31, 553–576.

[26] Storn, R., & Price, K. (1995). Differen-
tial evolution—a simple and efficient adap-
tive scheme for global optimization over con-
tinuous spaces. Technical Report TR-95-012,
ICSI, Berkeley.

[27] Storn, R., & Price, K. (1997). Differential
evolution: A simple and efficient heuristic for
global optimization over continuous spaces. J
Glob Optim, 11(4), 341–359.

[28] Storn, R. (2008). Differential evolution
research-Trends and open questions. In : U.
K. Chakraborty, ed. Advances in Differential
Evolution. Springer, Berlin, 1–31.

[29] Neri, F., & Tirronen, V. (2010). Recent ad-
vances in differential evolution: a survey and
experimental analysis. Artif Intell Rev, 33,
61–106.

[30] Das, S., & Suganthan, P. N. (2011). Differen-
tial evolution: a survey of the state-of-the-art.
IEEE Trans Evol Comput, 15(1), 4–31.

[31] Lampinen, J., & Zelinka, I. (2000). On stag-
nation of the differential evolution algorithm.
Proceedings of the 6th international Mendel
conference on soft computing, 76–83.

[32] Gämperle, R., Müller, S. D., & Koumout-
sakos, P. (2002). A parameter study for differ-
ential evolution. Proceedings of the conference
in neural networks and applications (NNA),
fuzzy sets and fuzzy systems (FSFS) and evo-
lutionary computation (EC), WSEAS, 293–
298.

[33] Fan, H. Y., & Lampinen, J. (2003). A
trigonometric mutation operation to differen-
tial evolution. J Glob Optim, 27(1), 105–129.



136 J. Wetweerapong and P. Puphasuk / IJOCTA, Vol.10, No.1, pp.118-136 (2020)

[34] Das, S., Konar, A., & Chakraborty, U.
K. (2005). Two improved differential evolu-
tion schemes for faster global search. ACM-
SIGEVO Proceedings of genetic and evolu-
tionary computation conference, 991–998.

[35] Kaelo, P., & Ali, M. M. (2007). Differential
evolution algorithms using hybrid mutation.
Comput Optim Appl, 37, 231–246.

[36] Das, S., Abraham, A., Chakraborty, U. K.,
& Konar, A. (2009). Differential evolution
with a neighborhood-based mutation opera-
tor. IEEE Trans Evol Comput, 13(3), 526–
553.

[37] Neri, F., & Tirronen, V. (2009). Scale factor
local search in differential evolution. Memet
Comput J, 1(2), 153–171.

[38] Qin, A. K., & Suganthan, P. N. (2005).
Self-adaptive differential evolution algorithm
for numerical optimization. Proceedings of the
IEEE congress on evolutionary computation,
1785–1791.

[39] Salman, A., Engelbrecht, A. P., & Omran, M.
G. (2007). Empirical analysis of self-adaptive
differential evolution. Eur J Oper Res, 183(2),
785–804.

[40] Soliman, O. S., & Bui, L. T. (2008). A self-
adaptive strategy for controlling parameters
in differential evolution. Proceedings of the
IEEE congress on evolutionary computation,
2837–2842.

[41] Yang, Z., Tang, K., & Yao, X. (2008). Self-
adaptive differential evolution with neighbor-
hood search. Proceedings of the world congress
on computational intelligence, 1110–1116.

[42] Qin, A. K., Huang, V. L., & Suganthan, P. N.
(2009). Differential evolution algorithm with
strategy adaptation for global numerical op-
timization. IEEE Trans Evol Comput, 13(2),
398–417.

[43] Zaharie, D. (2002). Critical values for con-
trol parameters of differential evolution al-
gorithm. Proceedings of the 8th international
Mendel conference on soft computing, 62–67.

[44] Zaharie, D. (2003). Control of population di-
versity and adaptation in differential evolu-
tion algorithms. Proceedings of the 9th inter-
national Mendel conference on soft comput-
ing, 41–46.

[45] Verschelde, J., Verlinden, P., & Cools, R.
(1994). Homotopies exploiting newton poly-
topes for solving sparse polynomial systems.
SIAM J. Numer. Anal., 31, 915–930.

[46] Morgan, A., & Shapiro, V. (1987). Box-
bisection for solving second-degree systems
and the problem of clustering. ACM Transac-
tion on Mathematical Software, 13, 152–167.

[47] Pramanik, S. (2002). Kinematic synthesis
of a six-member mechanism for automotive
steering. ASME Journal of Mechanical De-
sign, 124, 642–645.

[48] Meintjes, K., & Morgan, A. (1990). Chem-
ical equilibrium systems as numerical test
problems. ACM Transaction on Mathemati-
cal Software, 16, 143–151.

[49] More, J., Garbow, B., & Hillstrom, K.
(1981). Testing unconstrained optimization
software. ACM Transaction on Mathematical
Software, 7, 17–41.

[50] Bongartz, I., Conn, A., Gould, N., & Toint,
Ph. (1995). CUTE: constrained and uncon-
strained testing environment. ACM Transac-
tions on Mathematical Software, 21, 123–160.

Jeerayut Wetweerapong completed M.Sc. degree
in Mathematics from West Virginia University, US
in 1995 and Ph.D. degree in Mathematics from Khon
Kaen University, Thailand in 2012. He has been
teaching and doing research in field of scientific com-
puting and optimization at Department of Mathemat-
ics, Khon Kaen University.

http://orcid.org/0000-0001-5053-3989

Pikul Puphasuk completed M.Sc. degree in Math-
ematics from Khon Kaen University, Thailand in
2002 and Ph.D. degree in Applied Mathematics from
Suranaree University of Technology, Thailand in 2009.
She is an assistant professor at Department of Mathe-
matics, Khon Kaen University. Her research areas in-
clude computational sciences, numerical analysis and
optimization.

http://orcid.org/0000-0001-9069-1703

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.



*Corresponding author 

 

137 

 

 

An International Journal of Optimization and Control: Theories & Applications 

ISSN: 2146-0957   eISSN: 2146-5703 

Vol.10, No.1, pp.137-146 (2020) 

https://doi.org/10.11121/ijocta.01.2020.00741  
 

 

RESEARCH ARTICLE 

 

 

Using genetic algorithms for estimating Weibull parameters with 

application to wind speed 
 

Melih Burak Koca  , Muhammet Burak Kılıç * , Yusuf Şahin   
 

Department of Business Administration, Burdur Mehmet Akif Ersoy University, Turkey 

mbkoca@mehmetakif.edu.tr, mburak@mehmetakif.edu.tr, ysahin@mehmetakif.edu.tr 

 

ARTICLE INFO  ABSTRACT 

Article history: 
Received: 31 October 2018 

Accepted: 26 June 2019 

Available Online: 31 January 2020 

 Renewable energy has become a prominent subject for researchers since fossil fuel 

reserves have been decreasing and are not promising to meet the energy demand 

of the future. Wind takes an important place in renewable energy resources and 

there is extensive research on wind speed modeling. Herein, one of the most 

commonly used distributions for wind speed modeling is the Weibull distribution 

with its simplicity and flexibility. Maximum likelihood (ML) method is the most 

frequently used technique in Weibull parameter estimation. Iterative techniques 

such as Newton-Raphson (NR) use random initial values to obtain the ML 

estimators of the parameters of the Weibull distribution. Therefore, the success of 

the iterative techniques highly depends on the initial value selection. In order to 

deliver a solution to the initial value problem, genetic algorithm (GA) is 

considered to obtain the estimators of the model parameters. The ML estimators 

obtained using the GA and NR techniques are compared with the method of 

moments (MoM) estimators via Monte Carlo simulation and wind speed 

applications. The results show that the ML estimators obtained using GA present 

superiority over MoM and the ML estimators obtained using NR.  
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1. Introduction 

The increase in population and the inadequacy of 

existing energy resources put the human being into the 

search of alternative energy resources over the course 

of human history. In the last decades, there is extensive 

research on renewable energy due to the decrease in 

fossil fuel reserves and the increase in environmental 

awareness. As a clean and never-ending resource, the 

wind has become an important energy resource and 

distinguished among the other renewable energy forms 

such as geothermal energy, hydro energy, solar energy, 

and biomass energy. 

Converting the kinetic energy carried by wind to 

electrical energy is a clean and economical way to 

produce energy. Once the wind plant is set up, the 

maintenance cost is relatively low compared to other 

energy plants. However, the wind turbines and 

installation costs are high, therefore the wind energy 

potential of a region should be carefully estimated to 

determine the proper turbine type. Wind speed is the 

key factor in determining the wind energy potential of 

a region [1-4]. Statistical distributions are used to 

model wind speed and estimate energy potential. The 

Weibull distribution is one of the most commonly used 

distributions in wind energy studies due to its simplicity 

and flexibility [1, 2, 4-10]. 

There are various techniques used in Weibull parameter 

estimation. Sohoni et al. [2] estimated the Weibull 

parameters using the method of moments (MoM). 

Seguro and Lambert [5] employed MoM, maximum 

likelihood (ML) method and modified maximum 

likelihood (MML) methods. They found that the ML 

method is more appropriate for the data sets in time 

series format. For the data sets in frequency distribution 

format, they recommended using MML method. Akgül 

et al. [6] compared the least square method, ML method 

and MML method. Although they found that ML is the 

most efficient method in overall, they mentioned that 

ML and MML has a similar efficiency for the large data 

sets, however, MML has less computational 

complexity. Arslan et al. [8] compared MoM, L-

Moments (L-Mom) method and ML method, and 

showed that L-Mom method is more efficient for small 

data sets where ML method is more efficient for larger 

data sets. Kaplan [10] found that graphical method 

provides more efficiency than MoM in Weibull 
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parameter estimation. Kollu et al. [11], Akpınar and 

Akpınar [12] used the ML method to estimate Weibull 

parameters in their studies. Teimouri et al. [13] 

compared their proposed L-moment estimator with 

several methods including the ML method, method of 

logarithmic moment, percentile method and MoM. 

They found that their proposed method and the ML 

method are the most efficient estimators. Akdağ and 

Dinler [14] proposed the power density method. They 

found it superior to commonly used methods including 

MoM and ML method. Saleh et al. [15] compared five 

different methods and recommended the mean wind 

speed method and the ML method for fitting Weibull 

distribution. Azad et al. [16] found MoM and ML 

method more efficient among several methods. 

Recently, Usta et al. [17] proposed a new estimation 

approach based on moments for estimating the Weibull 

parameters.  

It is seen from the previous studies that the ML method 

is one of the most frequently used parameter estimation 

methods for the Weibull distribution. Due to the 

nonlinear nature of the log-likelihood function of the 

Weibull distribution, numerical methods such as 

Newton-Raphson (NR) should be employed. However, 

when the iterative techniques are employed, the success 

of the technique highly depends on the initial value 

selection. This study departs from the literature by 

delivering a solution to the initial value problem by 

using genetic algorithms (GA), which is a heuristic 

search algorithm and uses a set of solution (search 

space) instead of single points, for ML estimation of the 

Weibull parameters. GA is a useful approach in the 

solution of optimization problems and applied in 

various studies such as signal control optimization [18] 

or optimization of mixture parameters of high-

performance concrete [19]. In parameter estimation, 

GA was previously used for negative binomial gamma 

mixture distribution [20], skew-normal distribution 

[21] and nonlinear regression [22]. Parameter 

estimation of Weibull distribution using GA was 

introduced by Thomas et al. [23] for breakdown times 

of insulating fluid dataset. GA presented a comparable 

good performance based on the maximization of the 

log-likelihood function. With this motivation, the 

applicability of GA is used in wind speed data 

modeling. To the best our knowledge, this is the first 

time GA is used to estimate the parameters of Weibull 

distribution in wind speed distribution modeling. 

Observations were obtained from an existing wind farm 

and different meteorological stations. The efficiency of 

ML method estimation using GA was compared with 

ML estimation using NR, and MoM. Mean absolute 

error (MAE), bias and Kolmogorov-Smirnov (K-S) test 

were used as decision criteria. The remainder of this 

paper is structured as follows: Section 2 gives basic 

information about the Weibull distribution, Section 3 

gives detailed information about the parameter 

estimation methods, Section 4 presents the simulation 

experiments and wind speed data analysis. Section 5 

includes the conclusion. 

2. Weibull distribution 

The probability density function (pdf) and cumulative 

distribution function (cdf) of Weibull distribution are 

respectively given by: 

𝑓(𝑣; 𝑘, 𝑐) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1

exp [− (
𝑣

𝑐
)

𝑘

] ,   𝑣, 𝑘, 𝑐 > 0 (1) 

and 

𝐹(𝑣; 𝑘, 𝑐) = 1 − exp [− (
𝑣

𝑐
)

𝑘

] ,   𝑣, 𝑘, 𝑐 > 0 (2) 

where 𝑣 is the wind speed, 𝑘 and 𝑐 are the Weibull 

shape and scale (dimensionless) parameters 

respectively. Probability density plots for some 

different parameter values are given in Figure 1. 

 
Figure 1. Probability density plots of the Weibull distribution 

for different parameters. 

 

3. Parameter estimation methods 

3.1. Method of moments estimation 

MoM is based on equating sample moments with 

theoretical moments of respective distribution. To 

estimate the parameters of the Weibull distribution, 

coefficient of variation of the sample should be 

calculated and set equal to the theoretical coefficient of 

variation as follows [8]: 

𝐶�̂�𝑀𝑜𝑀 = [
(∑ 𝑣𝑖

2𝑛
𝑖=1 )𝑛

(∑ 𝑣𝑖
𝑛
𝑖=1 )2

− 1] = [
Γ (

2
𝑘

+ 1)

[Γ (
1
𝑘

+ 1)]
2 − 1] (3) 

where 𝑛 is the number of data points, Γ is the gamma 

function. When the shape parameter 𝑘 is obtained from 

the Equation (3), scale parameter 𝑐 can be calculated 

by: 

�̂� = [

1
𝑛

(∑ 𝑣𝑖
𝑛
𝑖=1 )

Γ (
1
𝑘

+ 1)
]. (4) 
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3.2. Maximum likelihood estimation 

The ML method is based on the maximization of the 

log-likelihood function of the underlying distribution. 

The log-likelihood function of the Weibull distribution 

is given as follows: 

ln 𝐿(𝑣; 𝑘, 𝑐) = 𝑛 ln 𝑘 − 𝑛𝑘 ln 𝑐

+ (𝑘 − 1) ∑ ln 𝑣𝑖

𝑛

𝑖=1

− 𝑐−𝑘 ∑ 𝑣𝑖
𝑘 .

𝑛

𝑖=1
 

(5) 

By maximizing the log-likelihood function, taking 

derivative respect to each of the parameters and 

equating them to zero, the ML estimators of the shape 

and the scale parameters will be obtained as follows: 

�̂� = [
∑ 𝑣𝑖

�̂� ln 𝑣𝑖
𝑛
𝑖=1

∑ 𝑣𝑖
�̂�𝑛

𝑖=1

−
∑ ln 𝑣𝑖

𝑛
𝑖=1

𝑛
]

−1

 (6) 

and 

�̂� = [
1

𝑛
∑ 𝑣𝑖

�̂�
𝑛

𝑖=1
]

1

�̂�
. (7) 

ML estimator of the shape parameter 𝑘 includes 

nonlinear function, therefore, it can be solved by 

numerical techniques such as NR algorithm, Nelder-

Mead algorithm, simulated annealing algorithm or GA. 

In this study, we used the NR algorithm and the GA in 

the maximization of the log-likelihood function given 

in Equation (5). 

3.2.1. Newton-Raphson algorithm 

The steps of the NR algorithm are summarized in [21] 

as follows: 

1. Determine the initial values 𝑘(0) and 𝑐(0) for 𝑘 

and 𝑐. 

2. Compute the vector 𝑈(𝑘(𝑚), 𝑐(𝑚)) and 

𝑉(𝑘(𝑚), 𝑐(𝑚)) for 𝑚 = 0, 1, … where 𝑈 and 𝑉 

are defined by: 

𝑈 = (
∂ln 𝐿

𝜕𝑘
,

∂ln 𝐿

𝜕𝑐
)  

and  

𝑉 = [

∂2ln 𝐿

𝜕𝑘2

∂2ln 𝐿

𝜕𝑘𝜕𝑐

∂2ln 𝐿

𝜕𝑘𝜕𝑐

∂2ln 𝐿

𝜕𝑐2

]. 

3. Compute the values of 𝑘 and 𝑐 at (𝑚 + 1)th 

iteration by using the following equation: 

[𝑘(𝑚+1)

𝑐(𝑚+1)
]

= [𝑘(𝑚)

𝑐(𝑚)
] − 𝑉−1(𝑘(𝑚), 𝑐(𝑚))𝑈(𝑘(𝑚), 𝑐(𝑚)) 

4. Repeat the iterations until the convergence 

criterion is satisfied. 

NR is a fast-converging powerful algorithm, however, 

it is dependent on the initial guess. Therefore, we 

considered the GA in the maximization of the log-

likelihood function of the Weibull distribution. 

3.2.2. Genetic algorithm 

GA is a heuristic search algorithm motivated by the 

principles of biological evolution of species, to obtain 

the estimators of the model parameters. Unlike the 

conventional optimization techniques, GA uses a set of 

initial solutions which are called as chromosome. A 

flowchart of GA is presented in Figure 2. The steps of 

the GA in this study are summarized as follows: 

1. A range of possible solutions (search space) 

was defined as arbitrarily for both shape and 

scale parameters. A sensitivity analysis was 

carried out to determine the initial population 

size where it was taken 6, 10, 15,  and 20 

respectively. Most efficient outcomes were 

obtained when the initial population size was 

set to 6, therefore, initial population size was 

set to 6.  

2. Each set of possible solutions is evaluated 

using the fitness function. The log-likelihood 

function of the Weibull distribution is the 

fitness function in this study. 

3. The best solution in each iteration is kept as 

parent chromosome. 

4. New offsprings are reproduced by crossover 

and mutation with the rate of 0.8 and 0.1 

respectively. The size of the population 

including original parents, crossover and 

mutation offsprings is equal to the initial 

population size in step 1. 

5. New population is evaluated as in step 2. Steps 

3-5 are repeated. 

The algorithm stops if the decision criterion is satisfied 

or the maximum number of iterations is achieved. A 

flowchart of the study is given in Figure 2. 

  

 

Figure 2. Flowchart of the GA used in this study. 



140                            M.B. Koca, M.B. Kılıç, Y. Şahin / IJOCTA, Vol.10, No.1, pp.137-146 (2020) 

Table 1. Parameter estimations, MAE and bias values for different simulation scenarios. 

 �̂� �̂� 

𝒏 𝒌 Method Mean MAE Bias Mean MAE Bias 

20 

0.5 
MoM 0.6510 0.1637 0.1510 1.3549 0.5207 0.3549 

NR 0.5412 0.0840 0.0412 1.0823 0.3938 0.0823 
GA 0.5399 0.0829 0.0399 1.0570 0.3685 0.0570 

1 
MoM 1.1172 0.1905 0.1172 1.0221 0.1912 0.0221 

NR 1.0823 0.1680 0.0823 1.0114 0.1915 0.0114 
GA 1.0822 0.1679 0.0822 1.0114 0.1915 0.0114 

3 
MoM 3.2191 0.4729 0.2191 0.9975 0.0623 -0.0025 

NR 3.2470 0.5039 0.2470 0.9973 0.0640 -0.0027 

GA 3.1153 0.3413 0.1153 0.9949 0.0622 -0.0051 

6 
MoM 6.4952 1.0341 0.4952 0.9977 0.0312 -0.0023 

NR 6.4939 1.0077 0.4939 0.9978 0.0321 -0.0022 

GA 6.2305 0.6825 0.2305 0.9967 0.0312 -0.0033 

50 

0.5 
MoM 0.5818 0.1019 0.0818 1.2071 0.3412 0.2071 

NR 0.5172 0.0485 0.0172 1.0449 0.2514 0.0449 
GA 0.5171 0.0484 0.0171 1.0422 0.2486 0.0422 

1 
MoM 1.0532 0.1144 0.0532 1.0105 0.1221 0.0105 

NR 1.0345 0.0971 0.0345 1.0101 0.1235 0.0101 
GA 1.0344 0.0970 0.0344 1.0097 0.1231 0.0097 

3 
MoM 3.0866 0.2665 0.0866 0.9993 0.0391 -0.0007 
NR 3.1034 0.2912 0.1034 1.0007 0.0411 0.0007 

GA 3.0763 0.2593 0.0763 1.0000 0.0405 0.0000 

6 
MoM 6.1854 0.5747 0.1854 0.9993 0.0196 -0.0007 
NR 6.2069 0.5824 0.2069 1.0000 0.0205 0.0000 

GA 6.1526 0.5185 0.1526 0.9997 0.0203 -0.0003 

100 

0.5 
MoM 0.5495 0.0748 0.0495 1.1224 0.2469 0.1224 

NR 0.5086 0.0331 0.0086 1.0182 0.1675 0.0182 
GA 0.5085 0.0330 0.0085 1.0155 0.1645 0.0155 

1 
MoM 1.0282 0.0839 0.0282 1.0034 0.0870 0.0034 

NR 1.0172 0.0662 0.0172 1.0034 0.0832 0.0034 
GA 1.0172 0.0662 0.0172 1.0034 0.0832 0.0034 

3 
MoM 3.0470 0.1915 0.0470 0.9992 0.0280 -0.0008 
NR 3.0516 0.1985 0.0516 0.9999 0.0277 -0.0001 

GA 3.0112 0.1808 0.0112 0.9860 0.0140 -0.0140 

6 
MoM 6.0963 0.4120 0.0963 0.9994 0.0140 -0.0006 
NR 6.1032 0.3971 0.1032 0.9998 0.0139 -0.0002 

GA 6.0939 0.3868 0.0939 0.9997 0.0138 -0.0003 

500 

0.5 
MoM 0.5151 0.0369 0.0151 1.0339 0.1245 0.0339 

NR 0.5015 0.0140 0.0015 1.0029 0.0752 0.0029 
GA 0.5015 0.0140 0.0015 1.0029 0.0752 0.0029 

1 
MoM 1.0063 0.0366 0.0063 0.9974 0.0387 -0.0026 

NR 1.0031 0.0280 0.0031 1.0003 0.0376 0.0003 
GA 1.0031 0.0280 0.0031 1.0003 0.0376 0.0003 

3 
MoM 3.0090 0.0877 0.0090 0.9986 0.0126 -0.0014 
NR 3.0092 0.0840 0.0092 0.9999 0.0125 -0.0001 

GA 3.0092 0.0840 0.0092 0.9999 0.0125 -0.0001 

6 
MoM 6.0193 0.1887 0.0193 0.9993 0.0063 -0.0007 
NR 6.0184 0.1680 0.0184 0.9999 0.0063 -0.0001 

GA 6.0176 0.1666 0.0176 0.9999 0.0062 -0.0001 

4. Application 

4.1. Monte Carlo simulations 

In order to compare the parameter estimation methods 

for the Weibull distribution, a Monte Carlo simulation 

was conducted where the shape parameter is taken 0.5, 

1, 3 and 6 and the scale parameter was fixed to 1. The 

parameter sets used in the simulation can also be seen 

in Figure 1. The simulation was repeated 1000 times for 

each of the sample sizes of 20, 50, 100 and 500. MoM 

estimations were considered as the initial values for the 

NR. For the GA, the population size was chosen 6, 

mutation rate and crossover rate were fixed to 0.8 and 

0.1 respectively. ML estimations using NR and GA 

were obtained via “maxLik” [24] and “GA” [25] 
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packages of R software. Mean absolute error (MAE) 

and bias are chosen as goodness-of-fit criteria for 

comparing the efficiencies of the parameter estimation 

methods. MAE and bias for the parameters 𝑘 and 𝑐 are 

given by: 

𝑀𝐴𝐸(�̂�) =
1

𝑛
∑ |�̂�𝑖 − 𝑘|

𝑛

𝑖=1
 

 

𝑏𝑖𝑎𝑠(�̂�) =
1

𝑛
∑ (�̂�𝑖 − 𝑘)

𝑛

𝑖=1
 

(8) 

and 

𝑀𝐴𝐸(�̂�) =
1

𝑛
∑ |�̂�𝑖 − 𝑐|

𝑛

𝑖=1
 

 

𝑏𝑖𝑎𝑠(�̂�) =
1

𝑛
∑ (�̂�𝑖 − 𝑐).

𝑛

𝑖=1
 

(9) 

Smaller values the absolute value of the bias and MAE 

indicate higher efficiency. Parameter estimations, 

absolute value of the bias and MAE for each parameter 

estimation method can be seen in Table 1. Accordinly, 

best results are highlighted in bold.  

It is seen from the simulation results that the GA 

approach was more efficient than NR and MoM in the 

estimation of the shape and scale parameters according 

to MAE and bias criteria. For the sample size of 20, 50 

and 100, the GA approach provided the best efficiency 

for the shape parameter in each simulation scenario in 

terms of MAE and bias. For the sample size of 500, GA 

also provided the best efficiency for the shape 

parameter in each simulation scenario according to 

MAE. 

In the estimation of scale parameter for the sample sizes 

of 20,50 and 100, GA provided the highest efficiency 

according to at least one of the decision criteria in 

almost each simulation scenario. For the sample size of 

100, GA was the most efficient method in each 

simulation scenario according to MAE and bias. In 

overall, it can be said that GA is a very efficient method 

for small, moderate and large sample sizes. MAE and 

absolute values of the biases are also presented in 

Figures 3-6.

 

Figure 3. Comparison of the parameter estimation methods for 𝑘 according to MAE criterion. 

 

 

Figure 4. Comparison of the parameter estimation methods for 𝑐 according to MAE criterion. 
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Figure 5. Comparison of the parameter estimation methods for 𝑘 according to bias criterion 

 

 

Figure 6. Comparison of the parameter estimation methods for 𝑐 according to bias criterion.

Figure 3 presents the MAE values for the shape 

parameter k. GA presented more efficiency than NR 

and MoM in all simulation scenarios. NR was the 

second-best method. MAE values were decreased when 

the sample size was increased. However, when the 

value of the shape parameter was increased, MAE 

values were also increased. 

Figure 4 shows the MAE values for the scale parameter 

𝑐. GA was the most efficient method for the sample 

sizes of 20, 100 and 500.  MoM was the most efficient 

for the sample size of 50. MAE values were decreased 

when the value of the shape parameter was increased. 

Similarly, MAE values were also decreased when the 

sample size was increased. 

Figure 5 presents the absolute value of bias for the 

shape parameter k. GA presented the most efficient 

results. MoM presented better results than NR on some 

occasions. Similar to the MAE values, absolute values 

of the bias were decreased when the sample size was 

increased. However, when the value of the shape 

parameter was increased, the absolute values of the bias 

were also increased 

Figure 6 shows the absolute values of bias for the scale 

parameter 𝑐. GA was more efficient than other methods 

for most of the time. NR was the second-best method. 

With the increase in the value of shape parameter and 

sample size, absolute values of bias were decreased. 

4.2. Wind speed analysis 

Wind speed observations obtained from three different 

locations, namely Belen Wind Farm (Belen), Gökçeada 

Meteorological Station (Gökçeada) and 

Datça/Deveboynu Feneri Meteorological Station 

(Datça) were used for the comparison of the parameter 

estimation methods. Belen data set was provided by 

Belen Electric Generation Co. Inc. Gökçeada and Datça 

data sets were provided by the Turkish State 

Meteorological Service. Information about the 

geographical coordinates of the stations, elevation, 

selected period of observations and collection process 
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are presented in Table 2. Accordingly, the wind speed 

data for the Belen Station were observed in 10-min 

basis. The wind speed data observed at other stations 

were collected on hourly basis. The descriptive 

statistics including mean, standard deviation, minimum 

and maximum for the data sets used in this study are 

presented in Table 3. It can be seen from Table 3 that 

the average and the maximum wind speed were 

observed at Datça station. 

 

Table 2. Geographical coordinates of the stations, selected period of observations and data collection process. 

Station Period of Observations Collection Basis Height Latitude Longitude Elevation 

Belen 01 Jan 2013 – 31 Dec 2014 10-min 80 m 36°28'42.2"N 36°12'45.0"E 744 

Gökçeada 01 Jan 2010 – 31 Dec 2017 Hourly 10 m 40°11'27.6"N 25°54'27.0"E 79 

Datça 01 Jan 2014 – 30 Apr 2017 Hourly 10 m 36°41'12.1"N 27°21'47.9"E 28 

 

Table 3. Descriptive statistics for the data sets. 

Station Year Mean Std. Dev. Min. Max. 

Belen 
2013 7.2949 3.3345 0.4 24.9 

2014 7.3790 3.2631 0.4 24.9 

Gökçeada 

2010 4.3956 3.0779 0.1 16.9 

2011 4.5014 2.7362 0.1 16.6 

2012 4.1776 2.6393 0.2 14.9 

2013 3.6880 2.4716 0.1 16.9 

2014 3.7678 2.5150 0.1 14.9 

2015 4.3323 2.6961 0.1 18.0 

2016 4.2892 2.8234 0.1 16.7 

2017 3.8563 2.6384 0.1 15.4 

Datça 

2014 6.9937 4.5638 0.3 28.9 

2015 7.6496 4.9330 0.4 28.9 

2016 7.8554 5.1781 0.2 33.7 

2017 7.3715 4.8864 0.2 24.2 

 

Weibull distribution is fitted at the monthly base for the 

Belen, Gökçeada and Datça data sets. To statistically 

test that monthly data sets come from Weibull 

distribution, the K-S test is separately applied to each 

data set. 

K-S test is used for testing if a sample distribution 

belongs to a population with a specific distribution. K-

S test statistic is the maximum difference between the 

empirical distribution 𝐹0(𝑥) and theoretical distribution 

𝑆𝑁(𝑥) [26].  

𝑑 = max |𝐹0(𝑥) − 𝑆𝑁(𝑥)| (10) 

After the K-S test process, monthly distributions that 

come from Weibull distribution are selected for further 

analysis (p-value>0.05). The parameter estimates and 

K-S test results for Belen, Gökçeada and Datça data 

sets are presented in Tables 4-6 respectively. 

 

Table 4. Parameter estimations and K-S goodness-of-fit test 

results for Belen data set. 

Date Method �̂� �̂� K-S p-value 

2014 - 

Feb 

MoM 2.1104 6.7724 0.0182 0.1381 

NR 2.1191 6.7779 0.0197 0.0875 

GA 2.0984 6.7646 0.0161 0.2438 

 

Table 4 shows that GA provides the best fit in terms of 

the K-S test for Belen data set. 

Table 5. Parameter estimations and K-S goodness-of-fit test 

results for Gökçeada data set. 

Date Method �̂� �̂� K-S p-value 

2010 - 

Oct 

MoM 1.5527 4.8650 0.0443 0.1074 

NR 1.5571 4.8752 0.0453 0.0947 

GA 1.4954 4.8088 0.0394 0.1990 

2011 - 

Apr 

MoM 1.9337 5.7312 0.0517 0.0423 

NR 1.9002 5.7122 0.0501 0.0537 

GA 1.9023 5.7247 0.0485 0.0673 

2011 - 

Nov 

MoM 1.7368 5.6574 0.0363 0.2998 

NR 1.7307 5.6551 0.0363 0.3004 

GA 1.7299 5.6507 0.0359 0.3144 

2012 - 

Dec 

MoM 1.8973 5.4681 0.0440 0.1123 

NR 1.8750 5.4574 0.0414 0.1562 

GA 1.8737 5.4526 0.0411 0.1615 

2013 - 

May 

MoM 1.6149 4.4635 0.0463 0.0829 

NR 1.6212 4.4682 0.0472 0.0724 

GA 1.6148 4.4237 0.0449 0.1001 

2015 - 

Jan 

MoM 1.5037 5.6700 0.0611 0.0401 

NR 1.5681 5.7215 0.0591 0.0518 

GA 1.5673 5.7129 0.0584 0.0562 

2015 - 

Feb 

MoM 1.7919 6.6341 0.0480 0.0982 

NR 1.7502 6.6019 0.0484 0.0937 

GA 1.7509 6.6086 0.0478 0.1016 

2015 - 

Apr 

MoM 1.4922 5.0242 0.0370 0.3096 

NR 1.4876 5.0285 0.0365 0.3268 

GA 1.4863 5.0104 0.0358 0.3493 

2015 - 

May 

MoM 1.6151 4.0105 0.0524 0.0919 

NR 1.5916 4.0010 0.0488 0.1374 

GA 1.5905 3.9947 0.0484 0.1435 

2015 - 

Oct 

MoM 1.9727 4.9659 0.0514 0.0485 

NR 1.9312 4.9455 0.0487 0.0711 

GA 1.9301 4.9435 0.0486 0.0721 

2015 - 

Nov 

MoM 1.5010 5.2991 0.0329 0.6387 

NR 1.5066 5.3106 0.0343 0.5861 

GA 1.5034 5.3074 0.0338 0.6027 

2016 - 

Jan 

MoM 1.3632 5.1459 0.0432 0.1321 

NR 1.3710 5.1638 0.0453 0.1004 

GA 1.3683 5.1604 0.0447 0.1089 

2016 - 

Mar 

MoM 1.5731 5.4328 0.0466 0.1599 

NR 1.5608 5.4299 0.0448 0.1946 

GA 1.5582 5.4213 0.0441 0.2078 

2016 - 

May 

MoM 1.6266 4.0770 0.0457 0.3642 

NR 1.6111 4.0731 0.0430 0.4399 

GA 1.6109 4.0723 0.0430 0.4422 
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Table 5. (continued) 

2016 - 

Jun 

MoM 1.8951 3.0578 0.0877 0.1657 

NR 1.8507 3.0452 0.0947 0.1096 

GA 1.8535 3.0461 0.0942 0.1128 

2016 - 

Nov 

MoM 1.5976 5.3758 0.0532 0.0355 

NR 1.5571 5.3534 0.0474 0.0810 

GA 1.5569 5.3533 0.0474 0.0814 

2017 - 

Dec 

MoM 1.9966 6.8246 0.0516 0.1153 

NR 1.9906 6.8205 0.0513 0.1186 

GA 1.9909 6.8219 0.0513 0.1197 

 

Table 6. Parameter estimations and K-S goodness-of-fit test 

results for Datça data set. 

Date Method �̂� �̂� K-S p-value 

2014 - 

Jan 

MoM 1.7162 6.0504 0.0570 0.0756 

NR 1.7787 6.0924 0.0566 0.0790 

GA 1.7672 5.9995 0.0490 0.1783 

2014 - 

Aug 

MoM 1.8009 8.4971 0.0446 0.1031 

NR 1.8379 8.5336 0.0461 0.0842 

GA 1.8373 8.5273 0.0457 0.0898 

2015 - 

Jan 

MoM 1.7307 10.8387 0.0431 0.1255 

NR 1.7483 10.8725 0.0437 0.1172 

GA 1.7501 10.9125 0.0422 0.1408 

2015 - 

Mar 

MoM 1.8631 9.6927 0.0409 0.1662 

NR 1.8842 9.7204 0.0418 0.1491 

GA 1.8683 9.7017 0.0409 0.1660 

2015 - 

Jun 

MoM 1.8422 7.4869 0.0348 0.3482 

NR 1.8781 7.5196 0.0418 0.1619 

GA 1.8051 7.5222 0.0363 0.2982 

2015 - 

Oct 

MoM 2.0635 8.5650 0.0463 0.0828 

NR 2.0843 8.5813 0.0493 0.0539 

GA 2.0452 8.5486 0.0435 0.1198 

2015 - 

Nov 

MoM 1.8870 9.2486 0.0440 0.1237 

NR 1.9013 9.2654 0.0467 0.0863 

GA 1.8814 9.2433 0.0430 0.1398 

2015 - 

Dec 

MoM 2.1032 10.2284 0.0383 0.2301 

NR 2.1241 10.2526 0.0407 0.1748 

GA 2.1181 10.2101 0.0372 0.2585 

2016 - 

Jan 

MoM 1.8773 10.8451 0.0279 0.6078 

NR 1.8728 10.8427 0.0278 0.6138 

GA 1.8451 10.8504 0.0257 0.7112 

2016 - 

Feb 

MoM 1.2831 9.1734 0.0370 0.3162 

NR 1.3318 9.2773 0.0442 0.1439 

GA 1.2793 9.1544 0.0359 0.3519 

2016 - 

May 

MoM 1.6948 8.4204 0.0314 0.4729 

NR 1.7220 8.4530 0.0365 0.2905 

GA 1.7033 8.3964 0.0308 0.4997 

2016 - 

Sep 

MoM 1.6449 8.8944 0.0478 0.0829 

NR 1.6563 8.9189 0.0505 0.0576 

GA 1.6342 8.7143 0.0433 0.1469 

2016 - 

Oct 

MoM 1.7423 9.4553 0.0403 0.1784 

NR 1.7605 9.4816 0.0442 0.1096 

GA 1.7254 9.4345 0.0368 0.2652 

2017 - 

Mar 

MoM 1.6872 7.9891 0.0400 0.1956 

NR 1.7152 8.0254 0.0425 0.1457 

GA 1.6913 8.0015 0.0399 0.1990 

 

It can be seen from Table 5 that GA provides the 

highest efficiency in 14 of 17 months in terms of the K-

S test results in Gökçeada data set. MoM provides the 

best fit in 3 months. 

Table 6 shows that GA provides the best fit in 12 of 14 

months. MoM is the second-best estimator and has the 

highest efficiency in 2 months for Datça dataset. 

5. Conclusion 

In this paper, we have obtained the ML estimators of 

the parameters of Weibull distribution using GA and 

NR techniques, and compared them with MoM. The 

efficiencies of the parameter estimation methods are 

evaluated based on MAE, bias and K-S test criteria. 

Results of the Monte Carlo simulation and real wind 

speed data analysis show that ML estimator using GA 

is more efficient than ML estimator using NR and MoM 

estimator in Weibull parameter estimation. 

Furthermore, it can be said that all data sets were 

observed in different geographical regions with 

different weather characteristics. GA showed 

superiority on these data sets including different types 

of weather conditions. Finally, arbitrary search spaces 

were used in this study which can be seen as a 

limitation. In the future works, we will focus on 

developing a data-based search space in GA for 

Weibull parameter estimation. 
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