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Increasing number of cores in a processor chip and decreasing cost of dis-
tributed memory based system setup have led to emerge of a new work theme
in which the main concern focused on the parallelization of the well-known
algorithmic approaches for utilizing the computational power of the current
architectures. In this study, the performances of the conventional parallel
and cooperative model based parallel Artificial Bee Colony (ABC) algorithms
on the deployment problem related to the wireless sensor networks were in-
vestigated. The results obtained from the experimental studies showed that
parallelized ABC algorithm with the cooperative model is capable of finding
similar or better coverage ratios with the increased convergence speeds than
its serial counterpart and parallelized implementation in which the emigrant is
chosen as the best food source in the current subcolony.
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1. Introduction

Wireless sensor networks including hundreds or
sometimes thousands of stationary or mobile
nodes have been used various times for indus-
trial or military projects [1, 2]. Each of the sen-
sor nodes is capable of sending or receiving data
packages and gathering information from the en-
vironment or objects being tracked. [1, 2]. How-
ever, sensor nodes have limited computing abili-
ties and storage spaces, their detection ranges are
restricted with properties of the sensing units and
finally required power for sensing and communi-
cation is maintained by a small battery which can
not be recharged or changed easily.

By considering all of these limitations and budget
constraints, the configuration and settlement of a
wireless sensor network should be made in order
to maximize the life or utilization time of the net-
work and the area of interest [1, 2]. The life time
and successfully covered area of a wireless sen-
sor network are directly related to the positions
of the sensor nodes. If all the sensor nodes are

deployed to the monitoring area in a straightfor-
ward manner that concerns the highest coverage
ratio, the requirements for changing the positions
of the mobile nodes by consuming extra energy
from the internal battery decrease and the overall
network life-time is substantially extended [1, 2].
With the increased understanding about the re-
lationship between the positions of the sensors
and efficiency of the network, studies on the de-
ployment of sensor nodes have attracted the re-
searchers and different approaches for solving the
sensor deployment problem have been proposed.

When the studies about the sensor deployment
problem are investigated, it is clearly seen that
evolutionary computing techniques are commonly
used. Bhondekar et al. used Genetic algorithm
(GA) as a placement methodology of sensor nodes
with different operating modes [3]. They tried
to optimize a fitness function in which opera-
tional energy, number of unconnected sensors,
number of overlapping cluster-in-charge, field cov-
erage and number of sensors per cluster-in-charge

1
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are used as constraints. While the operational en-
ergy, number of unconnected sensors, number of
overlapping cluster-in-charge constraints should
be minimized, field coverage and number of sen-
sors per cluster-in-charge constraints should be
maximized [3]. Okay and Ozdemir analyzed the
performances of the Multi-objective Evolutionary
Algorithm based on Decomposition (MOEA/D)
and Fast and Elitist Genetic Algorithm (NSGA-
II) on optimization of sensing coverage area and
total travel distances of the mobile nodes [4]. Ob-
tained results from the experimental studies with
25 mobile sensors tracking 50 targets distributed
to a 100m × 100m area showed that NSGA-II is
produced more robust deployments compared to
MOEA/D in terms of tracked objects [4].

Li and Lei proposed a sensor deployment tech-
nique based on the Particle Swarm Optimization
(PSO) algorithm called IPSO [5]. Distribution
of 40 mobile sensors to a 80m × 80m grid area
with IPSO algorithm significantly improved the
coverage ratio calculated with the probabilistic
detection model compared to the Virtual Force
(VF) algorithm [5]. One of the first studies about
the using ABC algorithm as a sensor deployment
technique has been carried out by Ugdata et al [6].
Ugdata et al. modeled sensor deployment prob-
lem as a data clustering problem and number of
sensor nodes was used on behalf of clusters and
locations of the sensor nodes were matched with
the centroids of clusters [6]. Ozturk et al. inves-
tigated solving capabilities of the ABC algorithm
for dynamic deployment problem of wireless net-
works with the two different studies [7, 8]. In the
first study of them, ABC algorithm was used in
order to maximize the coverage ratio of the net-
work containing 100 mobile sensors [7, 8]. In the
second study, they compared ABC algorithm with
the PSO algorithm on solving a dynamic deploy-
ment scenario in which 20 mobile sensors are tried
to be positioned at the suitable locations within
a 10, 000m2 square region [7,8]. Results from the
experimental studies showed that ABC algorithm
is capable of producing more qualified solutions
than the PSO algorithm. Yu et al. solved deploy-
ment problem by utilizing a modified ABC algo-
rithm named as FNF-BL-ABC [9]. In the FNF-
BL-ABC algorithm, the original equation of the
ABC algorithm used to generate candidate solu-
tions for onlooker bee phase was changed with the
forgetting (F) and neighbor (N) factors [9]. In
addition to these, they introduced a probabilis-
tic model called back propagation learning (BL)
for determining whether a solution is abandoned
or not in the scout bee phase. Simulation re-
sults in an ideal area and an area with obstacles

showed that TNF-BL-ABC algorithm produces
better coverage ratios than standard ABC algo-
rithm and increases the convergence speed [9].
Yadav et al. changed the search equation used
by the employed and onlooker bee phases of the
standard ABC algorithm and tested the proposed
ABC algorithm variant for dynamic positioning of
sensor networks [10].

In this study, the performances of the parallelized
ABC algorithms powered with the conventional
and cooperative emigrant creation strategies for
solving the deployment problem of sensor net-
works were analyzed. The improving effects of the
cooperative emigrant creation strategy already
seen in numerical optimization problems were also
investigated through sensor deployment problem.
The rest of the paper is organized as follows: In
the second section, definition of the sensor de-
ployment problem, coverage calculation and sen-
sor detection approach called binary detection are
given. Fundamental steps of the ABC algorithm
and its parallelization according to the mentioned
emigrant creation strategies are summarized in
third and fourth sections, respectively. Experi-
mental studies with different control parameters
are presented in fifth section. Finally, conclusions
and future works are given in the sixth section.

2. Deployment problem in wireless

sensor networks

When a wireless sensor network is established, the
main purposes of the settlement are to maximize
the utilization period of the network and the area
where the sensors successfully in communication
with each other by sending information obtained
from the tracked objects or environmental vari-
ables [5–9]. To maximize these two conflicting
objectives, exact positions of the mobile and sta-
tionary sensor nodes should be determined care-
fully. However, there is usually no priori infor-
mation about the area of interest or the targets
being tracked [5–9].

By considering all of these limitations, sensor de-
ployment can be defined as a problem for which
the coverage of the network is maximized by cor-
rectly positioning sensor nodes. When the sensor
nodes are deployed, the coverage ratio of the net-
work that shows the percentage of the successfully
covered area is calculated as in the Eq. (1). In
the Eq. (1), ci is the coverage of the ith sensor
in the set of sensors S and A is the size of the
area [5–9].

CR =

⋃

ci
A

, iǫS (1)
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If the area of interest is divided into equally sized
subareas or grids, and P is a point corresponds to
the corner of a grid at position (x, y), the Eu-
clidean distance between the point P and the
sensor si positioned at (xi, yi) is used to decide
whether point P is in detection range of sensor si
or not [5–9]. By taking the detection range of the
sensor si as r and the Euclidean distance between
the P and si as d(P, si), the coverage of point P
by si, cp(si), is equal to 1 if d(P, si) is less than r,
otherwise cp(si) is equal to 0. The binary sensor
detection model used in the coverage calculation
is given in the Eq. (2) for P and si [5–9].

ci =

{

1, d(P, ci) < r
0, d(P, ci) ≥ r

}

(2)

3. ABC algorithm and its adaptation

to sensor deployment problem

In a real honey bee colony, an intelligent foraging
behaviour is carried out by three groups of bees
called employed, onlooker and scout bees, respec-
tively [11–13]. Employed bees are responsible for
finding new food sources around the previously
visited ones and carry nectar to the hive. When
an employed bee turns back to the hive, she shares
the information about the nectar quality of the
memorized food source, location and distance to
the hive with the onlooker bees [11–13]. Onlooker
bees wait on the hive and select food sources intro-
duced by the employed bees. However, selection
of a food source by an onlooker is actually not a
random operation. If a food source introduced by
an employed is rich in terms of nectar, it is highly
possible that it attracts more onlooker bees com-
pared with the poor sources [11–13]. After an on-
looker bee selects a food source, she becomes an
employed and continues the foraging operation as
an employed. The final group of bees consists of
scout bees and scout bees randomly search the
environment to find an undiscovered food source.

By considering intelligent job division and for-
aging behaviours of bee colonies, Karaboga pro-
posed a new population based optimization algo-
rithm called ABC algorithm [11–13]. In ABC al-
gorithm, positions of the food sources correspond
to the possible solutions of the interested problem
and the nectar quality of a food source is directly
related to the appropriateness of the solution.
ABC algorithm starts its optimization operations
by randomly generating a set of food sources
[14–16]. Assume that there are SN different food
sources each of them contains D parameters, the
jth parameter of the ith food source, shortly xij ,

can be generated between lower bound xmin
j and

upper bound xmax
j as described in Eq. (3) [14–16].

xij = xmin
j + rand(0, 1)(xmax

j − xmin
j ) (3)

When solving sensor deployment problem, a food
source is matched with the positions of the sen-
sors belonging to the created network and a food
source or solution containing S wireless sensors
can be represented by a specialized D dimensional
vector in which each element is filled with loca-
tion information of the sensor. In Fig. 1, a food
source is illustrated for deployment of D wireless
sensors into a two dimensional area.

Sx
v,j = Sx

i,j
+ Ø( Sx

i,j _
Sx

k,j )

Sy
v,j = Sy

i,j
+ Ø( Sy

i,j _
Sy

k,j )

xk Sx Sy
k,1 k,1 Sx Sy

k,j k,j Sx Sy
k,n k,n

{ { {S1 Sj Sn

xi Sx Sy
i,1 i,1 Sx Sy

i,j i,j Sx Sy
i,n i,n

{ { {S1 Sj Sn

Sx Sy
i,1 i,1 Sx Sy

v,j v,j Sx Sy
i,n i,nvi

{ { {S1 Sj Sn

Figure 1. Representation of a solu-
tion for sensor deployment problem.

After generating initial food sources, each food
source is associated only one employed bee. An
employed bee is responsible with producing a can-
didate solution in the vicinity of the memorized
food source by utilizing the Eq. (4) [17–19].

vij = xij + φij(xij − xkj) (4)

In Eq. (4), vij is the jth parameter of the candi-
date food source vi. It should be noted that vi is
same with the xi food source except the jth pa-
rameter. xij and xkj are the jth parameters of the
xi and xk solutions, respectively [19–23]. Finally,
θ is a random coefficient between −1 and 1. If
the fit(vi) fitness value of the vi solution calcu-
lated by using the obj(vi) objective function value
for a maximization problem as in the Eq. (5) is
higher than the fit(xi) fitness value of the xi food
source, xi food source is replaced with the vi food
source and the trial counter triali showing how
many times the xi food source is not improved is
set to zero. Otherwise, the same counter is in-
cremented by one and its value is used to make a
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decision whether that food source is consumed or
not [19–23].

fit(xi) =

{

1 + |obj(xi)|; obj(xi) > 0
1/(1 + obj(xi)); obj(xi) 6 0

}

(5)

When all the employed bees complete their opera-
tions and turn back to the hive, they share the in-
formation about the memorized food sources with
the onlooker bees as mentioned before. Onlooker
bees waiting on the hive select food sources and
become employed foragers. However, each solu-
tion introduced by employed bees does not have
equal chance for selection and qualified sources at-
tract more onlookers. The relationship between
choosability of a food source and its quality is
modeled in ABC algorithm by assigning selection
probability for each food source as calculated in
Eq. (6) [19–23]. In Eq. (6), p(xi) shows the se-
lection probability of the xi solution with fit(xi)
fitness value and it is clearly seen that p(xi) in-
creases with the higher values of fit(xi). After a
food source is chosen by an onlooker bee, this on-
looker becomes an employed and produce a can-
didate solution using Eq. (4) [19–23].

p(xi) =
fit(xi)

∑SN
j fit(xj)

(6)

If a food source is not improved within employed
and onlooker bee phases, a decision whether this
food source is still consumed in the next cycle or
not should be made to maintain the diversity of
the solution set. In ABC algorithm, this deci-
sion is made by comparing the trial counters of
the food sources with a control parameter called
limit. A food source for which its trial counter
exceeds the value of the limit parameter at most
is abandoned and a scout bee is sent from the hive
to discover a new food source as in the Eq. (3).
In order to adjust exploration and exploitation
characteristics of the algorithm, value of the limit
parameter should be chosen carefully. For deter-
mining appropriate limit parameter of SN food
sources when solving a D dimensional optimiza-
tion problem, the formulation in Eq. (7) can be
used [19–23].

⌈a× SN ×D⌉ and a ∈ Q+ (7)

By considering the properties of the employed,
onlooker and scout bee phases, the fundamental
steps of the ABC algorithm and cyclical relation-
ship between the mentioned bee phases are sum-
marized in the Fig. 2.

for i ← 1 ... SN do

if evalCounter < MFE then

Generate new solution x
new

 by using Eq. (4).

Calculate fitness value of new solution.

if fit(x
new

) > fit(x
i
) then

Change x
i
 with x

new

end if

evalCounter ← evalCounter + 1

end for

sentBees ← 0, current ← 1 

Find probability values for each source by using Eq. (6).

while sentBees ≠ SN and evalCounter < MFE do

if p
current

 > rand(0,1) then

Generate new solution x
new

 by using Eq. (4).

Calculate fitness value of new solution.

if fit(x
new

) > fit(x
i
) then

Change x
i
 with x

new

end if

evalCounter ← evalCounter + 1

end if
current ← ( current + 1 ) mod SN

end while

if evalCounter <  MFE then

Determine the abandoned food source using limit value.

Generate a new source for the abandoned one by using Eq. (3).

evalCounter ← evalCounter + 1

end if

Until MFE is reached.

//Scout bee phase

//Onlooker bee phase

//Employed bee phase

Assign values to limit and MFE parameters.

Set evalCounter to zero.

Initialization:

Generate SN initial food source by using Eq. (3).

end if

Repeat

sentBees ← sendBees + 1

1:
2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:
18:

19:

20:

21:

22:
23:

24:

25:

26:
27:
28:

29:
30:

31:
32:
33:

34:

35:

36:

37:

38:

//Employed bee phase

//Onlooker bee phase

//Scout bee phase

39:

40:

41:

Figure 2. Fundamental steps of the
ABC algorithm.

4. Parallelization of ABC algorithm

with conventional and cooperative

model

Population based optimization algorithms includ-
ing ABC algorithm are generally suitable for
parallelization on distributed or shared memory
based architectures. However, some steps of the
algorithms require sequential operations and a
limited set of modifications on the fundamental
workflow of them should be made when they are
tried to be parallelized. Dividing the whole colony
into equally sized small colonies and evaluating
them simultaneously on the different computing
units are probably the most preferred paralleliza-
tion approach [24–26]. However, number of bees
in computing units is usually not enough com-
pared to the serial implementations on single com-
puting unit and parallelization does not go be-
yond a method that only focusing improvement
on the execution times [24–26].
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In order to address the problem to do with the
number of bees in computing units, some solu-
tions or individuals are migrated between sub-
colonies. The best solutions in each subcolony
are the appropriate emigrant candidates and they
usually change with the worst solutions in the
neighbor subcolonies. This type of migration
schema is the common part of the studies devoted
to the parallelization and can be thought as the
conventional approach [24–26]. However, if the
best solutions can not be improved between sub-
sequent migration periods, two or more copies of
the same emigrant can be seen in the neighbor
subcolony.

For increasing the efficiency of the emigrant so-
lution and ensuring that the different emigrants
are sent, an emigrant solution should be powered
with other solution or solutions before it is sent
to the neighbor subcolony. The mentioned idea
about powering the best solution in a subcolony
before migration is the main motivation of the co-
operative model. In cooperative model, the best
food source in a subcolony is strengthened by the
more convenient parameters of the randomly cho-
sen food source in the same subcolony. The Fig. 3
below illustrates the fundamental steps of the co-
operative model in which neighborhood between
subcolonies is determined by the ring topology.

if migPeriod is reached then

if evalCounter < MFE then

x
random

 ← a random source in the (subColony)th subcolony.

x
best

, x
coop

 ← the best source in the (subColony)th subcolony.

for i ← 1 ... D do

Change x
coop,i

 with x
random,i

if fit(x
coop

) < fit(x
best

) then

evalCounter ← evalCounter + 1

Change x
coop,i

 with x
best,i

end for

Send x
coop

 to the ((subColony + 1) mod numOfSubCol)th subcolony.

Until MFE is reached

end if

After completion of a phase-triple

Assign values to limit and MFE parameters.

Set evalCounter to zero and define a migPeriod.

Initialization:

Generate SN initial food source by using Eq. (1).

Calculate the fitness value of x
coop

Repeat

1:
2:

3:

4:

6:

7:

8:

9:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

Determine numOfSubCol.5:

subColony ← index of current subcolony.10:

Figure 3. Fundamental steps of the
parallel ABC algorithm with cooper-
ative model.

As seen from the fundamental steps of the parallel
ABC algorithm with cooperative model, the best
food source chosen as an emigrant for the current
migration period is modified with the parameters
of the randomly selected food source. If the ith

parameter of the randomly selected food source
increases the fitness value of the best food source,
the ith parameter of the best food source is re-
placed with the corresponding parameter of the
randomly selected food source. By utilizing this
type of emigrant creation schema, the probability
of sending qualified food sources as emigrants and
the chance for consumption more qualified solu-
tions are significantly increased.

However, it should be noted that generation of co-
operative emigrant requires D times more fitness
evaluations compared to the conventional emi-
grant creation schema. If the migration period
and neighborhood topology are chosen by consid-
ering the computational burden of the cooperative
emigrant creation approach, the speedup and ef-
ficiency values of the parallelized ABC algorithm
with cooperative model get closer to the speedup
and efficiency values of the parallelized ABC al-
gorithm in which the emigrant is determined as
the local best food source in the subcolony and
then it is sent to the neighbor subcolony without
modification.

5. Experimental studies

In order to analyze the performance of the conven-
tional and cooperative emigrant creation schema
for solving the sensor deployment problem, a set
of experimental studies has bee carried out with
100 mobile sensors that should be positioned at
the suitable locations on a 100m × 100m area
by considering the maximization of the coverage.
For serial ABC algorithm, sABC algorithm, par-
allel ABC algorithm with the conventional em-
igrant creation strategy, pABC algorithm, and
parallel ABC algorithm with the cooperative em-
igrant creation strategy, coop-pABC algorithm,
the colony size was set to 20 and the limit param-
eter was chosen as 100 for the experiments [7, 8].

Neighborhood topology of the pABC and coop-
pABC algorithms was ring and for each subcolony
only one emigrant was generated. When an em-
igrant was sent to its neighbor subcolony, it was
replaced with the worst solution found in the
neighbor subcolony. The migration period (mi-
gration rate) that determines the frequency of
the communication between subcolonies was set
to 20 which means that after completion of a
20 employed-onlooker-scout bee phase triple, sub-
colonies exchange their emigrants according to the
used neighborhood topology. sABC algorithm,
pABC and coop-pABC algorithms with four sub-
colonies were tested independently until the max-
imum evaluation number reached to 1, 000, 2, 000
and 10, 000 on a system equipped with Intel i5 750
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processor and 4 GB of RAM. sABC, pABC and
coop-pABC algorithms were coded in C program-
ming language and the required synchronization
between subcolonies or processor cores were main-
tained by using the built-in function in pthreads
library. Each of the algorithm was run 20 differ-
ent times with random seeds and the means best
coverage ratios and standard deviations related to
the 20 runs were recorded and given in the Tables
1-3.

When the results given in the Tables 1-3 are in-
vestigated it is clearly seen that the the coop-
pABC algorithm is capable of producing better
mean coverage ratios compared to the pABC al-
gorithm for all of the three experimental cases and
the sABC algorithm for the two of three different
experimental cases. By starting distribution of
the cooperative emigrants, parallelized ABC al-
gorithm improves the qualities of the solutions in
each subcolony. Even though the differences be-
tween mean best coverage ratios of the algorithms
are relatively small, the complex structure of the
deployment problem and the difficulty on improv-
ing coverage value after determining positions of
the some sensors should be remembered.

Table 1. Coverage values obtained
by the sABC and pABC.

Evaluations
sABC pABC

Mean Std.Dev. Mean Std.Dev.

1,000 0.88257 0.00410 0.87507 0.00594

2,000 0.91207 0.00638 0.90887 0.00483

10,000 0.96755 0.00226 0.96904 0.00372

Table 2. Coverage values obtained
by the sABC and coop-pABC.

Evaluations
sABC coop-pABC

Mean Std.Dev. Mean Std.Dev

1,000 0.88257 0.00410 0.87970 0.00457

2,000 0.91207 0.00638 0.91530 0.00362

10,000 0.96755 0.00226 0.97063 0.00553

Table 3. Coverage values obtained
by the pABC and coop-pABC.

Evaluations
pABC coop-pABC

Mean Std.Dev. Mean Std.Dev

1,000 0.87507 0.00594 0.87970 0.00457

2,000 0.90887 0.00483 0.91530 0.00362

10,000 0.96904 0.00372 0.97063 0.00553

One of the main purposed with the paralleliza-
tion of an algorithm is actually decreasing the
execution times compared to the its serial imple-
mentation while protecting the qualities of the fi-
nal solutions or results. For measuring the gain
in the execution times, two important metrics
called speedup and efficiency are commonly used.

Speedup measure can be explained as a ratio be-
tween average execution times between serial and
parallel implementations of the same algorithm
and its maximum value can be equal to the num-
ber of cores or computing nodes of the cluster. If
the speedup value of the parallelization is equal
to the number of core or computing nodes, it is
said that parallelization is linear. Efficiency met-
ric is defined as a ratio between speedup and num-
ber of computing units used in the parallelization
schema.

If the parallelization overhead stemmed from the
mechanism such as synchronization, mutual ex-
clusion can not be neglected, the maximum value
of the efficiency can be relatively close to one. In
Tables 4-7, average execution times of the sABC,
pABC and coop-pABC algorithms, speedup and
efficiency values for parallel implementations are
given. As seen from the results given in Tables 4-
7, conventional emigrant creation strategy reaches
more desired speedup and efficiency values when
compared to the cooperative emigrant creation
strategy based parallelization approach. If the re-
duction in execution time is the main concern of
the parallelization, the migration period should
be carefully chosen to balance the qualities of the
final solutions and speedup-efficiency values.

Table 4. Average execution times
for sABC and pABC.

Evaluations
sABC pABC

Mean Std.Dev. Mean Std.Dev.

1,000 48.63031 2.01138 13.39241 0.60145

2,000 94.37129 3.73157 27.23307 1.18997

10,000 437.05957 11.35073 124.54752 3.29203

Table 5. Speedup and efficiency val-
ues of pABC.

Evaluations
ABC and pABC Algorithms

Speedup Efficiency

1,000 3.63118 0.90779

2,000 3.46531 0.86633

10,000 3.50917 0.87729

Table 6. Average execution times
for sABC and coop-pABC.

Evaluations
sABC coop-pABC

Mean Std.Dev. Mean Std.Dev.

1,000 48.63031 2.01138 18.78291 0.69383

2,000 94.37129 3.73157 37.47984 1.55957

10,000 437.05957 11.35073 187.71349 3.48997
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Figure 4. Convergence curves of sABC and coop-pABC (a) and pABC and coop-pABC (b).

Table 7. Speedup and efficiency val-
ues for coop-pABC.

Evaluations
ABC and coop-pABC Algorithms

Speedup Efficiency

1,000 2.58907 0.64726

2,000 2.51792 0.62948

10,000 2.32833 0.58208

Another comparison between sABC and parallel
ABC algorithms can be made about the conver-
gence characteristics of them illustrated in Fig. 4
below. When the convergence curves given in Fig.
4 are investigated, it is clearly seen that conver-
gence performance of the coop-pABC algorithm is
better than the convergence performances of the
sABC and pABC algorithms. Although the initial
mean best coverage values of parallel ABC algo-
rithms is less than the initial mean best coverage
value of sABC algorithm, they reached sABC al-
gorithm before completion of the first 1, 000 eval-
uations and then start to produce more eligible
mean best coverage values than sABC algorithm.

In order to make a visual investigation how the
sensors are positioned by the sABC, pABC and
coop-pABC algorithms and how the areas being
covered change for the different termination con-
ditions, the Figs. 5-10 should be utilized. As
easily seen from the Figs. 5-10, successfully cover-
aged areas by the algorithms are rational with the
total number of evaluations. With the completion
of the 1, 000 evaluations, both serial and parallel
implementations of the ABC algorithm produce
deployments in which some sensors are located
relatively close positions and coverage areas of
them are overlapped. However, when the number
of evaluations is set to 10, 000, overlapped sensors

are scattered more robustly and coop-pABC algo-
rithm outperforms sABC and pABC algorithms
in terms of mean best coverage ratios.

Deciding whether coop-pABC algorithm can be
interchangeable with the sABC or pABC algo-
rithms, an information extracted from a statis-
tical test should be utilized. For this purpose, a
nonparametric test called Wilcoxon signed rank
test is used with the significance level (p) less
than 0.05. From the test results given in the
Table 8 for 10, 000 fitness evaluations, it is seen
that there is no significant difference between se-
rial and parallel implementations of the ABC al-
gorithm even though coop-pABC algorithm pro-
duces better mean best coverage values and par-
allel implementations can be used on behalf of
sABC algorithm if the running environments are
designed for utilizing the multi-core or multi-node
based architectures.

Table 8. Statistical comparison be-
tween ABC algorithms.

Test statistics sABC/coop-pABC pABC/coop-pABC

Z-Value -1.784925 -1.274946

p-Value 0.074274 0.202328

Sign. - -

6. Conclusion

In this study, ABC algorithm was parallelized for
running on a multi-core processor and it perfor-
mance was tested on solving wireless sensor de-
ployment problem. Parallelized ABC algorithm
by dividing the whole bee colony into subcolonies
running simultaneously was powered with the co-
operative emigrant creation approach and the re-
sults obtained with the mentioned ABC algo-
rithm were compared to the results obtained with
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Figure 5. The
best coverage of
sABC for 1,000
evaluations

Figure 6. The
best coverage of
pABC for 1,000
evaluations

Figure 7. The
best coverage of
coop-pABC for
1,000 eveluations

Figure 8. The
best coverage of
sABC for 10,000
evaluations

Figure 9. The
best coverage of
pABC for 10,000
evaluations

Figure 10. The
best coverage of
coop-pABC for
10,000 eveluations

standard serial and conventional parallel ABC
algorithms. Comparative studies showed that
cooperative model is still capable of increasing
convergence speed and improving solution qual-
ities of parallel ABC algorithm for sensor deploy-
ment problem as seen in the numerical benchmark
problems by adding extra computational burden
that changes directly with the migration period
to the execution time of the algorithm.
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1. Introduction 

The solution of nonlinear partial differential equations 

has a measure in real life. For this reason, many 

methods have been developed and applied to solve 

these equations. Some of these, respectively the trial 

equation method [1], the new function methods [2-6], 

the extended trial equation method [7], Kudryashov 

method [8], the sine-Gordon expansion method  [9-10] 

and so on. In this study, we apply the modified 

expansion function method (MEFM) [11-13] to solve a 

nonlinear MBQ equation and find new interactions 

among travelling wave solutions. Boussinesq–type 

equations of higher order in dispersion as well as in 

nonlinearity are reproduced for wave–current 

interaction over an unbalanced bottom. There are 

various methods in the literature to obtain the solution 

of the equation. Some of those; tanh method, the 

modified decomposition method and bilinearization 

method 

In Section 2, Information about the modified expansion 

function method will be given.  

In Section 3 the modified expansion function method is 

applied to the MBQ equation and the new exact wave 

solution to this problem is obtained. The 2D and 3D 

graphics of the solutions were drawed by using the 

Mathematica software program.  

The modified Boussinesq equation can be defined as 

follows [14-16], 

 

( )2 0.
2xxu u utt xxtt
a

u
xx

− − + =                                  (1)                     

2. Modified Expansion Function method 

In this part, we will be given information about MEFM. 

Consider the following nonlinear partial differential 

equation (NPDE): 

( )( )2 2
, , , 0,, , , ,,tt

xx
P u u u u u u u uxx xxt xxttu

x t
=               (2) 

where = ( , )u u x t  is unknown function, P  is a 

polynomial in ( , )u x t  and its derivatives. 

The general form of the nonlinear partial differential 

equation (2) is given above. By applying wave 

conversion to NPDE expression (3), the general form 

of the following nonlinear ordinary differential 

equation (4) is obtained. 

Step 1: Consider the following travelling wave 

transformation: 

( )( , ) = ( ), .u x t u x ct  = −                                     (3) 

Substituting Eq. (3) into Eq. (2), gives the following 

nonlinear ordinary differential equation (NODE); 

2
2

, , , 0.
2

,N u u
du d u

d d 
=

 
 
 

                                      (4) 

Step 2: We assume the following solution; 

http://www.ams.org/msc/msc2010.html
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where , , (0 , 0 ).A B i m j ni j       

m , n  are positive integers that can be obtained by 

using the balancing principle.  
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Eq.(6) has the following families of solutions [17]:   
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Family 3: When, 0, 0k =  , 
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Family 5: When, 0, 0k = = , 
2

4 0,k − =  

( ) = ( ),ln EE   +                                             (11) 

Where, EE is a integral constant. 

Step 3: By substituting Eq. (5) and its derivatives into 

Eq. (4), we get algebraic equation system. This system 

was solved by using the Mathematica software program 

and then the solutions of the MBQ equation were 

obtained. 

3. Application 

In this section, the modified expansion function method 

will be used to obtain solutions of the MBQ equation. 

Consider the following travelling wave transformation: 
 

( )( , ) = ( ), .u x t u x ct  = −                                (12) 

the following nonlinear ordinary differential equation 

is obtained, 

( )2 2 2 2
2 2 0.1au u c uc  + − =−                      (13) 

If the balancing procedure is applied to equation (13), 

we get 2n m= + equality. 

Choosing 1,m =  we get 3.n = Eq. (5) for m and n values 

is obtained as follows; 
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If Eq. (14) is regulated according to the necessary term 

in equation (13), then the following system of algebraic 

equations is obtained which consists of the coefficients 

of 
( )

.e
 −

 

Some suitable coefficients obtained by using the 

Mathematica package program are given below. 

 

Case-1: 

( )

2
12

0
,0 2 2

4

B

A

a a



  

=

− −  

( )
( )( )

2
12

0 1
,1 2 2

1 4

B B

A

a

  

  

+

= −

− + −  

( )
( )( )

2
12

0 1
,2 2 2

1 4

B B

A

a

 

  

+

= −

− + −

 

( )3

2
12

1
,

2 2
4

B
A

a a



  

=

− −  

( )
1

.
2 2

1 4

c

  

=

− −

 

Substituting these coefficients into Eq. (14), the 

following solutions: 
 

Family 1: When, 0k  ,
2

4 > 0,k − solution of 

equation (1), 

(15) 

where, 
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Figure-3. The 3D, density graphic and 2D surfaces of Eq. 

(17) in 0.5, 0, 4, 0.5,c a = = = = 1, 0.75EE = = and 

1t = . 

 

According to Family-4, the solution does not exist. 
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Figure-4. The 3D, density graphic and 2D surfaces of Eq. 

(18) in 0, 0, 4c = = = 0.5, 1, 0.75a EE= = = and 1t = . 
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Substituting these coefficients into Eq. (14), the 

following solutions: 

Family 1: When, 0k  ,
2

4 > 0,k − we get 

(19) 

where, 

( )
12 2 2

4 , 4 4

2

,Tanh EE        = − = − − +
  
    

 

 

 

 

 

 

 

 
Figure-5. The 3D, density graphic and 2D surfaces of Eq. 

(19) in 0.2, 2, 4c = = = 0.5, 1, 0.75a EE= = = and 

1t = . 

 

Family 2: When, 0k  , 
2

4 < 0,k −  

(20) 

where, 
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   

  

 

 

 

 

Figure-6. The 3D, density graphic and 2D surfaces of Eq. 

(20) in 0.5, 2, 4c = = = 0.5, 1, 0.75a EE= = = and 

1t = . 
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Family 3: 0, 0k =  , 2
4 > 0,k −  

(21) 
 

 

 

 

Figure-7. The 3D, density graphic and 2D surfaces of Eq. 

(21) in 0, 2, 4c = = = 0.5, 1, 0.75a EE= = = and 1t = . 

Family-4 and Family-5, the solution does not exist. 

4. Conclusion 

In this study, we obtained some travelling wave 

solutions of Boussinesq equation by using modified 

expansion function method. The results show that the 

modified expansion function method is a suitable 

mathematical method for solving nonlinear partial 

differential equations. The resulting solutions were 

checked with the Mathematica software. These 

solutions have been obtained by MEFM for the first 

time in the literature. 
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 In this study, by using the finite difference method (FDM for short) and operators, 
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1. Introduction 

Russel has firstly studied the solitary wave [2,4] by 

following the water wave travelling through a tube. 

Investigation of the analytical and numerical solutions 

as well as other studies to the various class of nonlinear 

partial differential equations play an important role in 

the field of nonlinear sciences.  

Most recently, some serious methods have been 

developed in order to solve nonlinear differential 

equation. For example, (G'/G)-expansion method [5,6], 

the improved (G'/G)-expansion method [7-9], the 

modified simple equation method [10], the Sumudu 

transform method [11-14], the Bäcklund transform 

method [15], the homotopy analysis method [16,17], 

the exponential function method [18-20], the modified 

exponential function method [21], generalized 

Bernoulli sub-ODE method [22], improved Bernoulli 

sub-ODE method [24-26], weak solutions[27] and 

galerkin method [28].  

In the current work, we consider the Cahn-Allen 

equation given as: 

                        3
t xxu = u - u +u.                         (1) 

By using first integral method, Bulut et al. [23] have 

obtained some soliton to Eq. (1). 

 

 

The discretize equation to the Cahn-Allen equation is 

derived by using the finite difference method (FDM) 

and its operators.  We observe that the numerical 

method is stable with the Eq. (1) is stable when the 

Fourier-Von Neumann technique is utilzed. 

Furthermore, the accuracy in terms of the errors in   and 

is analyzed. We then utilized the FDM in 

approximating exact and numerical solutions to Eq. (1). 

We present the computed exact and numerical 

approximations as well as the absolute error in tables.  

We compare the exact and numerical approximations 

calculated and support the comparison with some 

graphics plots, which are sketched by using the 

Wolfram Mathematica 11.  

2. Fundamental properties of methods 

2.1 Analysis of FDM 

Some important notations are needed in order to 

describe the finite forward difference method, these 

are: 

• x , which is the spatial step  

• t , which is the time step 
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• Nixiaxi ,,2,1,0, =+=  points, which are 

the coordinates of mesh and 

Mjtjt
x

ab
N j ,,2,1,0,, ==



−
= and 

t

T
M


= .  

• The function ),( txu  is the value of the 

solution at  jiji utxu ,),(   (grid points), 

where jiu ,  will is the numerical 

approximations of the exact value of ),( txu  

at the points ),( ji tx .  

The difference operators are given as follows: 

,,1,, jijijit uuuH −= +                               (2) 

.2 ,1,,1, jijijijixx uuuuH −+ +−=                (3) 

Thus, the derivatives involve in Eq. (1) can be given in 

finite difference operators form as 

),( 2,

,

tO
t

uH

t

u jit

ji

+


=



                              (4) 

( )
).( 2

2

,

,

2

2

xO
x

uH

x

u jixx

ji

+


=


               (5) 

The difference operator form to Eq. (1) is given as  

( )
3, ,

, ,2( )

t i j xx i j

i j i j

H u H u
u u

t x
= − +

 
.                       (6) 

 

Inserting Eq. (4) and (5) into Eq. (1), one can be written 

as indexed 

2
2

1, 1, ,

2
2 3

, , 1

( )
2 ( )

( )
( ) ( ) ,

i j i j i j

i j i j

x
u u u x

t

x
x u u

t

+ −

+

 
= − + −  − 

 


+  +



              (7) 

where the initial values )(00, ii xuu = . 

2.2. Consistency analysis 

In this subsection, the consistency of Eq. (1) with 

difference method is discussed. Firstly, the Taylor 

series expansions as taking the following form [11-13], 

2

,1, )( tO
t

u
tuu jiji +



+=+

,                            (8) 

2
2 3

1, , 2
( ) ( ).i j i j

u u
u u x x O x

x x
−

 
= − +  − 

 
    (9) 

One may define the operator L as 

2

2

xt
L




−




= . 

 

The indexed form of operator L takes the following 

form:   

( )2
,,

,
x

uH

t

uH
L

jixxjit

ji


−


= .                            (10) 

Inserting the indexed form (8) and (9) into the equality 

(10) and making some theoretical calculations, then the 

approach will be the 0 and 0t x →  → . Therefore, 

the equality (10) will be same as left hand side of the 

Eq. (1). Thus, it can be seen that the Eq. (1) is consistent 

with FDM. 

 

2.3 Truncation error and stability analysis 

In this subsection, the stability and error analysis for the 

FDM are studied. For the stability, if there is a 

perturbation in the initial condition and then the small 

change would not cause the large error in the numerical 

solution.  Simply, stability means that the scheme does 

not amplify errors and the error caused by a small 

perturbation in the numerical solution remains bound.  

 

Theorem 1. The truncation error of the finite different 

method to the Eq. (1) is  322 )()()( xOtOx + . 

 

Proof. Inserting Eq. (4) and (5) into Eq. (1) gives 

( )

, ,2 3

2

3

, ,

( ) ( )
( )

.

t i j xx i j

i j i j

H u H u
O t O x

t x

u u

 
+  = +  

  

− +

        (11) 

Inserting the equalities (2) and (3) into the Eq. (11) and 

do some necessary manipulations, then we obtain the 

following equality 

2
2

1, 1, ,

2
2 3

, , 1

2 2 3

( )
2 ( )

( )
( ) ( )

( ) ( ( ) ( ) ).

i j i j i j

i j i j

x
u u u x

t

x
x u u

t

x O t O x

+ −

+

 
= − + −  − 

 


+  +



+   + 

        (12) 

Utilizing Eq. (12), one may write numerical solution 

Û as 

2
2

1, ,

2
2 3

, , 1

( )ˆ 2 ( )

( )
( ) ( ) ,

i j i j

i j i j

x
U u u x

t

x
x u u

t

−

+

 
= − + −  − 

 


+  +



     

and the truncation error E as 

 322 )()()( xOtOxE += .  

Moreover, if t  and x  are considered as small as 

necessary, truncation error will be obviously very 

small. The limit of E can be written as 
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0lim

0
0

=

→
→

E

t
x

.                                                                                                        

We can see that if t  and x are configured for a 

value close to zero 0 , the following inequality is 

gotten  

E , 

which proves the stability of the FDM. 

 

Theorem 2. The FDM in respect to the Cahn-Allen 

equation is unconditionally stable. 

 

Proof. We consider the Von Neumann’s Stability of the 

finite difference method for the Cahn-Allen. Let  

 , ( , ) ( , ) , , ,q I p

i ju u i x j t u p q e    =   = =  −  

(13) 

where tjqxip == ,  and 1−=I . Inserting Eq. 

(2), (3) and (13) into the equality (6), we can obtain 

,0→     

According to the Von Neumann’s Stability analysis 

[29], the FDM is stable if  1 . Hence, the FDM is 

unconditionally stable with the Cahn-Allen equation. 

  

2.4. 2L  and L Error Norms 

To show how close the numerical approximations are 

close to the exact approximations the 2L  and L  error 

norms are utilized [30]. 

The 2L  error norm is defined as [30]. 

2

2 2
0

,
N

exact numeric exact numeric

j j

j

L u u h u u
=

= − = −  

and L  error norm is defined as [30]

numeric

j

exact

j
j

numericexact uuMaxuuL −=−=



. 

3. Application 

In this section, we apply Finite Difference Method for 

Eq. (1) and consider numerical experiments. Recall the 

following hyperbolic function solution for Eq. (1) given 

in [1]: 

( )
( )  ( )

 ( )

2
1 1 0 1

1 2
1 1 0 1 1

3A + 9A + 24cA B -1+Tanh f(x,t)
u x,t = - ,

6A + 2 9A + 24cA B - 6B 1+Tanh f(x,t)

 

(14)  

where 13 3 2
( , )

4

− +
=

c ct cx
f x t

c
 and   

( )

( )( )

2
2

1 1 1 0 1

2 2
1

2
0 1 1 1 1 1 0 1

2 2
1

3 3 9 24

4

3 4 3 9 24

2

0,

0.

A B A cA B

c B

cA B A B A A cA B

c B



− + +

 
+ − + + 

 
−





 

If we put 

0 1 1 10.6, 3, 5, 1, 0.1c A B A c= = − = − = − = ,  

10  x  and 10  t  for Eq. (14), the initial 

condition is 

( )

0

2 1
1 1 0 1

2 1
1 1 0 1 1

( ) ( ,0)

3 2
3 9 24 1 Tanh

4
,

3 2
6 2 9 24 6 1 Tanh

4

u x u x

c cx
A A cA B

c

c cx
A A cA B B

c

= =

  +
+ + − +   

  
−

  +
+ + − +   

  

(15) 

and under the above assumptions the exact solution of 

the Eq. (1) is as following 

 

 ( )
 ( )

12 1 Tanh 0.416667(0.3 1.8 0.848528 )
( , ) .

24 30 1 Tanh 0.416667(0.3 1.8 0.848528 )

t x
u x t

t x

− + − +
= −

+ + − +

(16) 

Eq. (1) can be written as indexed with the help of finite 

difference operators 

( ) .10019999100000001.0 1,,

3

,,,1,1 +−+ +−−−−−= jijijijijiji uuuuuu                   

A comparison of the obtained exact and numerical 

solutions are tabulate in Table 1. 

 
Table 1. Numerical and exact solutions of equation (1) and 

absolute errors when ∆𝑥 = 0.01. 

 xi         tj    Numerical solution  Exact Solution    Absolute  Error…. 

0.00   0.01     0.184247      0.184258      1.06626×10−5 

0.01   0.01     0.183187      0.183197      1.06500×10−5 

0.02   0.01     0.182131  0.182142      1.06370×10−5 

0.03   0.01     0.181080  0.181091      1.06236×10−5 

0.04   0.01     0.180034  0.180044      1.06098×10−5 

0.05   0.01     0.178992  0.170900      1.05956×10−5 

0.06   0.01     0.177955  0.177966      1.05810×10−5 

 

 

Table 2. 
2L  and 

L  error norm when 10  h  and            

10  x  

 x t =                         
2L                                                        

L   0.2            

2.01978×10−3                            4.317×10−3 0.1              

6.96142×10−4                            1.074×10−3 

0.05            2.42301×10−4                            2.670×10−4 

0.01            1.04962×10−5                            1.100×10−5 
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Table2 shows that when x and t  are small, the 
2L  

and 
L error norm are decreasing. From Table 1-2 it is 

easily seen that results are in good agreement with the 

exact solution.  

 

 
Figure 1. Numerical solution of Eq. (1) for finite difference 

method 

Fig. 1 displays the physical behavior of the solution and 

shows that the exact approximations values are almost 

close to the numerically computed values. It is known 

that the truncation error depends on the choice of x

and t . Choosing the values to be very small gives rise 

to very small truncation error. This behavior of the 

numerical and exact solutions can be seen in the graphs 

above when the values of .01.0== tx  

 

4. Remark 

The numerical results for example 1 have been obtained 

by using the programming language Wolfram 

Mathematica package. To the best of our knowledge, 

these numerical solutions have not been published 

previously, and these results are new numerical 

solutions for (1). 

5. Conculusion 

In this study, the FDM is used in approximating the 

numerical solutions to the Cahn-Allen equation. FDM 

is a useful numerical scheme for approximating the 

solutions of various nonlinear differential equations by 

defining suitable differential operators. The initial 

condition for the Cahn-Allen equation is obtained using 

the new analytical solution. The Cahn-Allen equation 

is written as indexed with the help of finite difference 

operators. Error analysis of the index equation was 

analyzed. Cahn-Allen equation is discussed with an 

example and error estimates obtained for the FDM. 

Furthermore, the behavior of potentials u and absolute 

error are examined graphically. 
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1. Introduction

Epidemiology is the study of the spread of dis-
eases with the objective to trace factors, which
are responsible for or contribute to their occur-
rence. Mathematical modeling of the spread of
infectious diseases continues to become an impor-
tant tool in understanding the dynamics of dis-
eases and in decision making processes regard-
ing diseases intervention programs for disease in
many countries. Controlling infectious diseases
has been an increasingly complex issue in recent
years. Media awareness program is an impor-
tant strategy for the elimination of infectious dis-
eases [1, 2]. The field of stochastic modeling of
biological and ecological systems [3] is currently
undergoing considerable development as of com-
plex stochastic models by simulation methods are
more feasible. Mathematicians have contributed
a range of papers which can be found in the liter-
ature of probability theory and statistical physics
characterizing the theoretical properties of a large
variety of stochastic models.

Optimal control theory has found wide-ranging
applications in biological and ecological problems.
Specifically, there have been various studies of epi-
demiological models, where optimal control meth-
ods have been applied [4, 5]. Optimal control
theory is a systematic approach to controller de-
sign where by the desired performance objectives
are encoded in a cost function, which is subse-
quently optimized to determine the desired con-
troller [6]. There are two underlying and universal
themes i.e., dynamic programming and filtering.
Dynamic programming is one of the fundamental
tool of optimal control, the other being Pontrya-
gins principle. Dynamic programming is a means
by which candidates optimal control can be ver-
ified optimally. The procedure is to find a suit-
able solution to dynamic programming equation
(DPE), which denotes the optimal performance
and to use it to compare the performance candi-
dates control may be determined from Pontrya-
gins Maximum Principle [7] and later developed
by Fleming and Rishel [8] is successfully applied
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in a number of studies, to explore optimal con-
trol theory in some mathematical models for in-
fectious diseases. Epidemic models are inevitably
affected by environmental white noise, which is an
important component in realism, because it can
provide an additional degree of realism in compar-
ison to their deterministic counterparts. Many
stochastic model for epidemic populations have
been developed in literature [9,10]. For SDE mod-
els in epidemiology, optimal control has not been
studied extensively. One of the reasons for this
could very well be the difficulty with high dimen-
sionality of the resulting partial differential equa-
tion (PDE) for the value function (See, Sulem and
Tapiero [11]), for instance, a four-compartmental
SIVR model such as in [12, 13] could easily lead
to a PDE having the time variable together with
three state variables. In control problems, the
aim of the study is to characterize the control vari-
able on a finite time interval, which minimizes the
number of infected individuals balanced against
the cost of controlling the epidemic.

In the present study it is proposed and developed
optimal control policies for deterministic and sto-
chastic SIR epidemic model with awareness pro-
grams by media. The aim of this model is to de-
pict how the provision of awareness modifies the
contact structure and thereby affects the future
course of an epidemic. In the absence of any phar-
maceutical intervention, to control the spread of
disease at the population level needs to change
the individual activities, which in turn depends
on information being provided to the individu-
als about the epidemic. If the susceptibles are
aware about the preventive measures for emer-
gent disease, they are likely to modify their activi-
ties. The study contracts on disease which spread
through interaction between susceptible and in-
fective, i.e. direct contact. Therefore to control
the outbreak of any epidemic, it is informed to
avoid contact, by which some can contract infec-
tion and minimize the possibility of contracting
infection. In vision of this, it is assumed that
when awareness is propagated by media about the
disease, susceptible form a separate class within
the population i.e., to avoid being in contact with
other members of the population. Another im-
portant aspect of this study is to check whether
size of the infectious population is directly pro-
portional to awareness campaigns by media. The
explicit inclusion of awareness campaigns by me-
dia in the modeling process are assumed to be
proportional to the size of infectious individuals
in the population. This study differs from other
epidemic modeling by performing the stochastic
optimal control analysis, which is rarely studied

by researchers like [6,14] in the field of epidemics
and by including the transmission of infection in
two modes in the model, A.K. Misra [1], has dis-
cussed the epidemic model with media awareness
and stability analysis for deterministic model by
considering single transmission parameter β, in
the present study, the transmission of infection
is considered by two modes i.e. transmission be-
tween unaware susceptible and infectives and the
transmission between hospitalized individuals and
unaware susceptible denoted by by β1 and β2 re-
spectively. It is assumed that the rate of contact
of susceptible with infectives who are on treat-
ment is much less than the infectives who are
not on treatment (β2 ≪ β1). This is so because
on hospitalization of infectives for treatment their
contact with susceptible group of a population is
reduced and may contribute little to the spread of
infection. In the numerical analysis of the deter-
ministic and corresponding stochastic model, it
is discussed the comparison of deterministic and
stochastic solution and also shown, how the con-
trol variable vary for different values of a param-
eters. The rest of the work is organized as fol-
lows: Section 2 deals with deterministic model
framework and optimal control analysis, while in
Section 3 formulation of stochastic model with
constant controls and optimal control analysis is
carried out. Section 4, consist of numerical sim-
ulations and discussion of results and principle
findings of the paper are discussed in Section 5.

2. Deterministic Model

In this section, deterministic nonlinear SIR model
is considered by taking media awareness and
treatment into account. The variables and pa-
rameters of the model are described in Table 1
and Table 2 respectively.

Table 1. Description of variables of
the model.

Variables Explanation
X(t) The number of susceptible

at time t;
Y (t) The number of infectives

at time t;
Xm(t) The number of aware

susceptible at time t;
T (t) The infectives who are on

treatment at time t;
Z(t) The recovered population

at time t;
M(t) The cumulative density

of awareness programs
driven by media in the
region at time t;
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To model the situation considered a region with
total population N(t) at any instant of time t. By
taking into account the aforementioned consider-
ations, the system of equations that capture the
dynamics of the infectious disease is designed and
the ordinary differential equations of the system
(1) is as follows.

Table 2. Description of parameters
of the model

Parameters Description
β1 The contact rate of susceptible

with infectives;
β2 The contact rate of susceptible

with hospitalized infectives;
Q The constant rate of immigration

of susceptible;
π The dissemination rate of

awareness among susceptible due to
which they form a separate group;

π0 The rate of transfer of aware
susceptible to susceptible;

γ The recovery rate;
δ The disease induced death rate;
δ1 The natural death rate from

each class;
σ1 The modification parameter due

to treatment for recovery;
σ2 The modification parameter for

disease induced death rate due
to treatment;

µ The rate at which awareness
programs has being implemented;

µ0 The depletion rate of awareness
programs due to infectiveness,
social problems in population;

γ0 The loss rate of immunity of
recovered individuals;

φ The rate at which infective are
hospitalized for treatment;

dX

dt
= Q− β1XY − β2XT − πXM + π0Xm

+γ0Z − δ1X

dY

dt
= β1XY + β2XT − (δ + γ + φ+ δ1)Y

dXm

dt
= πXM − π0Xm − δ1Xm (1)

dT

dt
= φY − σ1γT − δ1T − σ2δT

dZ

dt
= γY + σ1γT − γ0Z − δ1Z

dM

dt
= µ(Y + T )− µ0M

where, X > 0, Y > 0, Xm ≥ 0, T ≥ 0, Z ≥ 0 and
M ≥ 0.

To show the existence of the feasible set of a sys-
tem (1) which attracts all solutions initiation in
the interior of positive orthant, it has to prove
that the system (1) is dissipative, i.e., all solu-
tions are uniformly bounded in a proper subset
Ω ∈ ℜ6

+. Let (X,Y,Xm, T, Z,M) ∈ ℜ6
+ be any

solution with non-negative initial conditions. By
adding first five equations of system (1) it is ob-
tained

dN

dt
= Q− δY − σ2δT − δ1N

≤ Q− δ1N (2)

After solving equation (2), we have

N(t) ≤ N(0)e−δ1t +
Q

δ1
(1− e−δ1t) (3)

where N(0) is the sum of initial values
X(0), Y (0), Xm(0), T (0), Z(0). Now from

equation (3) as lim t → ∞, N → Q
δ1
, then Q

δ1
is

the upper bound of N . Also from last equation
of system (1), it is shown

dM

dt
= µ(Y + T )− µ0M

dM

dt
≤

µQ

δ1
− µ0M (4)

⇒ 0 < M(t) ≤ M(0)e−µ0t +
µQ

µ0δ1
(1− e−µ0t)

and above result that Q
δ1

is the upper bound of

N it can deduced that lim t → ∞ M → µQ
µ0δ1

.

Therefore the region of attraction is given by the
set:

Ω =
{

(X, Y, Xm, T, Z, M) ∈ ℜ6
+ : (5)

0 ≤ X, Y, Xm, T, Z ≤ N ≤
Q

δ1
,

0 ≤ M ≤
µQ

µ0δ1

}

and attracts all solutions initiation in the interior
of positive orthant.

2.1. Deterministic optimal control

problem

In this section it is formulated and solved for de-
terministic version of control problem. The con-
trol variable in the model system (1), where im-
plementation rate of awareness campaigns (µ) is
represented by a Lebesgue measurable function



Optimal control analysis of deterministic and stochastic epidemic model with media awareness programs 27

u(t), on a finite time interval [0, Tf ]. In the model
u(t) represents the some part of susceptible pop-
ulation has media awareness at time t. Our aim
is to obtain optimal media awareness programs
u∗(t), which minimizes the number of infectives
and on the other hand cost of infection (treat-
ment) during the infectious period [0, Tf ]. To in-
vestigate the optimal level of efforts that would be
needed to control the disease, the objective func-
tion J is formed. Since objective of the spread
of disease control is to decrease the infected indi-
viduals and infected individuals who are on treat-
ment and increase the aware susceptible popula-
tion. Hence the problem of minimizing the cost
functional is,

J(u) =

∫ Tf

0

{

AY +BT − CXm +
C1

2
u2

}

dt

(6)
subject to

dX

dt
= Q− β1XY − β2XT − πXM + π0Xm

+γ0Z − δ1X

dY

dt
= β1XY + β2XT − (δ + γ + φ+ δ1)Y

dXm

dt
= πXM − π0Xm − δ1Xm (7)

dT

dt
= φY − σ1γT − δ1T − σ2δT

dZ

dt
= γY + σ1γT − γ0Z − δ1Z

dM

dt
= u(t)(Y + T )− µ0M

where, X > 0, Y > 0, Xm ≥ 0, T ≥ 0, Z ≥ 0
and M ≥ 0. A, B and C are the positive weights.
The term C1

2 is the cost associated with u(t). An
optimal control u∗(t) is such that

J(u∗(t)) = min
u∈U

J(u(t)) (8)

where control set is defined as

U = {u(t) : 0 ≤ u(t) ≤ 1, 0 ≤ t ≤ T, (9)

u(t) is Lebesgue measurable} .

2.2. Existence of deterministic optimal

control problem

The existence of optimal control can be proved by
using the result from Fleming and Rishel [8] .

Theorem 1. For the optimal control problem (6)
and (7) on a fixed interval [0, Tf ], there exist an
optimal control u∗(t) ∈ U .

Proof. The boundedness of solution of system
(7) asserts the existence of solution to control
system using results by [15], therefore, set of
controls and corresponding state variables are
non- empty. The control set is closed and con-
vex by definition. The solution of system (7)
are bounded above by linear function in con-
trol and state. The integrand in cost functional,
AY +BT − CXm + C1

2 u2, is convex on control
set U . Further, there exists p, q > 0 and
b > 1 such that, AY +BT − CXm + C1

2 u2 ≥

p + q|u(t)|b, where p depends upon the upper
bound of Y (t), T (t) and Xm(t) and q = C1.
Hence the existence of an optimal control is es-
tablished. �

2.3. Characterization of optimal control

The Pontryagin’s Maximum principle converts
the problem of minimizing the cost functional
subject to state variables into minimizing the
Hamiltonian with respect to the controls at each
time t. For the purpose of simplicity it is in-
troduced the functions f1, f2, f3, f4, f5 and f6, to
right side expressions of equations (7).

f1(t) = Q− β1XY − β2XT − πXM

+π0Xm + γ0Z − δ1X

f2(t) = β1XY + β2XT − (δ + γ + φ+ δ1)Y

f3(t) = πXM − π0Xm − δ1Xm

f4(t) = φY − σ1γT − δ1T − σ2δT

f5(t) = γY + σ1γT − γ0Z − δ1Z (10)

f6(t) = u(t)(Y + T )− µ0M

Therefore Hamiltonian H is,

H = AY +BT − CXm +
C1

2
u2

+ λ1f1(t) + λ2f2(t) + λ3f3(t)

+ λ4f4(t) + λ5f5(t) + λ6f6(t) (11)

where λi for i = 1, 2...6 are adjoint functions
associated with their respective state variables.
The necessary conditions that an optimal control
problem must satisfy Hamiltonian H comes from
the Pontryagins maximum principle [7]. Given an
optimal control and corresponding states, there
exists adjoint variable λi satisfying the following
equations:
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λ
′

1 = −
∂H

∂X
= β1Y (λ1 − λ2) + β2T (λ1 − λ2)

+πM(λ1 − λ3) + λ1δ1

λ
′

2 = −
∂H

∂Y
= −A+ β1X(λ1 − λ2) + λ2(δ+δ1)

+φ(λ2 − λ4) + γ(λ2 − λ5)− λ6µ

λ
′

3 = −
∂H

∂Xm
= C + π0(λ1 + λ3) + λ3δ1

λ
′

4=−
∂H

∂T
= −B + β2X(λ1 − λ2) + λ4σ2δ

+σ1γ(λ4 − λ5) + λ4δ1 − λ6µ

λ
′

5 = −
∂H

∂Z
= λ5(γ0 + δ1)− λ1γ0

λ
′

6 = −
∂H

∂M
= πX(λ1 − λ3) + λ6µ0 (12)

with transversality conditions λi(T ) = 0, for
i = 1, 2...6. The transversality conditions are zero
because the objective functional is independent of
states at the final time.

The Hamiltonian is minimized with respect to
u(t) at the optimal value u∗(t) . Since

H = AY +BT − CXm +
C1

2
u2

+λ6{u(t)(Y + T )}+ terms without u(t),

differentiating H with respect to u and accord-
ing to Pontrygins Maximum Principle, the unre-
stricted optimal control u∗(t) satisfies ∂H

∂u
= 0 at

u(t) = u∗(t). So it is given by

u∗(t) = min

[

max

(

0,−
λ6(Y + T )

C1

)

, 1

]

(13)

Therefore we have the following theorem.

Theorem 2. The optimal control u∗(t) of a sys-
tem (7), which minimizes the objective functional
(6) is characterized by (13).

Due to a priori boundedness of the state and ad-
joint system functions and the resulting Lipschitz
structure of the ODE’s, it is obtained the unique-
ness of the optimal control for small T. The state
system coupled with the adjoint system, with the
initial conditions, the transversality condition to-
gether with the above characterization of the con-
trol form the optimality system.

3. Stochastic Model

In this section a non-linear stochastic SIR type
epidemic model is proposed by introducing a noise

in system (7), and transformed the deterministic
problem into a corresponding stochastic problem.
The noise can induce non-trivial effects in physi-
cal and biological systems. The presence of noise
source modifies the behavior of corresponding de-
terministic evolution of the system to stochastic
system. The real spread of infectious disease, due
to variation in the environment and the weather
will exhibit some kinds of random fluctuation in
the infection and other variables. Here it is con-
sidered the perturbed transmission coefficients β1
and β2 in system (7), and hence the infection rate
is replaced by

β1 → β1 + ǫη(t) β2 → β2 + ǫη(t) (14)

where η(t) represents the Gaussian white noise
with zero mean and unit co-variance and ǫ is a
constant. The relation between the Wiener pro-
cessW (t) and Gaussian white noise η(t) such that
dW (t) = η(t)dt, then the stochastic version of the
corresponding deterministic system (7) takes the
following form:

dX = [Q− β1XY − β2XT − πXM + π0Xm

+γ0Z − δ1X] dt− ǫX(Y + T )dW (t)

dY =[β1XY + β2XT − (δ + γ + φ+ δ1)Y ]dt

+ ǫX(Y + T )dW (t)

dXm =[πXM − π0Xm − δ1Xm]dt

dT =[φY − σ1γT − δ1T − σ2δT ]dt

dZ =[γY + σ1γT − γ0Z − δ1Z]dt

dM =[u(t)(Y + T )− µ0M ]dt (15)

where, X > 0, Y > 0, Xm ≥ 0, T ≥ 0, Z ≥ 0
and M ≥ 0.

In this process, it is assumed that W (t)
is one dimensional real Wiener process de-
fined on a filtered complete probability space
(Ω,F , {Ft}t≥0, P ). For some n ∈ N , some x0 ∈
ℜn, and an n-dimensional Wiener process W (t),
consider the general n-dimensional stochastic dif-
ferential equation,

dx(t) = F (x(t), t)dt+G(x(t), t)dW (t), x(0) = x0.
(16)

A solution to the above equation is denoted by
x(t, x0). It is assumed that F (t, 0) = G(t, 0) =
0 ∀ t ≥ 0, so that the origin point is an equilib-
rium of (16). Let us denote by L the differential
operator associated with the function displayed in
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(16), defined for a function U(t, x) ∈ C1,2(ℜXℜn)
by

LU =
∂U

∂t
+F trp∂U

∂x
+

1

2
Trc

[

Gtrp∂
2U

∂x2
G

]

. (17)

Here trp denotes the transpose and Trc means
trace of a matrix. In view of Ito’s formula,
if x(t) ∈ ℜd, then dU(x, t) = LU(x, t)dt +
Vx(x, t)g(x, t)dW (t).

3.1. Existence and uniqueness of positive

solutions

In this section, using Lyapunov analysis method
(mentioned in refs. [16,17]), we show that the so-
lution of system (15) is positive and global.

Theorem 3. There is a unique solution
X(t), Y (t) Xm(t), T (t), Z(t), M(t) of sys-
tem (15) on t ≥ 0 for any initial value
(X(0), Y (0) Xm(0), T (0), Z(0), M(0)) ∈ ℜ6

+ and
the solution will remain in ℜ6

+ with probability 1,
namely, (X(t), Y (t) Xm(t), T (t), Z(t), M(t)) ∈ ℜ6

+

for all t ≥ 0 almost surely.

Proof. Since the coefficient of the equation are
locally Lipschitz continuous for any given initial
value

(X(0), Y (0), Xm(0), H(0), Z(0), M(0)) ∈ ℜ6
+,

there is a unique local solution

X(t), Y (t), Xm(t), T (t), Z(t),M(t)

on t ∈ [0, τe), where τe is the explosion time
(see Ref. [18]). To show that this solution
is global, we need to show that τe = ∞
a.s. Let k0 ≥ 0 be sufficiently large so that
X(0), Y (0), Xm(0), T (0), Z(0) and M(0) all lie
within the interval [1/k0, k0]. For each integer
k > k0, define the stopping time

τk = inf {t ∈ [0, τe) : min{X, Y ,Xm , T , Z ,M }

≤
1

k
or max{X ,Y ,Xm , T , Z ,M } ≥ k

}

,

where throughout this section, we set inf ∅ =
∞(as usual ∅ denotes the empty set). Accord-
ing to the definition, τk is increasing as k → ∞.
Set τ∞ = lim

k→∞
τk, whence τ∞ ≤ τe a.s. If we

can show that τ∞ = ∞ a.s., then τe = ∞ and
{X(t), Y (t) Xm(t), T (t), Z(t), M(t)} ∈ ℜ6

+ a.s.
for all t ≥ 0. In other words, to complete the
proof, all we need to show that τ∞ = ∞ a.s. If

this statement is false, then there exist a pair of
constants τ > 0 and ǫ1 ∈ (0, 1) such that

P{τ∞ ≤ τ} > ǫ1. (18)

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ τ} ≥ ǫ1 ∀ k ≥ k1. (19)

For t ≤ τk, we can see, for each k,

dN(t) = [Q−δ(Y+σ2H)−δ1N(t)]dt ≤ [Q−δ1N ]dt

and also

dM = [µ(Y + T )− µ0M ]dt ≤

[

µQ

δ1
− µ0M

]

dt

and since
dM

dt
≤

µQ

δ1
− µ0M

and so,

N(0) = X(0) + Y (0) +Xm(0) + T (0) + Z(0)

N(t) ≤







Q/δ1, if N(0) ≤ Q/δ1,
:= P

N(0), if N(0) ≥ Q/δ1

M(t) ≤

{

µQ
δ1µ0

, if M(0) ≤ µQ
δ1µ0

,

M(0), if M(0) ≥ µQ
δ1µ0

Define a C2-function V : ℜ6
+ −→ ℜ−

+ by

dV = (X − 1− log X) + (Y − 1− log Y )

+(Xm − 1− log Xm) + (T − 1− log T )

+(Z − 1− log Z) + (m− 1− log M)

dV =

(

1−
1

X

)

dx+
1

2X2
(dx)2 +

(

1−
1

Y

)

+
1

2Y 2
(dy)2 +

(

1−
1

Xm

)

dxm

+

(

1−
1

T

)

dh+

(

1−
1

Z

)

dz

+

(

1−
1

M

)

dm

= LV dt+ ǫ(Y −X)dW (t), (20)

where LV : ℜ6
+ → ℜ+ is defined by
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LV =

(

1−
1

X

)

f1(t) +
1

2
ǫ
2(Y + T )2

+

(

1−
1

Y

)

f2(t) +
1

2
ǫ
2
X

2

+

(

1−
1

Xm

)

f3(t) +

(

1−
1

T

)

f4(t)

+

(

1−
1

Z

)

f5(t) +

(

1−
1

M

)

f6(t)

= Q− β1XY − β2XT − πXM + π0Xm + γ0Z

−δ1X −
Q

X
+ β1Y + β2T + πM −

π0Xm

X
−

γ0Z

X

+δ1 +
1

2
ǫ
2(Y + T )2 + β1XY + β2XT

−(δ + φ+ γ + δ1)Y − β1X

−
β2T

Y
− (δ + φ+ γ + δ1)

+
1

2
ǫ
2
X

2 + πXM − π0Xm − δ1Xm

−
πXM

Xm

+ π0 + δ1 + φY − σ1γT − σ2δT

−δ1T −
φY

T
− σ1γ + σ2δ + δ1 + γY

−σ1γT − γ0Z − δ1Z −
γY

Z
−

σ1γT

Z
+ γ0 + δ1

+µ(Y + T )− µ0M −
µ(Y + T )

M
+ µ0

≤ Q+ 5δ1 + (β1 + β2 + π + 2µ+ δ)P + δ

+γ + φ+ µ0 +
5

2
ǫ
2
P

2

:= D̃ (21)

Therefore

E [W{X(τk ∧ τ), Y (τk ∧ τ), Xm(τk ∧ τ), T (τk ∧ τ),

Z(τk ∧ τ),M(τk ∧ τ)}]

≤ W{X(0), Y (0), Xm(0), T (0), Z(0),M(0)}

+ E

[

∫ (τk∧τ)

0
dtD̃

]

≤ W{X(0), Y (0), Xm(0), T (0), Z(0),M(0)}
(22)

+ D̃τ

Set Ωk = (τk ∧ τ) Note that for ev-
ery ω ∈ Ωk, there is at least one of
X(τk, ω), Y (τk, ω), Xm(τk, ω), T (τk, ω), Z(τk, ω)
and M(τk, ω) that equals k or 1/k and hence
W {X(τk), Y (τk), Xm(τk), T (τk), Z(τk), M(τk)}
is no less than k − 1 − log k or 1/k − 1 − log k
consequently.

W {X(τk), Y (τk), Xm(τk), T (τk), Z(τk), M(τk)}

≥ k − 1− log k ∧ 1/k − 1− log k

It is then follows (19) and (22) that

W {X(0), Y (0), Xm(0), T (0), Z(0),M(0)}+ D̃τ

≥E [1Ωk
(ω)W {X(τk), Y (τk), Xm(τk), T (τk),

Z(τk), M(τk)}]

≥ǫ [k − 1− log k ∧ 1/k − 1− log k]

W {X(0), Y (0), Xm(0), T (0), Z(0),M(0)}+ D̃τ

≥E [1Ωk
(ω)W {X(τk), Y (τk), Xm(τk), T (τk),

Z(τk), M(τk)}]

≥ǫ [k − 1− log k ∧ 1/k − 1− log k]

where 1Ωk
(ω) is the indicator function of Ωk.

Let k → ∞ leads to the contradiction ∞ >
W{X(0), Y (0), Xm(0), T (0), Z(0),M(0)} +D̃τ =
∞. So we must therefore have τ∞ and hence the
proof. �

Remark 1. From theorem 3 for any initial
value (X(0), Y (0) Xm(0), T (0), Z(0), M(0)) ∈

ℜ6, there is a unique global solution
X(t), Y (t) Xm(t), T (t), Z(t), M(t) ∈ ℜ6 al-
most surely of system (15). Hence

dN(t) ≤ [Q − δ1N(t)]dt, and N(t) ≤ Q
δ1

+

e−δ1t(N(0)) If N(0) ≤ Q
δ1
, then N(t) ≤ Q

δ1
a.s.

so the region

Ω∗ = {(X,Y,Xm, H, Z,M) : X > 0, Y > 0 Xm > 0

T > 0, Z > 0 M > 0, N(t) ≤
Q

δ1
a.s.

}

is a positively invariant set of system (15)
on Ω∗, which is similar to Ω of system
(1). From now on, we always assume that
(X(0), Y (0) Xm(0), T (0), Z(0), M(0)) ∈ Ω∗.

3.2. Stochastic optimal control problem

In this section stochastic version of the optimal
control problem (1) is formulated and discussed.
For stochastic control theory refer [19] of Ok-
sendal. Here the objective is to find an optimal
media awareness programs u∗(t) which minimizes
the objective functional with an initial state x0 is
defined by

E0,x0

[
∫ Tf

0

{

AY +BT − CXm +
C1

2
u2

}

ds

]

(23)

Here the expectation is obtained on the initial
condition of the state (at time t = 0) system is
x0. For the deterministic problem of earlier, it is
assumed that there is a fixed constant u(t) ≤ 1
with u(t) ≤ u (a.s.). The class of admissible con-
trol laws is
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A = {u(.) : u is adapted, and 0 ≤ u ≤ u a.s.} .

(24)

To solve this stochastic control problem, the per-
formance criterion is defined as follows:

J(t, x;u) = Et,x

[

∫ Tf

t

{

AY +BT − CXm + C1

2 u2
}

ds
]

,

(25)

where the expectation is conditional on the state
of the system being a fixed value x at time t. The
value function is define as

U(t, x) = inf
u(.)∈A

J(t, x;u) = J(t, x;u∗). (26)

It is determined a control law that minimizes the
expected value J : A → ℜ+ given by (26). Now
the stochastic analogue of the optimal control
problem is formulated, subsequent to which the
solution formulae is presented.

Problem: Given the system (16) and given A as
in (24) with J as in (25), find the value function

U(t, x) = inf
u∈A

J(t, x;u), (27)

and an optimal control function

u∗(t) = arg inf
u∈A

J(x;u(t)) ∈ A. (28)

An expression for the optimal media awareness
program u∗(t) is computed through the following
theorem.

Theorem 4. A solution to the optimal media
awareness program problem stated in problem (24)
is of the form

u∗(t) = min

[

max

(

0,

[

−UM (t)(Y + T )

C1

])

, u

]

.

(29)

Proof. To determine u∗(t) through the dynamic
programming approach it is necessary to calculate
LU(t) i.e. by using (17):

LU(t) = f1(t)UX(t) + f2(t)UY (t) + f3(t)UXm(t)

+f4(t)UT (t) + f5(t)UZ(t) + f6(t)UM (t)

+
1

2
(ǫX(Y + T ))2UXX(t)

+
1

2
(ǫX(Y + T ))2UY Y (t) (30)

−
1

2
(ǫX(Y + T ))2UXY (t).

Applying the Hamilton-Jacobi-Bellman theory
(see, for instance, [19])

inf
u∈A

[

AY +BT − CXm +
C1

2
u2 + LU(t)

]

.

(31)

To compute the equation (31) it requires to derive
partial derivative of the below given expression
with respect to u, and equating to zero.

AY +BT − CXm +
C1

2
u2 + LU(t). (32)

This leads to the equation:

C1u(t) + UM (t)(Y + T ) = 0

u∗(t) = min

[

max

(

0,
−UM (t)(Y + T )

C1

)

, u

]

.(33)

�

In the following section numerical analysis of the
results are discussed.

4. Numerical Simulations

The feasibility of analysis regarding deterministic
optimality and stochastic optimality conditions
are simulated numerically over t = 30 units of
time. All parameter values in the computations
are the same in both scenarios. The common
parameter values used in the computations are
Q = 2, β1 = 0.000007, β2 = 0.000000006, π =
0.0000025, γ = 0.15, γ0 = 0.0002, φ =
0.005, δ = 0.0001, δ1 = 0.00005, µ0 = 0.5, σ1 =
2, σ2 = 0.5, π0 = 0.02, A1 = 200, B = 250, C =
1, C1 = 230, ǫ = 0.0002, while the initial condi-
tions are X = 1, 00, 000, Y = 200, Xm = 0, T =
0, Z = 0, M = 0.

An iterative scheme of fourth order Runge-Kutta
method is used for solving the deterministic op-
timality system. This method of numerically in-
tegrated ordinary differential equations by using
trial step at midpoint of an interval to eliminate
lower order errors terms. The algorithm is the
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forward-backward scheme; starting with an initial
guess for the optimal controls, the state variables
are then solved forward in time from the dynam-
ics of system (1) using a Runge-Kutta method of
the fourth order. Then, those state variables and
initial guess for the controls are used to solve the
adjoint equation (12) backward in time with given
final conditions (13), again employing a fourth or-
der Runge-Kutta method. The controls are up-
dated and used to solve the state and then the
adjoint system. This iterative process terminates
when current state, adjoint, and control values
converge sufficiently (See, [4, 5]).

Numerical simulation to the system comprising
state system (15) compelled with the proxy ad-
joint system (12) with transverslity conditions
and characterization of the control variable u∗(t)
in equation (29) are carried out using forward
backward algorithm. The state system (15), i.e.,
stochastic differential equations were first sim-
ulated using forth order Range-Kutta method
by introducing noise through Euler Maruyama
method [20] and then adjoint system (12) are sim-
ulated backward in time with final conditions(See,
Witbooi et al. [14]). In particular, we use as
a proxy for λ6(Y + T ) in the calculation of u(t)
in this case. We note that the presence of Y (t)
makes u(t) into a stochastic variable even with
the said proxy (in the stochastic case).

Figure 1 shows the time series plot to illustrates
the variation of the number of individuals in each
compartment of the population and number of
awareness campaigns with respect to time (in
weeks) and Figure 1(a) shows time series plot for
the deterministic epidemic model under the time
dependent control u(t) where as Figure 1(b) rep-
resenting the control profile of the same model.
Further it is evident from the Figure 1(b) that it
is optimal to run awareness campaigns up to 29
units of time at maximum rate and lower down
afterwords.

0 5 10 15 20 25 30
0

2

4

6

8

10
x 10

4

Time

C
o

m
p

a
rt

m
e

n
ts

(a)

 

 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time

C
o

n
tr

o
l 
P

ro
fi
le

(b)

X

Y

X
m

T

Z

M

Figure 1. Simulation of determinis-
tic model solution (a) and control pro-
file u(t)(b).
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Figure 2. Simulation of Stochastic
model solution (a) and control profile
u(t)(b).

Figure 2 illustrates the stochastic model solutions
using the same parameter values and initial con-
ditions as that of deterministic model parame-
ters used in the illustration of Figure 1 and the
corresponding control profile u(t) for stochastic
model. It is observed that stochastic model solu-
tion also depicts same scenario as that of deter-
ministic model solution under the time dependent
control u(t) and also control profile u(t) exhibits
same state of affairs as that of deterministic con-
trol profile. An important point to note about
our approximation is that it fully accommodates
the stochasticity (embodied and concentrated in
the factor Y of the expression u∗(t)).

To investigate how optimal control depends upon
different parameters of the deterministic and sto-
chastic model, control profile is plotted for differ-
ent values of transmission rate β1 and recovery
rate γ in Figures 3 and 4 respectively. It is ob-
served from Figure 3(a) that for higher value of
transmission rate β1, to achieve the optimal sce-
nario awareness campaign must be implemented
with maximum rate up to to 28 units of time.

However for lower value of β1 i.e., β1 = 0.000001,
and β1 = 0.0000001, the optimal scenario can be
obtained by implementing awareness campaigns
with maximum rate only for initial 21 and 14 units
of time, respectively. The stochastic control pro-
file Figure 3(b) also depicts similar state of af-
fairs, but the optimal scenario can be obtained
by implementing awareness campaigns with max-
imum rate only for initial 7 and 8 units of time, for
β1 = 0.000001, and β1 = 0.0000001 respectively,
then onwards implementation of awareness cam-
paigns will be guided by stochastic control profile.

These course of remedies are observed for the rea-
son that when the transmission of disease is slow,
less people get affected and hence less awareness
campaigns are needed to control the disease.
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Figure 3. Simulation of Determinis-
tic (a) and Stochastic (b) control pro-
file for different values of β1.

Similarly optimal scenario will change from im-
plementing awareness campaigns with maximum
rate up to 28 units of time to 16 and 6 units of
time for the change in recovery rate γ = 0.15 to
γ = 0.8 and γ = 1 respectively (Figure 4(a)).
Again stochastic control profile Figure 4(b) also
depicts similar state of affairs, but the optimal
scenario can be obtained by implementing aware-
ness campaigns with maximum rate only for ini-
tial 6 and 7 units of time, for γ = 0.8 and
γ = 1 respectively, then onwards implementation
of awareness campaigns will be guided by stochas-
tic control profile.
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Figure 4. Simulation of Determinis-
tic (a) and Stochastic (b) control pro-
file for different values of recovery rate
γ.

Figure 5 shows the effect of transmission rate β1
on infected population for the deterministic and
stochastic models. Increase in the transmission
rate β1 leads increase in number of infections, and
hence it requires to continue the implementation
of awareness campaigns at maximum rate.
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Figure 5. Simulation of Determinis-
tic (a) and Stochastic (b) Infectives
for different values of β1.
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Figure 6. Simulation of Determinis-
tic and Stochastic Cost (a) and Media
campaigns (b).

Figure 6(a) shows the simulation of deterministic
and stochastic cost function and cumulative den-
sity of awareness programs 6(b). From the Fig-
ures 6(a) and 6(b) it is clear that cost and aware-
ness programs are proportional to each other,
which implies that, as number of media awareness
programs increases cost of control for epidemic is
also increasing.
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Figure 7. Simulation of solution of
each states for different values of per-
turbation parameter ǫ.

Figure 7 shows the difference in the number of
individuals in each state of a system (15) for dif-
ferent values of perturbation parameter ǫ. From
Figure 7(a) it is observed that the number of un-
aware susceptible are decreasing as ǫ increases ini-
tially up to 12 units of time and then increasing
till final time. In case of infectives as perturba-
tion increases number of infections are increasing
up to 8 units of time later it is decreasing till
final time see Figure 7(b) and from Figure 7(c)
it is clear that as perturbation increases, aware
susceptible are increasing till final time. Figure
7(d),7(e),7(f) are varying in the same direction as
that of infectives, as ǫ increases.
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Figure 8. Simulation of control pro-
file for different values of C1.

To investigate how the optimal control varies de-
pends upon the positive weight C1, it is plotted
the control profile for different values of C1. It is
observed from the Figure 8(a) that as the posi-
tive weight C1 increased up to 5000 the optimal

scenario is achieved in 25 units of time and when
C1 = 230 it is sufficient to implement control on
awareness programs at maximum rate up to 29
units of time. For stochastic optimal control it is
observed from Figure 8(b) that when C1 = 5000
it is enough to implement optimality at maximum
rate up to 22 units of time and for lower value of
C1 = 230 it is necessary to continues the imple-
mentation of awareness programs up to 27 units of
time at maximum rate. This indicates that as the
weight of control (awareness programs) increases,
the disease can be controlled in a minimum time.

5. Conclusion

Media campaigns and epidemics are closely re-
lated to each other. The bases of this associa-
tion is human behavioral responses. The present
study considered the optimal control analysis of
both deterministic differential equation model-
ing and stochastic differential equation model-
ing of infectious disease by taking effects of me-
dia awareness programs and treatment of infec-
tives on the epidemic into account. Optimal
media awareness strategy under the quadratic
cost functional using Pontrygin’s Maximum Prin-
ciple and Hamiltonian-Jacobi-Bellman equation
are derived for both deterministic and stochas-
tic optimal control problem respectively. The
Hamiltonian-Jacobi-Bellman equation is used to
solve stochastic system, which is fully non-linear
equation, however it ought to be pointed out that
for stochastic optimality system, it may be dif-
ficult to obtain the numerical results. For the
analysis of the stochastic optimality system, the
results of deterministic control problem are used
to find an approximate numerical solution for the
stochastic control problem. Outputs of the sim-
ulations shows that media awareness programs
place important role in the minimization of infec-
tious population with minimum cost. The model
analysis further shows that awareness programs
through the media campaigning are helpful in de-
creasing the spread of infectious diseases by isolat-
ing a fraction of susceptible from infectives. Nu-
merical simulation of stochastic optimal control
problem enables to measure the feasibility of op-
tion followed. A formal approach to the numerical
simulation of the stochastic optimal control prob-
lem is far more complex and labour intensive and
our method is a workable approximate alterna-
tive.
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1. Introduction

Consider an autonomous ODE system in a real
Banach space

du

dt
= (A+ B)u, u(0) = u0, (1)

where A and B are Lie operators allowing us to
write the formal solution as

u(t) = ϕA+B
t u0 = et(A+B)u0

=
∞
∑

k=0

tk

k!
(A+ B)ku0, (2)

The solutions of sub equations

du

dt
= Au and

du

dt
= Bu, (3)

can be merged within a small time step h by

un+1 = ehb1Beha1Aehb2B . . . ehamAehbm+1Bun,

or equivalently,

un+1 = (ϕB

hbm+1
◦ ϕA

ham
◦ . . . ϕB

hb2
◦ ϕA

ha1
◦ ϕB

hb1
)un,

where un and un+1 are approximations at t = tn
and t = tn+1 with h = tn+1 − tn. The reverse
orders of A and B as well as ai and bi should be
noticed. This happens when one applies Lie trans-
forms to their corresponding maps. This phenom-
ena is termed as Vertauschungssatz in the litera-
ture [1]. One of the sub problems in (3) (or both)
can be solved numerically. When a splitting pro-
cedure and a numerical solver are of pth and rth

order respectively, we are interested in the inte-
gral form of the leading term of the global error.

Although it is very classical subject of numeri-
cal analysis, the global error analysis of the nu-
merical solvers for ODEs has been discussed by
Viswanath [2] and Iserles [3] in different aspects.
Viswanath employed Lyapunov’s exponents to ex-
press error patterns of numerical solvers for hy-
perbolic problems. However, Iserles presented a
way of deriving an asymptotic formula for the
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global error in the numerical solution of highly
oscillatory problems.

Error bound for splitting schemes is an active
research area. The splitting of bounded opera-
tors was analyzed in [1, 4]. Jahnke and Lubich
[5] found error bounds for the Strang splitting
in the presence of unbounded operators, which
corresponds to splitting a time dependent PDE
without discretization of space operators. Hansen
and Ostermann [6] also presented error analysis
of splitting schemes for unbounded operators in
the content of semigroup theory. Apart from the
above mentioned approaches, Csomos and Farago
[7] discussed the interaction of the error caused
by numerical methods employed for sub problems
and splitting schemes. Our main task is to give
clear integral representation of this interaction. In
this work, we propose to approximate the global
error in terms of the local errors and the discrete
flow by a Riemann integral.

2. Preliminaries

We would like to explain some of notations which
will be used in the later sections. Consider the
initial value problem

y′ = f(t,y), y(t0) = y0, (4)

where y0 ∈ R
m and f : R+×R

m → R
m is contin-

uous. When a small perturbation is introduced
to the initial value y0, for the perturbed solution
ỹ(t), the error e(t) = y(t)−ỹ(t), evolves with [3,8]

e(t) = Ψ(t)Ψ−1(c)e(c) +O(e(c)2), t > c > 0, (5)

where Ψ(t) satisfies the variational equation

Ψ′(t) = J(t)Ψ(t), Ψ(0) = I, (6)

where J(t) =
∂f

∂y
. In order to use exponentials

in defining flows we firstly express (4) an au-
tonomous system as

dt1
dt

= 1, (7)

dy

dt
= f(t1,y), (8)

and then define a Lie operator as follows

L =
∂

∂t1
+ f(t1,y)

∂

∂y
, (9)

which enables us to express (4) as

du

dt
= Lu, u(0) = u0, (10)

where u = (t1, y)
T and the formal solution is

u(t) = ϕL
t (u0) = etLu0.

3. Motivation

The local error (le) of a numerical method un+1 =
R∆t(un) with step size ∆t for the initial value
problem

du

dt
= Lu, u(ti) = ui, (11)

is given by

∆tr+1
le(un) = R∆t(un)− ϕL

∆t(un) +O(∆tr+2).
(12)

The global error is defined as

en+1 = un+1 − u(tn+1),

= R∆t(un)− ϕL
∆t(u(tn)).

Therefore

en+1 =∆tr+1
le(un) + ϕL

∆t(un)− ϕL
∆t(u(tn))

+O(∆tr+2). (13)

The difference ϕL
∆t(un) − ϕL

∆t(u(tn)) can be in-
terpreted as the time evolution of a small per-
turbation to initial condition u(tn) within a time
interval of which length is ∆t. As a result of this
interpretation and considering (5), one obtains

ϕL
∆t(un)− ϕL

∆t(u(tn)) =Ψ(tn+1)Ψ
−1(tn)en

+O(‖e2n‖), (14)

where Ψ(t) is the solution of variational equation
of the corresponding initial value problem. There-
fore the first order difference equation for global
error is given by

en+1 =enΨ(tn+1)Ψ
−1(tn) + ∆tr+1

le(u(tn))

+O(∆tr+2). (15)
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A careful reader notices that u(tn) is substituted
in the term le instead of un. It might be as-
sumed that the difference is included in the term
O(∆tr+2) as Iserles pointed out in [3].

Assuming ei = 0, the solution of the linear differ-
ence equation is

en =∆tr+1Ψ(tn)

f−1
∑

k=i

Ψ−1(tk+1)(le(u(tk))

+O(∆tr+2)). (16)

For tf − ti = h = m∆t, the error can be written
in the integral form

e(tf ) =∆trΨ(tf )

∫ tf

ti

Ψ−1(τ +∆t)le(u(τ))dτ

+O(∆tr+1).

As an example, we derive the global error of Euler
method for the linear problem

du

dt
= −

1

t+ 1
u(t), u(ti) = ui. (17)

We will find an estimation for the actual error at
tf = ti + h with time step ∆t = h

m
. It is known

that local error coefficient for Euler method (in
terms of Lie Operator)

le(u(t)) = −1/2L2(u(t)) = −
u(t)

(t+ 1)2
. (18)

The variational flow is determined by solving

dΨ

dt
= J(t)Ψ, Ψ(ti) = 1, (19)

where J(t) = −
1

t+ 1
. Therefore,

e(tf ) =∆tΨ(tf )

∫ tf

ti

Ψ(τ +∆t)−1
le(u(t))dτ

+O(∆t2), (20)

e(tf ) =∆t
ti + 1

tf + 1

∫ tf

ti

τ + 1 +∆t

ti + 1

(

−u(τ)

(τ + 1)2

)

dτ

+O(∆t2), (21)

where u(τ) = ui
ti + 1

τ + 1
. Finally, one obtains the

formula

e(tf ) ≈ui∆t

(

1 + ti
1 + tf

)(

− 1/2
(∆t + 2 + 2 ti)

(1 + ti)
2

+ 1/2
(∆t + 2 + 2 tf )

(1 + tf )
2

)

, (22)

that predicts the global error at t = tf in terms
of initial value ui at t = ti and step size ∆t.

4. Global error of Lie Trotter Splitting

In this section, the above mentioned procedure is
modified to obtain the global error expansion of
any splitting procedure combined with any ODE
solver. For clarity, the derivation of the formulas
are given for Lie-Trotter that is widely used in the
literature. The extension to the higher splitting
schemes can be done in a similar way. Another
simplification is that one part is assumed to be
solved exactly and the other part is solved nu-
merically.

Consider the scheme

un+1 = [RA
∆t]

(m)(ϕB
h (un)), (23)

indicating that the sub equation u′ = Bu is
solved exactly in [tn, tn+1] and the sub equation
u′ = Au is solved by rth order numerical method
RA

∆t (r > 1)in [tn, tn+1] with step size ∆t = h
m

(m step in each sub interval). Such a procedure
involves the following two local errors

∆trleR(ϕ
B
h (un)) =[RA

∆t]
(m)(ϕB

h (un))− ϕA+B
h (un)

+O(∆tr+1),

h2leS(un) =ϕA
h ◦ ϕB

h (un)− ϕA+B
h (un)

+O(h3), (24)

where leS(un) = 1
2 [B,A] is the coefficient of the

leading term of the local splitting error (Lie Trot-
ter in this case). leR(ϕ

B
h (un)) should be consid-

ered as the global error of RA
∆t at tf = tn+1 start-

ing from ti = tn with step size ∆t. This kind of
global error terms of ODE solvers can be com-
puted by method described in the motivation sec-
tion. (See 20 in case of Euler method). The term
leR(ϕ

B
h (un)) also warns us to compute the error

of the method RA
∆t at the point ϕ

B
h (un) not at the

point un. This is the key issue in the derivation
error formulas for the splitting schemes.

Consider the partition 0 = t0 < t1 < t2 < ... < T
of the interval [0, T ]. The global error is defined
by
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en+1 = un+1 − u(tn+1)

= [RA
∆t]

(m) ◦ ϕB
h (un)− ϕ

(A+B)
h (u(tn)).

Adding and subtracting the terms (ϕA
h ◦ ϕB

h )(un)

and ϕ
(A+B)
h (un) yields

en+1 =[RA
∆t]

(m) ◦ ϕB
h (un)− (ϕA

h ◦ ϕB
h )(un)

+ (ϕA
h ◦ ϕB

h )(un)− ϕ
(A+B)
h (un)

+ ϕ
(A+B)
h (un)− ϕ

(A+B)
h (u(tn)).

Grouping the terms two by two and considering
(24) and (14) one can write

en+1 =∆trleR(ϕ
B
h (un)) + h2leS(un)

+ enΨ(tn+1)Ψ
−1(tn) +O(h3) +O(∆tr+1),

(25)

where Ψ is the solution of variational equation
that corresponds to the full equation (1).

After approximating the solution of this difference
equation as a Riemann integral, the global error
in the integral form is computed by

e(T ) =hΨ(T )

∫ T

0
Ψ−1(t+ h){

∆tr

h
leR

(

ϕB
h (u(t))

)

+
1

2
[B,A]}dt+O(h2) +O(∆tr+1h−1).

(26)

5. Numerical Example

In this section, we will show the sharpness of the
estimation of the global errors given by (26). As
a test equation we choose

du

dt
= −

u(t)

t+ 1
− u2(t), u(0) = 1, (27)

with exact solution

u(t) =
1

(ln(t+ 1) + 1)(t+ 1)
,

The sub equations

du

dt
= −

u(t)

t+ 1
, u(0) = u0,

and

du

dt
= −u2(t), u(0) = u0,

have the exact solutions uA(t) =
u0

t+ 1
and

uB(t) =
u0

1 + tu0
, respectively. One also needs

the variational flows of the equations (27) which
can be given as

Ψfull(t) =
1

(ln(t+ 1) + 1)2(t+ 1)
. (28)

When the part A is solved by first order Euler
method with step size ∆t = h

m
in [tn, tn+1] and

part B proceeds in time by its exact flow, the nu-
merical scheme is written as

un+1 = [RA
∆t]

(m) ◦ ϕB
h (un). (29)

Firstly the term leR

(

ϕB
h (u(t))

)

that is, the global
error of Euler time stepping at t + h starting
from t with initial condition ϕB

h (u(t)) is needed.
Luckily, the desired error formula, but with ini-
tial condition ui, has been already derived in
(22). Just only taking ti = t, tf = t + h and

ui = ϕB
h (u(t)) =

u(t)

1 + hu(t)
, one should see

∆tleR(ϕ
B
h (u(t))) = [RA

∆t]
(m)(ϕB

h (u(t)))

−(ϕA
h ◦ ϕB

h )(u(t)),

= u(t)(1+t)
2(1+hu(t))(1+t+h)

(

(∆t+2+2 τ)

−(1+t)2
+ (∆t+2+2 t+h)

(1+t+h)2

)

.

On the other hand, the leading coefficient of Lie
Trotter splitting for (27) is found to be

les(u(t)) =
1

2
[B,A]u(t) = −

1

2

u(t)2

t+ 1
. (30)

Finally, computing the integral (26) yields the es-
timation

e(T ) ≈hΨfull(T )

∫ T

0
Ψ−1

full(τ + h)

{

1

m
leR(ϕ

B
h (u(τ))) + leS(u(τ))

}

dτ. (31)

Table I presents the sharpness of the estimation
(31) for various ∆t and h at final T = 20.

Table 1. Comparison of actual er-
rors and estimated errors of Lie Trot-
ter at T = 20.

h = 0.1 h = 0.1 h = 0.01 h = 0.01
∆t=0.01 ∆t=0.001 ∆t=0.001 ∆t=0.0001

Actual error -1.909e-4 -1.445e-4 -1.899e-5 -1.438e-5
Estimated error -1.621e-4 -1.575e-4 -1.409e-5 -1.404e-5
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6. Remarks and Conclusion

Splitting methods are becoming more and more
popular among practitioners of numerical meth-
ods for differential equations. These methods pro-
vide separate treatments of simpler sub equations
comparing to whole problem. However, the inter-
action of the errors caused by splitting procedure
and time stepping methods applied to sub prob-
lems should be considered because the interaction
might lead to order reduction in the long time run.
Such a derived formula enables us to estimate er-
ror behavior of a method so that suitable solvers
are employed. We choose a simple test problem
to give a clear description of the integral formula.
However in most of the applied problems, exact
flows of full equation and sub equations are not
available. In this case, derived formulas can be
used to obtain reasonable error bounds by tak-
ing appropriate norms of the given expressions.
However, in case of long time integration, asymp-
totic solutions and asymptotics expansions of the
corresponding integrals that can be computed by
some perturbation methods such as WKB give the
long time error behaviors of the numerical meth-
ods. Indeed, the presented formulas are derived
in search of suitable splitting algorithms for the
long time integration of highly oscillatory non lin-
ear equations.

References

[1] Hairer, E., Lubich, C. and Wanner, G. (2002).
Geometric numerical integration: structure-
preserving algorithms for ordinary differential
equations. Springer.

[2] Viswanath, D. (2001). Global errors of numer-
ical ODE solvers and Lyapunov’s theory of
stability. IMA Journal of Numerical Analysis,
21, 387-486.

[3] Iserles, A. (2002). On the global error of dis-
cretization methods for highly-oscillatory or-
dinary differential equations. BIT Numerical
Mathematics, 42, 561-599.

[4] Sanz-Serna, J. M. and Calvo, P. (1994). Nu-
merical Hamiltonian problems. Chapman &
Hall.

[5] Jahnke, T. and Lubich, C. (2000). Error
bounds for exponential operator splittings.
BIT Numerical Mathematics, 40, 735-744.

[6] Hansen, E. and Ostermann, A. (2009). Ex-
ponential splitting for unbounded operators.
Mathematics of Computation, 78, 1485-1496.

[7] Csomós, P. and Faragó, I. (2008). Error anal-
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1. Introduction

The Hermite-Hadamard inequality, which is the
first fundamental result for convex mappings with
a natural geometrical interpretation and many ap-
plications, has drawn attention much interest in
elementary mathematics.

The inequalities discovered by C. Hermite and J.
Hadamard for convex functions are considerable
significant in the literature (see, e.g., [17, p.137],
[2]). These inequalities state that if f : I → R is a
convex function on the interval I of real numbers
and a, b ∈ I with a < b, then

f

(

a+ b

2

)

≤
1

b− a

b
∫

a

f(x)dx (1)

≤
f (a) + f (b)

2
.

Both inequalities hold in the reversed direction if
f is concave.

In [6], Fejér obtained the following inequality
which is the weighted generalization of Hermite-
Hadamard inequality (1):

Let f : [a, b] → R be convex function. Then the
inequality

f

(

a+ b

2

)

b
∫

a

g(x) ≤

b
∫

a

f(x)g(x)dx

≤
f (a) + f (b)

2

b
∫

a

g(x)dx

holds, where g : [a, b] → R is nonnegative, inte-
grable and symmetric to (a+ b)/2.

A number of mathematicians have devoted their
efforts to generalise, refine, counterpart and ex-
tend these two inequalities for different classes
of functions, (see, for example, [1]- [5], [8]- [11],
[13], [14], [16], [19]- [26]) and the references cited
therein.

The remainder of this work is organized
as follows: we first give the definitions
of Riemann-Liouville fractional integrals and
present some Hermite-Hadamard type inequali-
ties for Riemann-Liouville fractional integral op-
erators in Section 2. In the main section, we
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first establish a new weighted version of Hermite-
Hadamard inequality for Riemann-Liouville frac-
tional integrals. Moreover, we obtain some refine-
ments of this result using the symmetric weighted
function. We give also some special cases of these
inequalities. In the last section, we give some con-
clusions and future directions of research.

2. Preliminaries

In the following we will give some necessary def-
initions and mathematical preliminaries of frac-
tional calculus theory which are used further in
this paper.

Definition 1. Let f ∈ L1[a, b]. The Riemann-
Liouville integrals Jα

a+f and Jα

b−
f of order α > 0

with a ≥ 0 are defined by

Jα

a+f(x) =
1

Γ(α)

∫

x

a

(x− t)α−1 f(t)dt, x > a

and

Jα

b−f(x) =
1

Γ(α)

∫

b

x

(t− x)α−1 f(t)dt, x < b

respectively. Here, Γ(α) is the Gamma function
and J0

a+f(x) = J0
b−
f(x) = f(x).

It is remarkable that Sarikaya et al. [20] first
give the following interesting integral inequalities
of Hermite-Hadamard type involving Riemann-
Liouville fractional integrals.

Theorem 1. Let f : [a, b] → R be a positive func-
tion with 0 ≤ a < b and f ∈ L1 [a, b] . If f is a
convex function on [a, b], then the following in-
equalities for fractional integrals hold:

f

(

a+ b

2

)

≤
Γ(α+ 1)

2 (b− a)α
[

Jα

a+f(b) + Jα

b−f(a)
]

(2)

≤
f (a) + f (b)

2

with α > 0.

Hermite-Hadamard-Fejér inequality for Riemann-
Liouville fractional integral operators was given
by İşcan in [11], as follows:

Let f : [a, b] → R be convex function with with
a < b and f ∈ L [a, b]. If g : [a, b] → R is non-
negative, integrable and symmetric with respect
to a+b

2 i.e. g(a+ b−x) = g(x), then the following
inequalities hold

f

(

a+ b

2

)

[

Jα

a+(g)(b) + Jα

b−(g)(a)
]

≤
[

Jα

a+(fg)(b) + Jα

b−(fg)(a)
]

≤
f(a) + f(b)

2

[

Jα

a+(g)(b) + Jα

b−(g)(a)
]

.

For more information for fractional calculus,
please refer to ( [7], [12], [15], [18]).

Now we give the following lemma:

Lemma 1. [22,25] Let f : [a, b] → R be a convex
function and h be defined by

h(t) =
1

2

[

f

(

a+ b

2
−

t

2

)

+ f

(

a+ b

2
+

t

2

)]

.

Then h is convex, increasing on [0, b− a] and for
all t ∈ [0, b− a] ,

f

(

a+ b

2

)

≤ h(t) ≤
f(a) + f(b)

2
.

In [22], Xiang obtained following important in-
equalities for the Riemann-Liouville fractional in-
tegrals utilizing the Lemma 1:

Theorem 2. Let f : [a, b] → R be a positive func-
tion with a < b and f ∈ L1 [a, b]. If f is a convex
function on [a, b], then WH is convex and mono-
tonically increasing on [0, 1] and

f

(

a+ b

2

)

= WH(0) ≤ WH(t) ≤ WH(1) (3)

=
Γ (1 + α)

2 (b− a)α
[(Jα

a+
f) (b) + (Jα

b−
f) (a)]

with α > 0 where

WH(t) =
α

2 (b− a)α

b
∫

a

f

(

tx+ (1− t)
a+ b

2

)

×
(

(b− x)α−1 + (x− a)α−1
)

dx.

Theorem 3. Let f : [a, b] → R be a positive func-
tion with a < b and f ∈ L1 [a, b]. If f is a convex
function on [a, b], then WP is convex and mono-
tonically increasing on [0, 1] and
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Γ (1 + α)

2 (b− a)α
[(Jα

a+
f) (b) + (Jα

b−
f) (a)] (4)

= WP (0) ≤ WP (t) ≤ WP (1) =
f(a) + f(b)

2

with α > 0 where

WP (t)

=
α

4 (b− a)α

b
∫

a

[

f

((

1 + t

2

)

a+

(

1− t

2

)

x

)

×

(

(

2b− a− x

2

)α−1

+

(

x− a

2

)α−1
)

+ f

((

1 + t

2

)

b+

(

1− t

2

)

x

)

×

(

(

b− x

2

)α−1

+

(

x+ b− 2a

2

)α−1
)]

dx.

In this study, we establish some refinements
of Hermite-Hadamard type inequalities utilizing
fractional integrals which generalize the inequali-
ties (2), (3) and (4).

3. Refinements of Hermite Hadamard

Type Inequalities

In this section, we will present refinements
of Hermite-Hadamard type inequalities via
Riemann-Liouville fractional integral operators .

The following Lemma will be frequently used to
prove our results.

Lemma 2. [9] Let f : [a, b] → R be con-
vex function with a < b and f ∈ L [a, b] . Let
A,B,C,D ∈ [a, b] with A + B = C + D and
|C −D| ≤ |A−B|. Then,

f(C) + f(D) ≤ f(A) + f(B).

Theorem 4. Let f : [a, b] → R be convex
function with a < b and f ∈ L [a, b] . Let the
weight function w : [a, b] → R be continuous
and symmetric about the point

(

a+b

2 , w
(

a+b

2

))

,

i.e. 1
2 [w(s) + w(a+ b− s)] = w

(

a+b

2

)

. Then, we
have the following inequality

f

(

w

(

a+ b

2

))

(5)

≤
Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

and if the function w is monotonic on [a, b] , then
we have

Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

≤
f (w (a)) + f (w (b))

2
(6)

with α > 0.

Proof. By the hypothesis of symmetricity of the
function w, we have

2w

(

a+ b

2

)

= w(s) + w(a+ b− s)

and we also have

∣

∣

∣

∣

w

(

a+ b

2

)

− w

(

a+ b

2

)∣

∣

∣

∣

≤ |w(s)− w(a+ b− s)|

for s ∈ [a, b] . Applying Lemma 2, we obtain

2f

(

w

(

a+ b

2

))

(7)

≤ f (w(s)) + f (w(a+ b− s)) .

Multiplying by (s−a)α−1

Γ(α) both sides of (7) and in-

tegrating with respect to s on [a, b], we deduce
that

2 (b− a)α

Γ (1 + α)
f

(

w

(

a+ b

2

))

≤ Jα

a+
f (w (b)) + Jα

b−
f (w (a))

which completes the proof of the inequality (5).

By the monotonicity w, we have

|w(s)− w(a+ b− s)| ≤ |w(a)− w(b)|

for s ∈ [a, b] and by symmetricity of the function
w, we have

w(s) + w(a+ b− s) = w(a) + w(b)

for s ∈ [a, b] . Applying Lemma 2, we get

f (w(s)) + f (w(a+ b− s)) (8)

≤ f (w (a)) + f (w (b)) .
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Multiplying both sides of (8) by (s−a)α−1

Γ(α) and in-

tegrating with respect to s on [a, b] and dividing

both sides by 2(b−a)α

Γ(1+α) , we obtain the desired in-

equality (6). �

Remark 1. If we choose w(t) = t in Theorem 4,
then the inequalities (5) and (6) reduce to left and
right hand sides of the inequality (2), respectively.

Remark 2. If we choose α = 1 in Theorem
4, then Theorem 4 reduces to Theorem 1 proved
in [9].

Theorem 5. Let the weight function w : [a, b] →
R be continuous and symmetric about the point
(

a+b

2 , w
(

a+b

2

))

, i.e. 1
2 [w(s) + w(a+ b− s)] =

w
(

a+b

2

)

. If f : [a, b] → R is a convex function
on [a, b], then WHw is convex and monotonically
increasing on [0, 1] and we have the following in-
equalities

f

(

w

(

a+ b

2

))

(9)

= WHw(0) ≤ WHw(t) ≤ WHw(1)

=
Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

with α > 0 where

WHw(t)

=
α

2 (b− a)α

b
∫

a

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx.

Proof. Firstly, for t1, t2, β ∈ [0, 1] , we have

WHw((1− β) t1 + βt2)

=
α

2 (b− a)α

b
∫

a

f

((

w(x)− w

(

a+ b

2

))

× [(1− β)t1 + βt2] + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx

=
α

2 (b− a)α

b
∫

a

f ((1− β)

×

[(

w(x)− w

(

a+ b

2

))

t1 + w

(

a+ b

2

)]

+β

(

w(x)− w

(

a+ b

2

))

t2 + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx.

Since f is convex, we have

WHw((1− β) t1 + βt2)

≤
α (1− β)

2 (b− a)α

×

∫

b

a

f

((

w(x)− w

(

a+ b

2

))

t1 + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx

+
αβ

2 (b− a)α

×

∫

b

a

f

((

w(x)− w

(

a+ b

2

))

t2 + w

(

a+ b

2

))

×
[

(b− x)α−1 + (x− a)α−1
]

dx

= (1− β)WHw(t1) + βWHw(t2).

Hence, we get WHw is convex on [0, 1] . On the
other hand, we have

WHw(t)

=
α

2 (b− a)α

a+b

2
∫

a

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx

+
α

2 (b− a)α

b
∫

a+b

2

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx
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=
α

2 (b− a)α

×

a+b

2
∫

a

f

(

tw(x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx

+
α

2 (b− a)α

×

a+b

2
∫

a

f

(

tw(a+ b− x) + (1− t)w

(

a+ b

2

))

×
(

(b− x)α−1 + (x− a)α−1
)

dx.

(10)

Let t1 < t2, t1, t2,∈ [0, 1] . By the symmetricity of
the function w, we have

[

t1w(x) + (1− t1)w

(

a+ b

2

)]

+

[

t1w(a+ b− x) + (1− t1)w

(

a+ b

2

)]

=

[

t2w(x) + (1− t2)w

(

a+ b

2

)]

+

[

t2w(a+ b− x) + (1− t2)w

(

a+ b

2

)]

and

∣

∣

∣

∣

[

t1w(x) + (1− t1)w

(

a+ b

2

)]

−

[

t1w(a+ b− x) + (1− t1)w

(

a+ b

2

)]
∣

∣

∣

∣

= t1 |w(x)− w(a+ b− x)|

≤ t2 |w(x)− w(a+ b− x)|

=

∣

∣

∣

∣

[

t2w(x) + (1− t2)w

(

a+ b

2

)]

−

[

t2w(a+ b− x) + (1− t2)w

(

a+ b

2

)]∣

∣

∣

∣

for x ∈ [a, b] . Hence, applying Lemma 2, we have

f

(

t1w(x) + (1− t1)w

(

a+ b

2

))

(11)

+f

(

t1w(a+ b− x) + (1− t1)w

(

a+ b

2

))

≤ f

(

t2w(x) + (1− t2)w

(

a+ b

2

))

+f

(

t2w(a+ b− x) + (1− t2)w

(

a+ b

2

))

.

Multiplying both sides of (11) by

α

2 (b− a)α

[

(b− x)α−1 + (x− a)α−1
]

and integrating with respect to s on
[

a, a+b

2

]

, then
by considering the equality (10), we deduce that
WHw(t1) ≤ WHw(t2). Thus, WHw is monotoni-
cally increasing on [0, 1] . Using the facts that

WHw(0) = f

(

w

(

a+ b

2

))

and

WHw(1) =
Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

then we obtain the desired result. Thus, the proof
is completed. �

Remark 3. If we choose w(t) = t in Theorem
5, then the inequality (9) reduces to the inequality
(3).

Remark 4. If we choose α = 1 in Theorem
5, then Theorem 5 reduces to Theorem 2 proved
in [9].

Theorem 6. Let the weight function w : [a, b] →
R be continuous and monotonic on [a, b] and let w
be symmetric about the point

(

a+b

2 , w
(

a+b

2

))

, i.e.
1
2 [w(s) + w(a+ b− s)] = w

(

a+b

2

)

. If f : [a, b] →
R is a convex function on [a, b], then WPw is con-
vex and monotonically increasing on [0, 1] and we
have the following inequalities

Γ (1 + α)

2 (b− a)α
[Jα

a+
f (w (b)) + Jα

b−
f (w (a))]

= WPw(0) ≤ WPw(t) ≤ WPw(1) (12)

=
f (w (a)) + f (w (b))

2

with α > 0 where
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WPw(t)

=
α

4 (b− a)α

b
∫

a

f

(

(1− t)w

(

a+ x

2

)

+ tw (a)

)

×

(

(

2b− a− x

2

)α−1

+

(

x− a

2

)α−1
)

dx

+
α

4 (b− a)α

b
∫

a

f

(

(1− t)w

(

x+ b

2

)

+ tw (b)

)

×

(

(

b− x

2

)α−1

+

(

x+ b− 2a

2

)α−1
)

dx.

Proof. By the way similar to in Theorem, it can
be easily proved by convexity of f that WPw is
convex on [0, 1] . Using change of variable, we have

WPw(t) (13)

=
α

2 (b− a)α

a+b

2
∫

a

f ((1− t)w (s) + tw (a))

×
(

(b− s)α−1 + (u− s)α−1
)

ds

+
α

2 (b− a)α

×

a+b

2
∫

a

f ((1− t)w (a+ b− s) + tw (b))

×
(

(b− s)α−1 + (s− a)α−1
)

ds.

Let t1 < t2, t1, t2,∈ [0, 1] . Since w is symmetric
to a+b

2 ,

w(s) + w(a+ b− s) = 2w

(

a+ b

2

)

(14)

and w is monotonic, we have

|w(s)− w(a+ b− s)| ≤ |w(a)− w(b)| (15)

for s ∈ [a, b] . By the equality (14) and the in-
equality (15), we have

[(1− t1)w (s) + t1w (a)]

+ [(1− t1)w (a+ b− s) + t1w (b)]

= [(1− t2)w (s) + t2w (a)]

+ [(1− t2)w (a+ b− s) + t2w (b)]

and

|[(1− t1)w (s) + t1w (a)]

− [(1− t1)w (a+ b− s) + t1w (b)]|

= |(1− t1) [w (s)− w (a+ b− s)]

+ t1 [w (a)− w (b)]|

≤ (1− t1) |w (s)− w (a+ b− s)|

+t1 |w (a)− w (b)|

≤ (1− t2) |w (s)− w (a+ b− s)|

+t2 |w (a)− w (b)|

= |[(1− t2)w (s) + t2w (a)]

− [(1− t2)w (a+ b− s) + t2w (b)]|

for s ∈
[

a, a+b

2

]

. Therefore, applying Lemma 2,
we have

f ((1− t1)w (s) + t1w (a)) (16)

+f ((1− t1)w (a+ b− s) + t1w (b))

≤ f ((1− t2)w (s) + t2w (a))

+f ((1− t2)w (a+ b− s) + t2w (b)) .

Multiplying both sides of (16) by

α

2 (b− a)α

[

(b− s)α−1 + (s− a)α−1
]

and integrating with respect to s on
[

a, a+b

2

]

,
then by considering the equality (13), we deduce
that WPw(t1) ≤ WPw(t2). Hence, WPw is mono-
tonically increasing on [0, 1] . This completes the
proof. �

Remark 5. If we choose w(t) = t in Theorem 6,
then the inequality (12) reduces to the inequality
(4).

Remark 6. If we choose α = 1 in Theorem
6, then Theorem 6 reduces to Theorem 3 proved
in [9].

4. Conclusion

In this paper, we present some new weighted re-
finements of Hermite-Hadamard inequalities for
Riemann-Liouville fractional integrals. For fur-
ther studies we propose to consider the Hermite-
Hadamard type inequalities for other fractional
integral operators
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[17] Pečarić, J.E., Proschan F. and Tong, Y.L.
(1992). Convex functions, partial orderings
and statistical applications. Academic Press,
Boston.

[18] Podlubny, I. (1999). Fractional differential
equations. Academic Press, San Diego.

[19] Sarikaya, M.Z. and Yildirim, H. (2016).
On Hermite-Hadamard type inequalities
for Riemann-Liouville fractional integrals.
Miskolc Mathematical Notes, 17(2), 1049-
1059.

[20] Sarikaya, M.Z., Set, E., Yaldiz H. and Basak,
N. (2013). Hermite-Hadamard’s inequalities
for fractional integrals and related frac-
tional inequalities. Mathematical and Com-
puter Modelling, 57, 2403-2407.

[21] Sarikaya, M.Z. and Budak, H. (2016). Gen-
eralized Hermite-Hadamard type integral in-
equalities for fractional integral, Filomat,
30(5), 1315-1326 (2016).

[22] Xiang, R. (2015). Refinements of Hermite-
Hadamard type inequalities for convex func-
tions via fractional integrals. J. Appl. Math.
and Informatics, 33, No. 1-2, 119-125.

[23] Tseng, K.L., Hwang, S.R. and Dragomir, S.S.
(2012). Refinements of Fejér’s inequality for
convex functions. Period. Math. Hung., 65,
17-28.

[24] Yaldiz, H. and Sarikaya, M.Z. On Hermite-
Hadamard type inequalities for fractional in-
tegral operators, ResearchGate Article, Avail-
able online at: https://www.researchgate.
net/publication/309824275.

[25] Yang, G.S. and Tseng, K.L. (1999). On cer-
tain integral inequalities related to Hermite-
Hadamard inequalities. J. Math. Anal. Appl.,
239, 180-187.

[26] Yang, G.S. and Hong, M.C. (1997). A note
on Hadamard’s inequality, Tamkang J. Math.,
28, 33-37.
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1. Introduction

The convexity property of a given function plays
an important role in obtaining integral inequali-
ties. Proving inequalities for convex functions has
a long and rich history in mathamatics. In [1],
Beckenbach, a leading expert on the theory of
convex functions, wrote that the inequality (1)
was proved by Hadamard in 1893 [2]. In 1974,
Mitrinovič found Hermite and Hadamard’s note
in Mathesis .

Let f : I ⊂ R → R be a convex function define on
an interval I of real numbers, and a, b ∈ I with
a < b. Then, the following inequalities hold:

f

(

a+ b

2

)

≤
1

b− a

b
∫

a

f(x)dx ≤
f(a) + f(b)

2
.

(1)

Inequality (1) is known in the literature as
Hermite-Hadamard inequality for convex map-
pings. Note that some of the classical inequalities
for means can be derived from (1) for appropri-
ate particular selections of the mapping f. Both
inequalities hold in the reversed direction if f is
concave.

Over the last decade, classical inequalities have
been improved and generalized in a number of
ways; there have been a large number of research
papers written on this subject, [3–8]
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Definition 1. The function f : [a, b] ⊂ R → R, is
said to be convex if the following inequality holds

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) (2)

for all x, y ∈ [a, b] and λ ∈ [0, 1] .

In [7], Dragomir and Agarwal proved the follow-
ing results connected with the right part of (1).

Lemma 1. ( [7]) Let f : I◦ ⊆ R → R be a differ-
entiable mapping on I◦, a, b ∈ I◦ with a < b. If
f ′ ∈ L [a, b] , then the following equality holds:

f (a) + f (b)

2
−

1

b− a

b
∫

a
f (x) dx

=
b− a

2

1
∫

0

(1− 2t) f ′ (ta+ (1− t) b) dt.

(3)

Theorem 1. ( [7]) Let f : I◦ ⊆ R → R be a dif-
ferentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′| is convex on [a, b] , then the following inequal-
ity holds:

∣

∣

∣

∣

f (a) + f (b)

2
−

1

(b− a)

∫ b
a f (x) dx

∣

∣

∣

∣

≤
(b− a)

4

(

|f ′ (a)|+ |f ′ (b)|

2

)

.

(4)

In [6], Kırmacı gave the following results.

Lemma 2. ( [6]) Let f : I◦ ⊂ R → R be a dif-
ferentiable mapping on I◦, a, b ∈ I◦ (I◦ is the
interior of I) with a < b. If f ′ ∈ L [a, b], then the
following equality holds:

1

b− a

∫ b
a f (x) dx− f

(

a+ b

2

)

= (b− a)
[

∫ 1/2
0 tf ′ (ta+ (1− t) b) dt

+
∫ 1
1/2 (t− 1) f ′ (ta+ (1− t) b) dt

]

.

(5)

Theorem 2. ( [6]) Let f : I◦ ⊂ R → R be a
differentiable mapping on I◦, a, b ∈ I◦ (I◦ is the
interior of I) with a < b. If |f ′| is convex on [a, b],
then the following inequality holds:

∣

∣

∣

∣

α

b− a

∫ b
a f (x) dx− f

(

a+ b

2

)∣

∣

∣

∣

≤
b− a

8
(|f ′ (a)|+ |f ′ (b)|) .

(6)

2. Definitions and Properties of

Conformable Fractional Derivative

and Integral

The following definitions and theorems with re-
spect to conformable fractional derivative and in-
tegral were referred in [9–14].

Definition 2. (Conformable fractional de-

rivative) Given a function f : [0,∞) → R. Then
the “conformable fractional derivative” of f of or-
der α is defined by

Dα (f) (t) = lim
ε→0

f
(

t+ εt1−α
)

− f (t)

ε
(7)

for all t > 0, α ∈ (0, 1] . If f is α−differentiable

in some (0, a) , α > 0, lim
t→0+

f (α) (t) exist, then

define

f (α) (0) = lim
t→0+

f (α) (t) . (8)

We can write f (α) (t) for Dα (f) (t) to denote the
conformable fractional derivatives of f of order α.
In addition, if the conformable fractional deriva-
tive of f of order α exists, then we simply say f

is α−differentiable.

Theorem 3. Let α ∈ (0, 1] and f, g be
α−differentiable at a point t > 0. Then

i. Dα (af + bg) = aDα (f)+bDα (g) , for all a, b ∈
R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα (fg) = fDα (g) + gDα (f) ,

iv. Dα

(

f

g

)

=
Dα (f) g −Dα (g) f

g2
.

If f is differentiable, then

Dα (f) (t) = t1−αdf

dt
(t) . (9)

Also:

1. Dα (1) = 0

2. Dα (e
ax) = ax1−αeax, a ∈ R

3. Dα (sin(ax)) = ax1−α cos(ax), a ∈ R

4. Dα (cos(ax)) = −ax1−α sin(ax), a ∈ R

5. Dα

(

1
α t

α
)

= 1

6. Dα

(

sin( t
α

α )
)

= cos( t
α

α )
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7. Dα

(

cos( t
α

α )
)

= − sin( t
α

α )

8. Dα

(

e(
tα

α
)
)

= e(
tα

α
).

Theorem 4 (Mean value theorem for con-
formable fractional differentiable functions). Let
α ∈ (0, 1] and f : [a, b] → R be a continuous
on [a, b] and an α-fractional differentiable map-
ping on (a, b) with 0 ≤ a < b. Then, there exists
c ∈ (a, b), such that

Dα (f) (c) =
f(b)− f(a)

bα

α − aα

α

.

Definition 3 (Conformable fractional integral).
Let α ∈ (0, 1] and 0 ≤ a < b. A function
f : [a, b] → R is α-fractional integrable on [a, b]
if the integral

∫ b

a
f (x) dαx :=

∫ b

a
f (x)xα−1dx (10)

exists and is finite. All α-fractional integrable on
[a, b] is indicated by L1

α ([a, b])

Remark 1.

Iaα (f) (t) = Ia1
(

tα−1f
)

=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper
integral, and α ∈ (0, 1].

Theorem 5. Let f : (a, b) → R be differentiable
and 0 < α ≤ 1. Then, for all t > a we have

IaαD
a
αf (t) = f (t)− f (a) . (11)

Theorem 6. (Integration by parts) Let f, g :
[a, b] → R be two functions such that fg is differ-
entiable. Then

∫ b
a f (x)Da

α (g) (x) dαx

= fg|ba −
∫ b
a g (x)Da

α (f) (x) dαx.

(12)

Theorem 7. Assume that f : [a,∞) → R such

that f (n)(t) is continuous and α ∈ (n, n+1]. Then,
for all t > a we have

Da
αf (t) Iaα = f (t) .

Theorem 8. Let α ∈ (0, 1] and f : [a, b] → R be
a continuous on [a, b] with 0 ≤ a < b. Then,

|Iaα (f) (x)| ≤ Iaα |f | (x) .

For more details and properties concerning the
conformable integral operators, we refer, for ex-
ample, to the works [15–18].

In this paper, we establish the Hermite-Hadamard
type inequalities for conformable fractional inte-
gral and we will investigate some integral inequal-
ities connected with the left and right hand side
of the Hermite-Hadamard type inequalities for
conformable fractional integral. The results pre-
sented here would provide generalizations of those
given in earlier works.

3. Hermite-Hadamard’s Inequalities for

Conformable Fractional Integral

We will start the following important result for
α-fractional differentiable mapping;

Theorem 9. Let α ∈ (0, 1] and f : [a, b] → R

be an α-fractional differentiable mapping on (a, b)
with 0 ≤ a < b. Then, the following conditions
are equivalent:

i) f is a convex functions on [a, b]

ii) Dαf (t) is an increasing function on [a, b]

iii) for any x1, x2 ∈ [a, b]

f(x2) ≥ f(x1) +
(xα2 − xα1 )

α
Dα (f) (x1) . (13)

Proof. i) → ii) Let x1, x2 ∈ [a, b] with x1 < x2
and we take h > 0 which is small enough such
that x1 − h, x2 + h ∈ [a, b] . Since x1 − h < x1 <

x2 < x2 + h, then we know that

f(x1)− f(x1 − h)

h

≤
f(x2)− f(x1)

x2 − x1

≤
f(x2 + h)− f(x2)

h
.

(14)

Multipling the inequality (14) with x1−α
1 ≤ x1−α

2 ,
for x1 < x2, α ∈ (0, 1], we get

x1−α
1

f(x1)− f(x1 − h)

h

≤ x1−α
2

f(x2 + h)− f(x2)

h
.

(15)

Let us put h = εxα−1
1 (and h = εxα−1

2 ) such that
h → 0, ε → 0, then the inequality (14) can be
converted to

f(x1)− f(x1 − εxα−1
1 )

ε
≤

f(x2 + εxα−1
2 )− f(x2)

ε
.

Since f is α-fractional differentiable mapping on
(a, b) , then let ε → 0+, we obtain
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Dαf(x1) ≤ Dαf(x2) (16)

this show that Dαf is increasing in [a, b].

ii) → iii) Take x1, x2 ∈ [a, b] with x1 < x2. Since
Dαf is increasing in [a, b], then by mean value
theorem for conformable fractional differentiable
we get

f(x2)− f(x1) =
(xα2 − xα1 )

α
Dα (f) (c)

≥
(xα2 − xα1 )

α
Dα (f) (x1)

(17)

where c ∈ (x1, x2) . It is follow that

f(x2) ≥ f(x1) +
(xα2 − xα1 )

α
Dα (f) (x1) .

iii) → i) For any x1, x2 ∈ [a, b], we take x3 =
λx1 + (1− λ)x2 and xα3 = λxα1 + (1− λ)xα2
for λ ∈ (0, 1) . It is easy to show that xα1 − xα3 =
(1− λ) (xα1 − xα2 ) and xα2 − xα3 = −λ (xα1 − xα2 ).
Thus, by using (13), we obtain that

f(x1) ≥ f(x3) +
(xα1 − xα3 )

α
Dα (f) (x3)

= f(x3) + (1− λ)
(xα1 − xα2 )

α
Dα (f) (x3)

and

f(x2) ≥ f(x3) +
(xα2 − xα3 )

α
Dα (f) (x3)

= f(x3)− λ
(xα1 − xα2 )

α
Dα (f) (x3) .

Both sides of the above two expressions, multi-
ply by λ and (1− λ) , repectively, and add side to
side, then we have

λf(x1) + (1− λ) f(x2)

≥ f(x3)

= f(λx1 + (1− λ)x2)

which is show that f is a convex function. The
proof is completed. �

Theorem 10. Let α ∈ (0, 1], a ≥ 0, and f :
[a, b] → R is a continuous function and ϕ :
[0,∞) → R be continuous and convex function.
Then,

ϕ

(

α

bα − aα

∫ b
a f (x) dαx

)

≤
α

bα − aα

∫ b
a ϕ (f (x)) dαx.

(18)

Proof. Let ϕ : [0,∞) → R be a convex function
and x0 ∈ [0,∞). From the definition of convexity,
there exists m ∈ R such that,

ϕ(y)− ϕ(x0) ≥ m (y − x0) . (19)

Since f is a continuous function

x0 =
α

bα − aα

∫ b

a
f (x) dαx (20)

is well defined. The function ϕ ◦ f is also contin-
uous , thus we may apply (19) with y = f(t) and
(20) to obtain

ϕ(f(t))− ϕ(x0) ≥ m (f(t)− x0) .

Integrating above inequality from a to b, we get

∫ b

a
ϕ(f(t))dαt− ϕ(x0)

∫ b

a
dαt

≥ m

(∫ b

a
f(t)dαt− x0

∫ b

a
dαt

)

= m

(∫ b

a
f(t)dαt− xα0

∫ b

a
dαt

)

= 0.

It is obvious that the inequality (18) holds. �

Hermite-Hadamard’s inequalities can be repre-
sented in conformable fractional integral forms as
follows:

Theorem 11. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be a convex function and f ∈ L1
α ([a

α, bα]) with
0 ≤ a < b. Then, the following inequality for
conformable fractional integral holds:

f

(

aα + bα

2

)

≤
α

bα − aα

∫ b
a f (xα) dαx

≤
f (aα) + f (bα)

2
.

(21)

Proof. Since f is a convex function on I ⊂
R
+, for xα, yα ∈ [aα, bα] with λ = 1

2 , we have
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f

(

xα + yα

2

)

≤
f (xα) + f (yα)

2
(22)

i.e, with xα = tαaα + (1− tα) bα, yα =
(1− tα) aα + tαbα, for t ∈ [0, 1] , α ∈ (0, 1]

2f

(

aα + bα

2

)

≤ f (tαaα + (1− tα) bα)

+f ((1− tα) aα + tαbα) .

(23)

By integrating the resulting inequality with re-
spect to t over [0, 1] , we obtain

2
∫ 1
0 f
(

aα+bα

2

)

dαt

≤
∫ 1
0 f (tαaα + (1− tα) bα) dαt

+
∫ 1
0 f ((1− tα) aα + tαbα) dαt

= 2α
bα−aα

∫ b
a f (xα) dαx,

(24)

and the first inequality is proved. For the proof
of the second inequality in (22) we first note that
if f is a convex function, then, for λ ∈ [0, 1] , it
yields

f (tαaα + (1− tα) bα) ≤ tαf (aα) + (1− tα) f (bα)

and

f ((1− tα) aα + tαbα) ≤ (1− tα) f (aα) + tαf (bα) .

By adding these inequalities we have

f (tαaα + (1− tα) bα) + f ((1− tα) aα + tαbα)
≤ f (aα) + f (bα) .

(25)

Integrating inequality with respect to t over
[0, 1] , we obtain

∫ 1
0 f (tαaα + (1− tα) bα) dαt

+
∫ 1
0 f ((1− tα) aα + tαbα) dαt

≤ [f (aα) + f (bα)]
∫ 1
0 dαt

i.e.

1

bα − aα

∫ b

a
f (xα) dαx ≤

f (a) + f (b)

2α
.

The proof is completed. �

Remark 2. If we choose α = 1 in (21), then
inequality (21) become inequality (1).

Theorem 12. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be a convex function and f ∈ L1
α ([a

α, bα]) with
0 ≤ a < b. Then, for t ∈ [0, 1], the following in-
equality for conformable fractional integral holds:

f

(

aα + bα

2

)

≤ h (tα)

≤
α

bα − aα

∫ b
a f (xα) dαx

≤ H (tα) ≤
f (aα) + f (bα)

2

(26)

where

h (tα) = (1− tα) f

(

(1 + tα) aα + (1− tα) bα

2

)

+tαf

(

aαtα + (2− tα) bα

2

)

and

H (tα) = 1
2 [(1− tα) f (aα)

+ f (tαaα + (1− tα) bα) + tαf (bα)] .

Proof. Since f is a convex function on
I, by applying (21) on the subinterval
[aα, tαaα + (1− tα) bα] , with t 6= 1, we have

f

(

(1 + tα) aα + (1− tα) bα

2

)

≤
α

(1− tα) (bα − aα)

(27)

×

∫ (tαaα+(1−tα)bα)
1
α

a
f (xα) dαx

≤
f (aα) + f (tαaα + (1− tα) bα)

2
.

Now, by applying (21) on the subinterval
[tαaα + (1− tα) bα, bα] , with t 6= 0, we have
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f

(

aαtα + (2− tα) bα

2

)

≤
α

tα (bα − aα)

∫ b

(tαaα+(1−tα)bα)
1
α

f (xα) dαx(28)

≤
f (tαaα + (1− tα) bα) + f (bα)

2
.

Multiplying (27) by (1− tα) , and (27) by tα, and
adding the resulting inequalities, we obtain the
following inequalities

h (tα) ≤
α

bα − aα

∫ b

a
f (xα) dαx ≤ H (tα) (29)

where h (tα) and H (tα) are defined as in Thereom
12. Using the fact that f is a convex function, we
get

f

(

aα + bα

2

)

= f

(

(1− tα)
(1 + tα) aα + (1− tα) bα

2

+tα
aαtα + (2− tα) bα

2

)

(30)

≤ (1− tα) f

(

aα + [tαaα + (1− tα) bα]

2

)

+tαf

(

[aαtα + (1− tα) bα] + bα

2

)

≤
1

2
[(1− tα) f (aα)

+ f (tαaα + (1− tα) bα) + tαf (bα)]

≤
f (aα) + f (bα)

2
.

Therefore, by (29) and (30) we have (26). �

4. Trapezoid Type Inequalities for

Conformable Fractional Integral

We need the following lemma. With the help of
this, we give some integral inequalities connected
with the right-side of Hermite–Hadamard-type in-
equalities for conformable fractional integral.

Lemma 3. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on (a, b)
with 0 ≤ a < b. If Dα (f) be an α-fractional

integrable function on [aα, bα] ,then the following
identity for conformable fractional integral holds:

α

bα − aα

∫ b
a f (xα) dαx−

f (aα) + f (bα)

2

=
1

2

∫ 1
0 (1− 2tα)

×Dα (f) (t
αaα + (1− tα) bα) dαt.

(31)

Proof. Integrating by parts

∫ 1
0 (1− 2tα)Dα (f) (t

αaα + (1− tα) bα) dαt

= (1− 2tα) f (tαaα + (1− tα) bα)|10

+2α
∫ 1
0 f (tαaα + (1− tα) bα) dαt

= − [f (aα) + f (bα)] +
2α

(bα − aα)

∫ b
a f (xα) dαx.

Thus, by multiplying both sides by
1

2
, we have

conclusion (31). �

Remark 3. If we choose α = 1 in (31), then
equality (31) become equality (3).

Theorem 13. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I with 0 ≤ a < b. If |f ′| be a convex function
on I,then the following inequality for conformable
fractional integral holds:

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b

a
f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2





23α
2

+
(

6× 2α
2
)

− 8

3α× 23α2



 (32)

[

aα(α−1) |Dα (f) (a
α)|+ bα(α−1) |Dα (f) (b

α)|

2

]

.

Proof. Using Lemma 3, it follows that

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
1

2

∫ 1
0 |1− 2tα| |Dα (f) (t

αaα + (1− tα) bα)| dαt.

Since |f ′| is a convex function, by using the
properties Dα (f ◦ g) (t) = f ′ (g(t))Dαg(t) and
Dα (f) (t) = t1−αf ′(t), it follows that
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|Dα (f) (t
αaα + (1− tα) bα)|

≤ α (bα − aα)
[

tαaα(α−1) |Dα (f) (a
α)| (33)

+ (1− tα) bα(α−1) |Dα (f) (b
α)|
]

Using (33), we have

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2

∫ 1
0 |1− 2tα|

×
[

tαaα(α−1) |Dα (f) (a
α)|

+ (1− tα) bα(α−1) |Dα (f) (b
α)|
]

dαt

=
α (bα − aα)

2

×
{

aα(α−1) |Dα (f) (a
α)|
∫ 1
0 |1− 2tα| tαdαt

+ bα(α−1) |Dα (f) (b
α)|
∫ 1
0 |1− 2tα| (1− tα) dαt

}

where

∫ 1

0
|1− 2tα| (1− tα) dαt

=

∫ 1

0
|1− 2tα| tαdαt =

23α
2

+
(

6× 2α
2
)

− 8

3α× 23α2

Thus, the proof is completed. �

Remark 4. If we choose α = 1 in (32), then
inequality (32) become inequality (4).

Theorem 14. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I with 0 ≤ a < b. If |f ′|q , q > 1, be a con-
vex function on I, then the following inequality
for conformable fractional integral holds:

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2
(A(α))

1

p

(

aqα(α−1) |Dα (f) (a)|
q + bqα(α−1) |Dα (f) (b)|

q

2α

) 1

q

(34)

where 1
p + 1

q = 1, A(α) is given by

A(α) =
1

2α (p+ 1)

{

2−

(

1−
1

2α2−1

)p+1

−

(

1

2α2−1
− 1

)p+1
}

.

Proof. Using Lemma 3 and Hölder’s integral in-
equality, we find

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
1

2

∫ 1
0 |1− 2tα| |Dα (f) (t

αaα + (1− tα) bα)| dαt

≤
1

2

(

∫ 1
0 |1− 2tα|p dαt

) 1

p

(

∫ 1
0 |Dα (f) (t

αaα + (1− tα) bα)|q dαt
) 1

q
.

Since |f ′|q is a convex function, by using the
properties Dα (f ◦ g) (t) = f ′ (g(t))Dαg(t) and
Dα (f) (t) = t1−αf ′(t), it follows that

|Dα (f) (t
αaα + (1− tα) bα)|q

≤ αq (bα − aα)q (35)

[

tαaqα(α−1) |Dα (f) (a
α)|q

+ (1− tα) bqα(α−1) |Dα (f) (b
α)|q

]

.

By using (35), we have
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∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2

(

∫ 1
0 |1− 2tα|p dαt

) 1

p

[

∫ 1
0

(

tαaqα(α−1) |Dα (f) (a
α)|q

+(1− tα) bqα(α−1) |Dα (f) (b
α)|q

)

dαt
]
1

q

≤
α (bα − aα)

2

(

∫ 1
0 |1− 2tα|p dαt

) 1

p

(

aqα(α−1) |Dα (f) (a)|
q + bqα(α−1) |Dα (f) (b)|

q

2α

) 1

q

.

It follows that

∫ 1

0
|1− 2tα|p dαt

=

∫ 1

2α

0
(1− 2tα)p dαt+

∫ 1

1

2α

(2tα − 1)p dαt

=
1

2α (p+ 1)

{

2−

(

1−
1

2α2−1

)p+1

−

(

1

2α2−1
− 1

)p+1
}

which is completed the proof. �

Remark 5. If we choose α = 1 in (34), then
inequality (34) become Theorem 2.3. in [7].

5. Midpoint Type Inequalities for

Conformable Fractional Integral

We need the following lemma. With the help of
this, we give some integral inequalities connected
with the left-side of Hermite–Hadamard-type in-
equalities for conformable fractional integral.

Lemma 4. Let α ∈ (0, 1] and f : I ⊂ R
+ → R be

an α-fractional differentiable function on I◦ with
0 ≤ a < b. If Dα (f) be an α-fractional integrable
function on I, then the following identity for con-
formable fractional integral holds:

f

(

aα + bα

2

)

−
α

bα − aα

∫ b
a f (xα) dαx

=
∫ 1
0 P (t)Dα (f) (t

αaα + (1− tα) bα) dαt

(36)

where

P (t) =







tα, 0 ≤ t < 1
21/α

tα − 1, 1
21/α

≤ t ≤ 1.

Proof. Integrating by parts

∫ 1

0
P (t)Dα (f) (t

αaα + (1− tα) bα) dαt

=

∫ 1

21/α

0
tαDα (f) (t

αaα + (1− tα) bα) dαt

+

∫ 1

1

21/α

(tα − 1)Dα (f) (t
αaα + (1− tα) bα) dαt

= tαf (tαaα + (1− tα) bα)|
1

21/α

0

−α

∫ 1

21/α

0
f (tαaα + (1− tα) bα) dαt

+ (tα − 1)f (tαaα + (1− tα) bα)|1 1

21/α

−α

∫ 1

1

21/α

f (tαaα + (1− tα) bα) dαt

= f

(

aα + bα

2

)

−
α

(bα − aα)

∫ b

a
f (xα) dαx.

Thus, we have conclusion (36). �

Remark 6. If we choose α = 1 in (36), then
equality (36) become equality (5).

Theorem 15. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I. If |f ′| be a convex function on I, then the
following inequality for conformable fractional in-
tegrals holds:

∣

∣

∣

∣

α

bα − aα

∫ b

a
f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤
α (bα − aα)

8
(37)

(

aα(α−1) |Dα (f) (a
α)|+ bα(α−1) |Dα (f) (b

α)|

α

)

.

Proof. Using Lemma 3, it follows that
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∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤







1

21/α
∫

0

tα |Dα (f) (t
αaα + (1− tα) bα)| dαt

+
1
∫

1

21/α

(1− tα) |Dα (f) (t
αaα + (1− tα) bα)| dαt







.

By using (33), we have

∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤ α (bα − aα)

{

∫

1

21/α

0 tα
[

tαaα(α−1) |Dα (f) (a
α)|

+(1− tα) bα(α−1) |Dα (f) (b
α)|
]

dαt

+
∫ 1

1

21/α
(1− tα)

[

tαaα(α−1) |Dα (f) (a
α)|

+ (1− tα) bα(α−1) |Dα (f) (b
α)|
]

dαt
}

=
α (bα − aα)

8

×

(

aα(α−1) |Dα (f) (a
α)|+ bα(α−1) |Dα (f) (b

α)|

α

)

.

Thus, the proof is completed. �

Remark 7. If we choose α = 1 in (37), then
inequality (37) become the inequality (6).

Theorem 16. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I. If |f ′|q , q > 1,be a convex function on I,

then the following inequality for conformable frac-
tional integrals holds:

∣

∣

∣

∣

α

bα − aα

∫ b

a
f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

(38)

≤ α (bα − aα)

(

1

α (p+ 1) 2p+1

)1/p

B(α)

where 1
p + 1

q = 1, B(α) is defined by

B(α)

=

(

aqα(α−1) |Dα (f) (a
α)|q

8α

+
3bqα(α−1) |Dα (f) (b

α)|

8α

)1/q

+

(

3aqα(α−1) |Dα (f) (a
α)|q

8α

+
bqα(α−1) |Dα (f) (b

α)|

8α

)1/q

.

Proof. Using Lemma 3 and from Hölder’s in-
equality, it follows that

∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤







1

21/α
∫

0

tα |Dα (f) (t
αaα + (1− tα) bα)| dαt

+
1
∫

1

21/α

(1− tα) |Dα (f) (t
αaα + (1− tα) bα)| dαt







≤















1

21/α
∫

0

tpαdαt





1/p

×





1

21/α
∫

0

|Dα (f) (t
αaα + (1− tα) bα)|q dαt





1/q

+





1
∫

1

21/α

(1− tα)p dαt





1/p





1
∫

1

21/α

|Dα (f) (t
αaα + (1− tα) bα)|q dαt





1/q










.

By using (35), it follows that
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∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤ α (bα − aα)

(

1

α (p+ 1) 2p+1

)1/p

×











1

21/α
∫

0

[

tαaqα(α−1) |Dα (f) (a
α)|q

+(1− tα) bqα(α−1) |Dα (f) (b
α)|q

]

dαt
)1/q

+





1
∫

1

21/α

[

tαaqα(α−1) |Dα (f) (a
α)|q

+(1− tα) bqα(α−1) |Dα (f) (b
α)|q

]

dαt
)1/q

}

= α (bα − aα)

(

1

α (p+ 1) 2p+1

)1/p

×

{(

aqα(α−1) |Dα (f) (a
α)|q

8α

+
3bqα(α−1) |Dα (f) (b

α)|

8α

)1/q

+

(

3aqα(α−1) |Dα (f) (a
α)|q

8α

+
bqα(α−1) |Dα (f) (b

α)|

8α

)1/q






.

Thus, the proof of completed. �

Remark 8. If we choose α = 1 in (38), then in-
equality (38) become the inequality (2.1) in The-
orem 2.3. in [6].

6. Conclusion

In this work, we have obtained some new Hermite-
Hadamard type integral inequalities for con-
formable integrals and we will investigate some
integral inequalities connected with the left and
right hand side of the Hermite-Hadamard type in-
equalities for conformable fractional integral. The
results presented here would provide generaliza-
tions of those given in earlier works and we show
that some our results are better than the other
results with respect to midpoint inequalities.
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Kahramanmaraş Sütçü İmam, Turkey. He is an Re-
search Assistant in the Department of Mathematics in
the University of Kahramanmaraş Sütçü İmam. His
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1. Introduction

Many mathematical models of natural and ap-
plied sciences phenomena such as fluid mechan-
ics, hydrodynamics, electromagnetics and various
areas of physics are based on hyperbolic partial
differential equations. Modeling some of these
phenomena, imposing nonlocal conditions may be
more accurate than classical conditions. Nonlo-
cal boundary condition is a relation between the
values of unknown function on the boundary and
inside of the given domain. Over the last decades,
boundary value problems with nonlocal boundary
conditions have become a rapidly growing area of
research. Such types of boundary conditions are
encountered in applications including thermoelas-
ticity [1], climate control systems [2] and financial
mathematics [3]. Boundary value problems for
parabolic, elliptic and equations of mixed types
are actively studied by many scientists for decades
(see [4]- [27]). Stability has been an important re-
search area in the development of numerical meth-
ods. Particulary, in this work stability analysis
is performed by suitable unconditionally stable
difference schemes with an unbounded operator.

Some results of this paper, without proof, are pre-
sented in [27].

In the present paper, third and fourth order of
accuracy stable difference schemes for approxi-
mately solving the multipoint nonlocal boundary
value problem (NBVP)





∂2u(t,x)
∂t2

−
m∑
r=1

(ar(x)uxr)xr = f(t, x),

x = (x1, . . . , xm) ∈ Ω, 0 < t < 1,

u(0, x) =
n∑

j=1
αju (λj , x) + ϕ(x), x ∈ Ω,

ut(0, x) =
n∑

j=1
βjut(λj , x) + ψ(x), x ∈ Ω

(1)

for the multidimensional hyperbolic equation with
the Neumann boundary condition

∂u(t, x)

∂~n
|x∈S = 0, x ∈ S

or mixed conditions

u(t, x)|x∈S1
= 0,

∂u(t, x)

∂~n
|x∈S2

= 0,
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x ∈ S, S = S1 ∪ S2

are considered.

Here

Ω = {x = (x1, · · ·, xm) : 0 < xj < 1, 1 ≤ j ≤ m}

is the unit open cube in the m-dimensional
Euclidean space R

m, with boundary S, Ω =
Ω ∪ S and ar(x) (ar(x) ≥ a > 0, x ∈ Ω),
ϕ(x), ψ(x)

(
x ∈ Ω̄

)
, f(t, x) (t ∈ (0, 1), x ∈ Ω) are

given smooth functions.

2. Stability Estimates for High Order

Difference Schemes

In the present section the third and the fourth
order absolutely stable difference schemes and
stability estimates for the solutions of these dif-
ference schemes are presented. These difference
schemes are obtained in [18]. The discretization
of problem (1) with Neumann condition or mixed
conditions is carried out in two steps. In the first
step, the grid sets are defined as

Ω̃h = {x = xr = (h1r1, . . . , hmrm),

r = (r1, · · ·, rm), 0 ≤ rj ≤ Nj ,

hjNj = 1, j = 1, · · ·,m} ,

Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S,

and difference operator Ax
h is given by the formula

Ax
hu

h
x = −

m∑

r=1

(
ar(x)u

h
xr

)

xr,jr
(2)

acting in the space of grid functions uh(x) for
all x ∈ Sh. Note that Ax

h is a self-adjoint posi-
tive definite operator in L2(Ω̄h) with the domain

D (Ax
h) =

{
u (x) ∈W 2

2h

(
Ω̃h

)
, ∂u
∂−→n

= 0 on Sh

}
.

The spaces L2h = L2(Ω̃h), W
1
2h = W 1

2h

(
Ω̃h

)
and

W 2
2h =W 2

2h

(
Ω̃h

)
of the grid functions

ϕh(x) = {ϕ(h1r1, . . . , hmrm)}

are defined on Ω̃h, equipped with norms

∥∥∥ϕh
∥∥∥
L2(Ω̃h)

=



∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣
2
h1 . . . hm




1/2

,

∥∥∥ϕh
∥∥∥
W 1

2h

=
∥∥∥ϕh

∥∥∥
L2h

+



∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xr,jr

∣∣∣∣
2

h1 . . . hm




1/2

,

and

∥∥∥ϕh
∥∥∥
W 2

2h

=
∥∥∥ϕh

∥∥∥
L2h

+



∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xr

∣∣∣∣
2

h1 . . . hm




1/2

+



∑

x∈Ωh

m∑

r=1

∣∣∣∣
(
ϕh
)

xrxr,jr

∣∣∣∣
2

h1 . . . hm




1/2

,

respectively.

Using difference operator Ax
h the following NBVP





d2vh(t,x)
dt2

+Ax
hv

h(t, x) = fh(t, x),
0 < t < 1, x ∈ Ωh,

vh(0, x) =
n∑

j=1
αjv

h (λj , x) + ϕh(x), x ∈ Ω̃h,

dvh(0,x)
dt =

n∑
j=1

βjv
h
t (λj , x) + ψh(x), x ∈ Ω̃h

(3)

is obtained.

In the next step problem (3) is replaced by the
third order of accuracy difference scheme





τ−2
(
uhk+1(x)− 2uhk(x) + uhk−1(x)

)
+ 2

3A
x
hu

h
k(x)

+1
6A

x
h

(
uhk+1(x) + uhk−1(x)

)
+ 1

12τ
2 (Ax

h)
2 uhk+1(x)

= fhk (x), f
h
k (x) =

2
3f

h(tk, x) +
1
6

(
fh(tk+1, x)

)

+fh(tk−1, x)
)
− 1

12τ
2
(
−Afh(tk+1, x) + fhtt(tk+1, x)

)
,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1, x ∈ Ωh,

uh0(x) =
n∑

j=1
αj

{
uh[λj/τ ]

(x)

+τ−1
(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
)
(λj − [λj/τ ]τ)

+3
2

(
f[λj/τ ] −Ax

hu
h
[λj/τ ]

(x)
)
(λj − [λj/τ ]τ)

2

+7
6

(
f

′

[λj/τ ]
− τ−1Ax

h

(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
))

× (λj − [λj/τ ]τ)
3
}
+ ϕh(x), x ∈ Ωh,(

I + τ2 (Ax
h)

4
)
τ−1

(
uh1(x)− uh0(x)

)

=
n∑

j=1
βj

{
τ−1

(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
)

+
(
f[λj/τ ] −Ax

hu
h
[λj/τ ]

(x)
)
(λj − [λj/τ ]τ)

+ 1
2!

(
f ′[λj/τ ]

− τ−1Ax
h

(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
))

× (λj − [λj/τ ]τ)
2 + 1

3!

(
f

′′

[λj/τ ]
−Ax

hf[λj/τ ]

+(Ax
h)

2 uh[λj/τ ]
(x)
)
(λj − [λj/τ ]τ)

3
}
+ ψh(x),

x ∈ Ωh, f
h
1,1 (x) =

1
2f

h (0, x) + τ
6f

h
t (0, x) .

(4)

Theorem 1. Let τ and |h| be sufficiently small
numbers. Then, the solution of difference scheme
(4) satisfies the following stability estimates:
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max
0≤k≤N

∥∥∥uhk
∥∥∥
L2h

+ max
0≤k≤N

∥∥∥uhk
∥∥∥
W 1

2h

≤M1

[
max

1≤k≤N−1

∥∥∥fhk
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ϕh

∥∥∥
W 1

2h

+τ
∥∥∥ϕh

∥∥∥
W 2

2h

+ τ
∥∥∥fh1,1

∥∥∥
L2h

]
,

max
1≤k≤N−1

∥∥∥τ−2
(
uhk+1 − 2uhk + uhk−1

)∥∥∥
L2h

+ max
0≤k≤N

∥∥∥uhk
∥∥∥
W 2

2h

≤M1

[∥∥∥fh1
∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fhk − fhk−1

)∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
W 1

2h

+
∥∥∥ϕh

∥∥∥
W 2

2h

+ τ
∥∥∥ϕh

∥∥∥
W 3

2h

+ τ
∥∥∥fh1,1

∥∥∥
W 1

2h

]

where M1 does not depend on τ, h, ϕh(x),
ψh(x), fh1,1 and fhk , 1 ≤ k < N.

This theorem is proved in [25] under the following
assumption

n∑

k=1

|αk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
3

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
7

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3
}

+

n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
1

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
1

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3
}

+
1

2

n∑

k=1

|αk|
n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
7

12

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4

+
7

36

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
6
}
< 1.

(5)

In the third step replacing problem (3) by the
fourth order of accuracy difference scheme prob-
lem





τ−2
(
uhk+1(x)− 2uhk(x) + uhk−1(x)

)
+ 5

6A
x
hu

h
k(x)

+ 1
12A

x
h

(
uhk+1(x) + uhk−1(x)

)
− 1

72τ
2 (Ax

h)
2 uhk(x) +

τ2

144 (A
x
h)

2
(
uhk+1(x) + uhk−1(x)

)
= fhk (x), f

h
k (x) =

5
6f

h(tk, x)

+ 1
12

(
fh(tk+1, x) + fh(tk−1, x)

)
+ τ2

72

(
−Ax

hf
h (tk, x) + fhtt (tk, x)

)

− τ2

144

(
−Ax

h

(
fh (tk+1, x) + fh (tk−1, x)

)

+fhtt (tk+1, x) + fhtt (tk−1, x)
)
, x ∈ Ωh,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

uh0(x) =
(
I − iτ

2 (Ax
h)

1/2 + τ2

12 (A
x
h)

3
)−1

n∑
k=1

αk

{((
λk

τ − [λj/τ ]
)
− 7τ2

6 A
x
h

(
λk

τ − [λj/τ ]
)3)

×
(
uh[λj/τ ]

(x)− uh[λj/τ ]−1(x)
)
+

(
1− 3τ2

2 A
x
h

(
λk

τ − [λj/τ ]
)2

+ τ4

24 (A
x
h)

2
(
λk

τ − [λj/τ ]
)4)

uh[λj/τ ]
+ 3τ2

2

(
λk

τ − [λj/τ ]
)2
f[λj/τ ]

+7τ3

6

(
λk

τ − [λj/τ ]
)3
f ′[λj/τ ]

+ τ4

24

(
λk

τ − [λj/τ ]
)4
f ′′[λj/τ ]

− τ4

24A
x
h

(
λk

τ − [λj/τ ]
)4
f[λj/τ ]

}
+ ϕh(x), x ∈ Ω̃h,

τ−1
(
uh1(x)− uh0(x)

)

=
(
I − τ2

12A
x
h

)(
I + iτ

2 (Ax
h)

1/2 + τ2

12 (A
x
h)

3
)−1

×
n∑

k=1

βk

{(
1
τ − τ

2A
x
h

(
λk

τ − [λj/τ ]
)2

+ τ3

24 (A
x
h)

2
(
λk

τ − [λj/τ ]
)4)(

u[λj/τ ] − u[λj/τ ]−1

)

+

(
−Ax

hτ
(
λk

τ − [λj/τ ]
)
+ τ3

6 (Ax
h)

2
(
λk

τ − [λj/τ ]
)3)

u[λj/τ ]

+τf[λj/τ ]

(
λk

τ − [λj/τ ]
)
+ τ2

2 f
′
[λj/τ ]

(
λk

τ − [λj/τ ]
)2

+ τ3

6 f
′′
[λj/τ ]

(
λk

τ − [λj/τ ]
)3

+ τ4

24f
′′′

[λj/τ ]

(
λk

τ − [λj/τ ]
)4

− τ3

6 A
x
hf[λj/τ ]

(
λk

τ − [λj/τ ]
)3

− τ4

24A
x
hf

′
[λj/τ ]

(
λk

τ − [λj/τ ]
)4}

+ ψh(x), x ∈ Ω̃h.

(6)

is obtained.

Theorem 2. Let τ and h be sufficiently small
numbers. Then, solution of difference scheme (6)
obeys the following stability estimates:

max
1≤k≤N

∥∥∥∥∥
uhk + uhk−1

2

∥∥∥∥∥
W 1

2h

+ max
1≤k≤N−1

∥∥∥∥∥
uhk+1 − uhk−1

2τ

∥∥∥∥∥
L2h

≤M1

[
max

1≤k≤N−1

∥∥∥fhk
∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ϕh

∥∥∥
W 1

2h

+ τ
∥∥∥fh2,2

∥∥∥
L2h

]
,

max
1≤k≤N−1

∥∥∥τ−2
(
uhk+1 − 2uhk + uhk−1

)∥∥∥
L2h

+ max
1≤k≤N−1

∥∥∥∥∥
uhk+1 − uhk−1

2τ

∥∥∥∥∥
W 1

2h

+ max
1≤k≤N

∥∥∥∥∥
uhk + uhk−1

2

∥∥∥∥∥
W 2

2h

≤M1

[∥∥∥fh1
∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fhk − fhk−1

)∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
W 1

2h

+
∥∥∥ϕh

∥∥∥
W 2

2h

+ τ
∥∥∥fh2,2

∥∥∥
W 1

2h

]
.
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Here M1 does not depend on τ, h, ϕh(x), ψh(x),
fh2,2 and fhk , 1 ≤ k < N.

This theorem is proved in [25] under the following
assumption

{
n∑

k=1

|αk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
3

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
7

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3

+
1

24

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4
}

+
n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣+
1

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
1

6

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
3

+
1

24

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4
}

+
n∑

k=1

|αk|
n∑

k=1

|βk|

{
1 +

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
2

+
1

2

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
4

+
1

9

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
6

+
1

576

∣∣∣∣
λk
τ

−

[
λk
τ

]∣∣∣∣
8
}
< 1. (7)

3. Numerical Analysis

In the present section some examples are pre-
sented to verify theoretical statements. Finite
difference method is used and symbolic computa-
tions are carried out by Matlab. Three problems
for one dimensional hyperbolic equations with the
Neumann boundary conditions and mixed type
boundary conditions are considered. Results of
numerical experiments are presented in tables and
are analyzed.
The grid set [0, 1]τ× [0, π]h of a family of grid
points depending on the small parameters τ and
h with

[0, 1]τ × [0, π]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,

Nτ = 1, xn = nh, 0 ≤ n ≤M,Mh = π}

is considered.

Example 1. Let us consider problem





∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = e−t(sin2 x− 2 cos 2x),

0 < t < 1, 0 < x < π,
u(0, x) = 1

10u(1, x) +
1
10u(

1
2 , x)

+(1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ut(0, x) =

1
10ut(1, x) +

1
10ut(

1
2 , x)

+(−1 + 1
10e

−1 + 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ux(t, 0) = ux(t, π) = 0

(8)

for one-dimensional hyperbolic equation with con-
stant coefficients.

The exact solution of this problem is

u (t, x) = e−t sin2 x.

In approximately solving problem (8), third and
fourth order of accuracy difference schemes (4)
and (6) are used respectively.

In the first step, applying simple formulas

u(xn+1)−2u(xn)+u(xn−1)
h2 − u

′′

(xn) = O
(
h2
)
, (9)

35u(0)−104u(0+τ)+114u(0+2τ)−56u(0+3τ)+11u(0+4τ)
12τ2

− u
′′

(0) = O
(
τ3
)
, (10)

−5u(0)+18u(h)−24u(2h)+14u(3h)−3u(4h)
2τ3

− u
′′′

(0) = O
(
τ4
)
, (11)

and using difference scheme (4), the second or-
der of accuracy in t third order of accuracy in x
difference scheme
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



uk+1
n −2uk

n+uk−1
n

τ2
− 2

3

(
uk
n+1

−2uk
n+uk

n−1

h2

)

−1
6

(
uk+1

n+1
−2uk+1

n +uk+1

n−1

h2 +
uk−1

n+1
−2uk−1

n +uk−1

n−1

h2

)

+ τ2

12

(
uk+1

n+2
−4uk+1

n+1
+6uk+1

n −4uk+1

n−1
+uk+1

n−2

h4

)
= ϕk

n,

ϕk
n =

{
2
3e

−tk + 1
6(e

−tk+1 + e−tk−1)

− τ2

12e
−tk+1

}
sin2 xn − 2

{
2
3e

−tk

+1
6(e

−tk+1 + e−tk−1) + τ2

3 e
−tk+1

}
cos 2xn,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,
xn = nh, 2 ≤ n ≤M − 2,Mh = π,

u0n − 1
8u

(N/2)
n − 1

8u
N
n

= (1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 xn, 0 ≤ n ≤M,
(u1n − u0n)

− τ2

12

(
(u1

n+1
−u0

n+1)−2(u1
n−u0

n)+(u1
n−1

−u0
n−1)

h2

)

+ τ4

144

[
(u1

n+2
−u0

n+2
)−4(u1

n+1
−u0

n+1)+6(u1
n−u0

n)
h4

+
−4(u1

n−1
−u0

n−1)+(u1
n−2

−u0
n−2

)

h4

]
= ϕN

n ,

ϕN
n = (−τ + τ2

2 − τ3

6 + τ4

6 ) sin
2 x

+( τ
3

6 + τ4

12 + 35
36τ

5 − 5
18τ

6 − 5
54τ

7) cos 2x

+( 1
10e

−1 + 1
10e

− 1

2 ), 2 ≤ n ≤M − 2

(12)

for the approximate solution of problem (8) is ob-
tained. By rearranging like terms of the problem,
the following linear system

AUn+2+BUn+1+CUn+DUn−1+EUn−2 = Rϕn,
(13)

2 ≤ n ≤M − 2

with (N + 1)× (N + 1) matrix coefficients

A =




0 0 0 0 . . . 0 0 0
0 0 x 0 ... 0 0 0
0 0 0 x . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . x 0 0
0 0 0 0 . . . 0 x 0
−r r 0 0 . . . 0 0 0




,

B =




0 0 0 . . . 0 0 0
y w v . . . 0 0 0

0 y w
. . . 0 0 0

...
...

. . .
. . .

...
...

...

0 0 0
. . . w v 0

0 0 0 . . . y w v
s −s 0 . . . 0 0 0




,

C =




1 0 0 . . . 0 −1
8 0 . . . 0 −1

8
l n m 0 . . . 0 0 0
0 l n m . . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...

0 0 0 . . .
. . . n m 0

0 0 0 . . . . . . l n m
−t t 0 . . . . . . 0 0 0




,

D = B, E = A,

R =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




,

where the entries are

x =
τ2

12h4
, v = −

1

6h2
−

τ2

3h4
, w = −

2

3h2
,

y = −
1

6h2
,m =

1

τ2
+

1

3h2
+

τ2

2h4
,

n = −
2

τ2
+

4

3h2
, l =

1

τ2
+

1

3h2
,

r =
τ4

144h4
, s =

τ2

12h2
+

τ4

36h4

t = 1 +
τ2

6h2
+

τ4

24h4
,

and (N + 1)× 1 column matrices

ϕk
n =




ϕ0
n

ϕ1
n
...
ϕN
n




(N+1)×1

, 0 ≤ k ≤ N,

with

ϕ0
n = (1−

1

10
e−1 −

1

10
e−

1

2 ) sin2 (xn) , 0 ≤ n ≤M,

ϕN
n = {−τ +

τ2

2
−
τ3

6
+
τ4

6
} sin2 (xn)

+

{
τ3

6
+
τ4

12
+

35

36
τ5 }

−
5

18
τ6 −

5

54
τ7
}
cos 2xn

+(
1

10
e−1 +

1

10
e−

1

2 ) sin2 (xn)
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ϕk
n =

{
2

3
e−tk +

1

6
(e−tk+1 + e−tk−1)

−
τ2

12
e−tk+1

}
sin2 xn,

+2

{
2

3
e−tk +

1

6
(e−tk+1 + e−tk−1) +

τ2

3
e−tk+1

}
cos 2xn,

1 ≤ k ≤ N − 1,

Uk
s =




u0s
u1s
...
uNs




(N+1)×1

,

0 ≤ k ≤ N, s = n− 2, n− 1, n, n+ 1, n+ 2

is obtained.

The modified Gauss elimination method is used
and the following formula

Un = αn+1Un+1 + βn+1Un+2 + γn+1,

n =M − 2, ...2, 1, 0

is applied where αj , βj (j = 1, . . . ,M) are (N +
1)×(N+1) square matrices and γj are (N+1)×1
column matrices for the solution of difference
scheme (12). From that one can obtain formu-
las αn+1, βn+1, γn+1





βn+1 = −(C +Dαn + Eβn−1 + Eαn−1αn)
−1A,

αn+1 = −(C +Dαn + Eβn−1 + Eαn−1αn)
−1

×(B +Dβn + Eαn−1βn),
γn+1 = +(C +Dαn + Eβn−1 + Eαn−1αn)

−1

×(Rϕn −Dγn − Eαn−1γn − Eγn−1),
(14)

where n = 2 :M − 2 and

γ2 =




0
0
...
0


 ,

α2 =




4/5 0 . . . 0
0 4/5 . . . 0
...

...
. . .

...
0 0 . . . 4/5


 ,

β2 =




−1/5 0 . . . 0
0 −1/5 . . . 0
...

...
. . .

...
0 0 . . . −1/5


 .

In a similar manner the following formulas

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3I)]−1

× {R+Q(4I − αM−1)
−1γM−1} (15)

UM−1 = −(P +Q)−1R (16)

UM−2 = (4I − αM−2)
−1

× {(5I + βM−2)UM−1 + γM−2}, (17)

where

P =
1

6h
(11I + 9βM−1 − 2αM−2βM−1),

Q =
1

6h
(−18I + 9αM−1

−2(αM−2αM−1 + βM−2))

R =
1

6h
(9γM−1 − 2αM−2γM−1 − 2γM−2)

are obtained. The system

U0 = α1U1 + β1U2 + γ1 (18)

where

α1 =
−1

h
T−1, β1 = 0, γ1 =

h

2
T−1ϕ0

n

is used for the boundary condition ux(t, 0) = 0 of
third order of accuracy difference scheme. Here

T =




λ1 λ2 λ3 λ4 λ5 0 . . . 0
a b a 0 . . . . . . . . . 0

0 a b a 0 . . . . . .
...

... 0 a b a 0 . . .
...

... . . .
. . .

. . .
. . .

. . .
. . .

...
... . . . . . . 0 a b a 0
0 . . . . . . . . . 0 a b a
0 . . . 0 λ5 λ4 λ3 λ2 λ1




(19)

with
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λ1 =

(
−
1

h
−

35h

24τ2
+

5h2

12τ3

)
,

λ2 =

(
104h

24τ2
−

18h2

12τ3

)
,

λ3 =

(
−
114h

24τ2
+

24h2

12τ3

)
,

λ4 =

(
56h

24τ2
−

14h2

12τ3

)
,

λ5 =

(
−

11h

24τ2
+

3h2

12τ3

)
,

a = −
h

2τ2
, b =

(
−
1

h
+

h

τ2

)
.

In the next step difference scheme (6) and the for-
mulas

−3u (1) + 4u (1− h)− u (1− 2h)

2h
−u

′

(1) = O
(
h2
)
,

1

4τ3
(−17u (0) + 71u (0 + τ)− 118u (0 + 2τ)

+98u (0 + 3τ)− 41u (0 + 4τ) + 7u(0 + 5τ))

−u
′′′

(0) = O
(
τ3
)
,

u (0)− 2u (0 + τ) + u (0 + 2τ)

τ2
− u

′′

(0) = O
(
τ3
)

are used to obtain second order of accuracy in
t and fourth order of accuracy in x difference
scheme





uk+1
n −2uk

n+uk−1
n

τ2
− 5

6

(
uk
n+1

−2uk
n+uk

n−1

h2

)

− 1
12

(
uk+1

n+1
−2uk+1

n +uk+1

n−1

h2 +
uk−1

n+1
−2uk−1

n +uk−1

n−1

h2

)

− τ2

72

(
uk
n+2

−4uk
n+1

+6uk
n−4uk

n−1
+uk

n−2

h4

)

+ τ2

144

(
uk+1

n+2
−4uk+1

n+1
+6uk+1

n −4uk+1

n−1
+uk+1

n−2

h4

+
uk−1

n+2
−4uk−1

n+1
+6uk−1

n −4uk−1

n−1
+uk−1

n−2

h4

)
= ϕk

n,

ϕk
n =

{
(56 + τ2

72 )e
−tk

+( 1
12 − τ2

144)(e
−tk+1 + e−tk−1)

}
sin2(xn)

+
{
(−5

3 + τ2

9 )e
−tk

−(16 + τ2

18 )(e
−tk+1 + e−tk−1)

}
cos 2xn

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,
xn = nh, 1 ≤ n ≤M − 1,Mh = π,

ϕ0
n = (1− 1

10e
−1 − 1

10e
− 1

2 ) sin2 (xn) ,
0 ≤ n ≤M,

(
u1n − u0n

)

− τ2

12

(
(u1

n+1
−u0

n+1)−2(u1
n−u0

n)+(u1
n−1

−u0
n−1)

h2

)

+ τ4

144h4

[
(u1n+2 − u0n+2)− 4

(
u1n+1 − u0n+1

)

+6
(
u1n − u0n

)
− 4

(
u1n−1 − u0n−1

)

+(u1n−2 − u0n−2)
]
= ϕN

n ,

ϕN
n =

(
−τ + τ2

2 − τ3

6 + τ4

24 − τ5

24

)
sin2 (xn)

+
(
τ3

6 − τ4

12 − 7
36τ

5 − 15
144τ

6

− 25
432τ

7 − 5
432τ

8
)
cos 2xn

+τ( 1
10e

−1 + 1
10e

− 1

2 ) sin2 (xn) ,
2 ≤ n ≤M − 2, 0 ≤ k ≤ N,

u01 − u00 =
h
2

(
45u0

0
−154u1

0
+214u2

0
−156u3

0
+61u4

0
−10u5

0

12τ2

)

− h2

64τ3

(
17u00 − 71u10 + 118u20

−98u30 + 41u40 − 7u50
)

uN1 − uN0 = h
212τ2

(
45uN0 − 154uN−1

0 + 214uN−2
0

−156uN−3
0 + 61uN−4

0 − 10uN−5
0

)

− h2

64τ3

(
17uN0 − 71uN−1

0 + 118uN−2
0

−98N−3
0 + 41uN−4

0 − 7uN−5
0

)
, uk1 − uk0

= h
2

(
uk+1

0
−2uk

0
+uk−1

0

τ2
− ϕk

0

)
, 1 ≤ k ≤ N − 1

(20)

for the approximate solution of problem (8). By
rearranging coefficients in the problem we have
again the (N + 1) × (N + 1) linear system (13)
with matrix coefficients

A =




0 0 0 . . . 0 0 0
x y x . . . 0 0 0

0 x y
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . y x 0

0 0 0 . . . x y x
−r r 0 . . . 0 0 0




,
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B =




0 0 0 . . . 0 0 0
v w v . . . 0 0 0

0 v w
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . w v 0

0 0 0 . . . v w v
s −s 0 . . . 0 0 0




,

C =




1 0 0 . . . 0 −1
8 0 . . . 0 −1

8
m n m 0 . . . 0 0 0
0 m n m . . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...

0 0 0 . . .
. . . n m 0

0 0 0 . . . . . . m n m
−t t 0 . . . . . . 0 0 0




,

D = B, E = A,

R =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




,

and with entries

x =
τ2

144h4
, y = −

τ2

72h4
, v = −

1

12h2
−

τ2

36h4
,

w = −
5

6h2
+

τ2

18h4
,

m =
1

τ2
+

1

6h2
+

τ2

24h4
,

n = −
2

τ2
+

5

3h2
−

τ2

12h4
,

r =
τ4

144h4
, s =

τ4

36h4
+

τ2

12h2
,

t = 1 +
τ2

6h2
+

τ4

24h4
.

Here Uk
s and ϕk

n are defined as

Uk
s =




u0s
u1s
...
uNs




(N+1)×1

,

0 ≤ k ≤ N, s = n− 2, n− 1, n, n+ 1, n+ 2.

ϕk
n =




ϕ0
n

ϕ1
n

.
ϕN
n




(N+1)×1

, 0 ≤ k ≤ N,

ϕ0
n = (1−

1

10
e−1 −

1

10
e−

1

2 ) sin2 (xn) , 0 ≤ n ≤M,

ϕN
n =

(
−τ +

τ2

2
−
τ3

6
+
τ4

24
+
τ5

24

)
sin2 (xn)

ϕk
n =

{
(
5

6
+
τ2

72
)e−tk

+(
1

12
−

τ2

144
)(e−tk+1 + e−tk−1)

}
sin2(xn)

+

{
(−

5

3
+
τ2

9
)e−tk

−(
1

6
+
τ2

18
)(e−tk+1 + e−tk−1)

}
cos 2xn

+

{
τ3

6
−
τ4

12
−

7

36
τ5 −

15

144
τ6

−
25

432
τ7 −

5

432
τ8
}
cos 2xn

+(
1

10
e−1 +

1

10
e−

1

2 ) sin2 (xn) .

In exactly the same manner as Example 1 the
linear system for the fourth order of accuracy dif-
ference scheme is solved with the following new
formulas

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3I)]−1

×
[
R+Q(4I − αM−1)

−1γM−1

]
, (21)

UM−1 = [(βM−2 + 5I)− (4I − αM−2)αM−1]
−1

× [(4I − αM−2)γM−1 − γM−2] (22)

UM−2 = (4I − αM−2)
−1 (23)

×{(5I + βM−2)UM−1 + γM−2}

where

P =
1

12h
[25I + 36βM−1 − 16αM−2βM−1

+3(αM−3αM−2βM−1 + βM−3βM−1)] ,
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Q =
1

12h
[−48I + 36αM−1

−16(αM−2αM−1 + βM−1)

+3(αM−3αM−2αM−1 + αM−3βM−2 + αM−1βM−3)] ,

R =
1

12h
[36γM−1 − 16(αM−2γM−1 + γM−2)

+3 (αM−3αM−2γM−1

+αM−3γM−2 + βM−3γM−1 + γM−3)] .

For the boundary condition ux(t, 0) = 0, the sys-
tem (18) with the matrix

T =




λ1 λ2 λ3 λ4 λ5 λ6 0 . . . 0
a b a 0 . . . . . . . . . . . . 0
0 a b a 0 . . . . . . . . . 0

0 0 a b a 0 . . . . . .
...

... . . .
. . .

. . .
. . .

. . . . . . . . .
...

0 . . . . . . . . . . . . a b a 0
0 . . . 0 λ6 λ5 λ4 λ3 λ2 λ1




(24)

and the new entries

λ1 =

(
−
1

h
−

45h

24τ2
+

17h2

24τ3

)
,

λ2 =

(
154h

24τ2
−

71h2

24τ3

)
,

λ3 =

(
−
214h

24τ2
+

118h2

24τ3

)
,

λ4 =

(
156h

24τ2
−

98h2

12τ3

)
,

λ5 =

(
−

61h

24τ2
+

41h2

24τ3

)
, λ6 = (

10h

24τ2
−

7h2

24τ3
),

a = −
h

2τ2
, b =

(
−
1

h
+

h

τ2

)

is considered.

Example 2. Consider





∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = e−t(sin2 x− 2 cos 2x),

0 < t < 1, 0 < x < π,
u(0, x) = 1

10u(1, x) +
1
10u(

1
2 , x)

+(1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ut(0, x) =

1
10ut(1, x) +

1
10ut(

1
2 , x)

+(−1 + 1
10e

−1 + 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
u(t, 0) = ux(t, π) = 0, 0 ≤ t ≤ 1

(25)

for one dimensional hyperbolic equation.

Note that this problem is similar to Example 1,
with different mixed boundary conditions. Again
exact solution of the problem is

u (t, x) = e−t sin2 x.

In finding the approximate solution of problem
(25), the method of first example is applied.
Third and fourth orders of accuracy difference
schemes (4), (6) are used. Approximating the
boundary condition ux(t, π) = 0 the following for-
mulas

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3)]−1

×{R+Q(4− αM−1)
−1γM−1}

UM−1 = −(P +Q)−1R

UM−2 = (4I − αM−2)
−1 {(5I+βM−2)UM−1+γM−2}

where

P =
1

6h
(11I + 9βM−1 − 2αM−2βM−1)UM ,

Q =
1

6h
[−18I + 9αM−1

−2 (αM−2αM−1 + βM−2)]UM−1

R =
1

6h
(9γM−1 − 2αM−2γM−1 − 2γM−2),

for the third order of accuracy difference scheme
and

UM = −[P +Q(4I − αM−1)
−1(βM−1 + 3I)]−1

×{R+Q(4I − αM−1)
−1γM−1},

UM−1 = [(βM−2 + 5I)− (4I − αM−2)αM−1]
−1
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×[(4I − αM−2)γM−1 − γM−2]

UM−2 = (4I − αM−2)
−1 {(5I+βM−2)UM−1+γM−2},

where

P =
1

12h
[25I + 36βM−1 − 16αM−2βM−1

+3(αM−3αM−2βM−1 + βM−3βM−1)] ,

Q =
1

12h
[−48I + 36αM−1

−16(αM−2αM−1 + βM−1) + 3 (αM−3αM−2αM−1

+αM−3βM−2 + αM−1βM−3)] ,

R =
1

12h
[36γM−1 − 16(αM−2γM−1 + γM−2)

+3((αM−3αM−2γM−1

+αM−3γM−2 + βM−3γM−1 + γM−3)]

for the fourth order of accuracy difference scheme
are used. For the boundary condition u(t, 0) = 0
the following initial matrices

α1 =




0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0




(N+1)×(N+1)

,

β1 =




0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0




(N+1)×(N+1)

γ1 = γ2 =




0
0
...
0




(N+1)×1

,

α2 =




4/5 0 . . . 0
0 4/5 . . . 0
...

...
. . .

...
0 0 . . . 4/5




(N+1)×(N+1)

,

β2 =




−1/5 0 . . . 0
0 −1/5 . . . 0
...

...
. . .

...
0 0 . . . −1/5




(N+1)×(N+1)

are used in the formulae which were presented in
(14).

Example 3. Consider the NBVP with mixed con-
dition



∂2u(t,x)

∂t2
− ∂2u(t,x)

∂x2 = e−t(sin2 x− 2 cos 2x),

0 < t < 1, 0 < x < π,
u(0, x) = 1

10u(1, x) +
1
10u(

1
2 , x)

+(1− 1
10e

−1 − 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ut(0, x) =

1
10ut(1, x) +

1
10ut(

1
2 , x)

+(−1 + 1
10e

−1 + 1
10e

− 1

2 ) sin2 x, 0 ≤ x ≤ π,
ux(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1

(26)

for one dimensional hyperbolic equation.

Note that this problem is similar to problem
of Example1 with different boundary conditions.
Exact solution of this problem is

u (t, x) = e−t sin2 x.

The approximate solution of problem (26) is ob-
tained by a similar procedure as in the first exam-
ple. Third and fourth order of accuracy difference
schemes (4), (6) are used and the system

U0 = α1U1 + β1U2 + γ1

with

α1 =
−1

h
T−1, β1 = 0, γ1 =

h

2
T−1ϕ0

n

is considered. Matrices T, λi, i = 1, ..., 6; a, b are
defined by (19) and (24) and are considered for
the boundary condition ux(t, 0) = 0. Approximat-
ing boundary condition u(t, π) = 0, the following
formulas





UM−2 = αM−1UM−1 + γM−1,
UM−3 = αM−2UM−2 + βM−2UM−1 + γM−2,
UM−3 = 4UM−2 − 5UM−1,

and

UM−1 = [(βM−2 + 5I)− (4I − αM−2)αM−1]
−1

×[(4I − αM−2)γM−1 − γM−2]

are used.

The errors for the approximations are computed
by the formula

EN
M = max

1≤k≤N−1

(
M−1∑

n=1

∣∣∣u (tk, xn)− Uk
n

∣∣∣
2
h

) 1

2

.
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Table 1. Error analysis for the approximate solutions of (8).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 0,000211 0,00006181 0,00002605

Fourth order of accuracy difference scheme 0,00009415 0,00001866 0,000005752

Table 2. CPU times for the approximate solutions of (8).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 2.3078 13.5915 68.6596

Fourth order of accuracy difference scheme 2.3473 13.5283 67.7495

Table 3. Error analysis for the approximate solutions of (25).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 0,0004817 0,0002047 0,0001138

Fourth order of accuracy difference scheme 0,00009781 0,00001979 0,00001954

Table 4. CPU times for the approximate solutions of (25).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 2.3031 13.5165 68.2402

Fourth order of accuracy difference scheme 1.7361 13.5241 68.8427

Table 5. Error analysis for the approximate solutions of (26).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 0,0037 0,0011 0,0004602

Fourth order of accuracy difference scheme 0,00009415 0,00001866 0,000005752

Table 6. CPU times for the approximate solutions of (26).

N=20, M=400 N=30, M=900 N=40, M=1600

Third order of accuracy difference scheme 1.7006 13.4295 68.1728

Fourth order of accuracy difference scheme 1.7401 13.4628 68.0591

Here u (tk, xn) represents exact solution and Uk
n

represents numerical solution at (tk, xn). We de-
note the third order of accuracy difference scheme
(4) as TO and the fourth order of accuracy dif-
ference scheme (6) as FO. Errors and the related
CPU times are represented in Table 1,3,5 and Ta-
ble 2,4,6 respectively, for different M and N val-
ues. The implementations are carried out by Mat-
lab 7.9.0 software package and obtained by a PC
System 64bit, Intel R Core TM i5 CPU, 3.20 GHz,
3.60Hz, 4000Mb of RAM.

The following conclusions can be noted from the
tables above for the comparison of the numerical
results presented in the tables.

• From Table 1 and Table 2, it can be no-
ticed that approximately the same accu-
racy is achieved by TO with data error
,N=40, M=1600 and by FO with data er-
ror N=30, M=900 in different CPU times;
68.6596s and 13.5283s, respectively. This
means the use of the difference scheme FO
accelerates the computation with a ratio
of more than 68.66/13.5≈5.08 times, that
is, FO is considerably faster than TO.

• In Table 3 and Table 4, almost the
same accuracy is achieved by TO with
error ,N=40, M=1600 and by FO with
error N=20, M=400 in different CPU
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times; 68.6596s and 13.5283s, respec-
tively, which means that the use of
the difference scheme FO accelerates the
computation with a ratio of more than
68.24/1.73≈39.44 times, which shows that
FO is faster than TO.

• In Table 5 and Table 6, it is noted that ap-
proximately similar accuracy is achieved
by TO with data error ,N=40, M=1600
and by FO with data error N=20, M=400
in different CPU times; 68.1728s and
1.7401s, respectively. This means that the
use of the difference scheme FO acceler-
ates the computation with a ratio of more
than 68.17/1.74≈39.17 times, that is, FO
is approximately faster than TO.

• It can be concluded from the tables that
numerical results become approximately
the same for larger N and M values
for each difference scheme in the reliable
range of the CPU times and this shows
that the approximate solutions of problem
(8), (25), (26) are accurate.

• In conclusion, the fourth order of accu-
racy difference scheme is more accurate
than the third order of accuracy difference
scheme when considering the CPU times
and the error levels.
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1. Introduction

It is well known that convexity plays an important
and central role in many areas, such as economic,
finance, optimization, and game theory. Due to
its diverse applications this concept has been ex-
tended and generalized in several directions.

One of the most well-known inequalities in math-
ematics for convex functions is the so called
Hermite-Hadamard integral inequality

f
(

a+b
2

)

≤ 1
b−a

b
∫

a

f(x)dx ≤ f(a)+f(b)
2 , (1)

where f is a real continuous convex function on
the finite interval [a, b]. If the function f is con-
cave, then (1) holds in the reverse direction (see
[1]).

The above double inequality has attracted many
researchers, various generalizations, refinements,
extensions and variants have appeared in the lit-
erature, see [2–9] and references cited therein.

Kirmaci et al. [10] presented some results con-
nected with inequality (1)

∣

∣

∣

∣

∣

∣

1
b−a

b
∫

a

f(x)dx− f
(

a+b
2

)

∣

∣

∣

∣

∣

∣

≤ b−a
8

(∣

∣f ′ (a)
∣

∣+
∣

∣f ′ (b)
∣

∣

)

.

Recently, Sarikaya et al [11], gave the fractional
analogue of (1)

f
(

a+b
2

)

≤ Γ(α+1)
2(b−a)α

[(Jα
a+f) (b) + (Jα

b−f) (a)]

≤ f(a)+f(b)
2 . (2)

Zhu et al [12] established the following result con-
nected with inequality (2).

∣

∣

∣

Γ(α+1)
2(b−a)α

[(Jα
a+f) (b) + (Jα

b−f) (a)]− f
(

a+b
2

)

∣

∣

∣

≤ b−a
4(1+α)

(∣

∣f ′ (a)
∣

∣+
∣

∣f ′ (b)
∣

∣

)

(

α+ 3−
1

2α−1

)

.
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Motivated by the above results, in this paper, we
introduce the class of extended s-(α,m)-preinvex
functions. We establish a new fractional integral
identity and derive some new fractional Hermite-
Hadamard type inequalities for functions whose
derivatives are in this novel class of functions.

2. Preliminaries

In this section we recall some definitions and lem-
mas

Definition 1. [13] A function f : I → R is said
to be convex, if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f(y)

holds for all x, y ∈ I and all t ∈ [0, 1].

Definition 2. [14] A nonnegative function f :
I → R is said to be P -convex, if

f (tx+ (1− t) y) ≤ f (x) + f(y)

holds for all x, y ∈ I and all t ∈ [0, 1].

Definition 3. [15] A nonnegative function f :
I → R is said to be Godunova-Levin function, if

f (tx+ (1− t) y) ≤
f (x)

t
+

f(y)

1− t

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 4. [16] A nonnegative function f :
I → R is said to be s-Godunova-Levin function,
where s ∈ [0, 1], if

f (tx+ (1− t) y) ≤
f (x)

ts
+

f(y)

(1− t)s

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 5. [17] A nonnegative function f :
I → R is said to be α-Godunova-Levin function,
where α ∈ (0, 1], if

f (tx+ (1− t) y) ≤
f (x)

tα
+

f(y)

1− tα

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 6. [18] A nonnegative function f :
I ⊂ [0,∞) → R is said to be α-convex in the first
sense for some fixed α ∈ (0, 1], if

f(tx+ (1− t)y) ≤ tαf(x) + (1− tα)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 7. [19] A nonnegative function f :
I ⊂ [0,∞) → R is said to be s-convex in the sec-
ond sense for some fixed s ∈ (0, 1], if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 8. [20] A nonnegative function f :
I ⊂ [0,∞) → R is said to be extended s-convex
for some fixed s ∈ [−1, 1], if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

holds for all x, y ∈ I and t ∈ (0, 1).

Definition 9. [21] A function f : [0, b] → R is
said to be m-convex, where m ∈ (0, 1],if

f (tx+m (1− t) y) ≤ tf (x) +m (1− t) f(y)

holds for all x, y ∈ I, and t ∈ [0, 1].

Definition 10. [22] A function f : [0, b] → R is
said to be (α,m)-convex, where α,m ∈ (0, 1],if

f (tx+m (1− t) y) ≤ tαf (x) +m (1− tα) f(y)

holds for all x, y ∈ I, and t ∈ [0, 1].

Definition 11. [23] A function f : [0, b] → R is
said to be (s,m)-convex, where α,m ∈ (0, 1],if

f (tx+m (1− t) y) ≤ tsf (x) +m (1− t)s f(y)

holds for all x, y ∈ I, and t ∈ [0, 1].

Definition 12. [24] A function f : I → R

is said to be (α,m)-Godunova-Levin functions of
first kind, where α,m ∈ (0, 1], if

f (tx+m (1− t) y) ≤
f (x)

tα
+m

f(y)

1− tα

holds for all x, y ∈ I and all t ∈ (0, 1).

Definition 13. [24] A function f : I → R

is said to be (s,m)-Godunova-Levin functions of
first kind, where s ∈ [0, 1] and m ∈ (0, 1], if

f (tx+m (1− t) y) ≤
f (x)

ts
+m

f(y)

(1− t)s

holds for all x, y ∈ I and all t ∈ (0, 1).



Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended... 75

Definition 14. [25] A nonnegative function
f : I ⊂ [0,∞) → [0,∞) is said to be s-(α,m)-
convex in the second sense where α,m ∈ [0, 1] and
s ∈ (0, 1], if the following inequality

f (tx+ (1− t) y) ≤ (1− tα)sf(x)+m (tα)s f(
y

m
)

holds for all x, y ∈ I and t ∈ [0, 1].

Definition 15. [26] A set K ⊆ R
n is said an in-

vex with respect to the bifunction η : K×K → R
n,

if for all x, y ∈ K, we have

x+ tη (y, x) ∈ K.

In what follows we assume that K ⊆ R be an in-
vex set with respect to the bifunction η : K×K →
R.

Definition 16. [26] A function f : K → R is
said to be preinvex with respect to η, if

f (x+ tη (y, x)) ≤ (1− t) f (x) + tf(y)

holds for all x, y ∈ K and all t ∈ [0, 1].

Definition 17. [27] A nonnegative function f :
K → R is said to be P -preinvex function with
respect to η, if

f (x+ tη (y, x)) ≤ f (x) + f(y)

holds for all x, y ∈ K and all t ∈ [0, 1].

Definition 18. [27] A nonnegative function f :
K → R is said to be Godunova-Levin preinvex
function with respect to η, if

f (x+ tη (y, x)) ≤
f (x)

t
+

f(y)

1− t

holds for all x, y ∈ K and all t ∈ (0, 1).

Definition 19. [28] A nonnegative function f :
K → R is said to be s-Godunova-Levin preinvex
function with respect to η, where s ∈ [0, 1], if

f (x+ tη (y, x)) ≤
f (x)

ts
+

f(y)

(1− t)s

holds for all x, y ∈ K and all t ∈ (0, 1).

Definition 20. [29] A nonnegative function f :
K ⊂ [0,∞) → R is said to be α-preivex in the first
sense with respect to η for some fixed α ∈ (0, 1],
if

f (x+ tη (y, x)) ≤ (1− tα)f(x) + tαf(y)

holds for all x, y ∈ K and t ∈ [0, 1].

Definition 21. [30] A nonnegative function f :
K ⊂ [0,∞) → R is said to be s-preinvex in
the second sense with respect to η for some fixed
s ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− t)sf(x) + tsf(y)

holds for all x, y ∈ K and t ∈ [0, 1].

Definition 22. [31] A function f : K ⊂
[0, b∗] → R is said to be m-preinvex with respect
to η where b∗ > 0 and m ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− t) f (x) +mtf(
y

m
)

holds for all x, y ∈ K, and t ∈ [0, 1].

Definition 23. [31] A function f : K → R

is said to be (α,m)-preinvex with respect to η for
some fixed α ∈ (0, 1], and m ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− tα) f (x) +mtαf(
y

m
)

holds for all x, y ∈ K, and t ∈ [0, 1].

Definition 24. [32] A function f : K ⊂
[0, b∗] → R is said to be (s,m)-preinvex with re-
spect to η for some fixed α ∈ (0, 1]where b∗ > 0
and m ∈ (0, 1], if

f (x+ tη (y, x)) ≤ (1− t)s f (x) +mtsf(
y

m
)

holds for all x, y ∈ K, and t ∈ [0, 1].

Lemma 1. [33] For t, n ∈ [0, 1] , we have

(1− t)n ≤ 21−n − tn.

Lemma 2. [34] For any 0 ≤ a < b and fixed
p ≥ 1, we have

(b− a)p ≤ bp − ap.

We also recall that the incomplete beta function
is defined as follows:

Bx(α, β) =

x
∫

0

tα−1(1− t)β−1dx
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for x ∈ [0, 1] and α, β > 0, where B1(α, β) =
B(α, β) is the beta function.

3. Main results

In what follows we assume that [a, a+ η (b, a)] ⊂
K ⊂ [0, b∗] where b∗ > 0 such that K is an invex
set with respect to the bifunction η : K×K → R.

Definition 25. A nonnegative function f : K →
[0,∞) is said to be extended s-(α,m)-preinvex in
the second sense where α,m ∈ (0, 1] and s ∈
[−1, 1], if the following inequality

f (x+ tη (y, x)) ≤ (1− tα)sf(x) +m (tα)s f(
y

m
)

holds for all x, y ∈ I and t ∈ [0, 1].

Remark 1. Definition 25 includes all the defini-
tions cited above, except for Definition 15.

Lemma 3. Let f : [a, a+ η (b, a)] → R

be a differentiable mapping on (a, a+ η (b, a))
with η (b, a) > 0, and assume that f ′ ∈
L ([a, a+ η (b, a)]), then the following equality
holds

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)

(3)

=
η (b, a)

2





1
∫

0

kf ′ (a+ tη (b, a)) dt

−

1
∫

0

(

tδ − (1− t)δ
)

f ′ (a+ tη (b, a)) dt



 ,

where

k =

{

1 if 0 ≤ t < 1
2 ,

−1if 1
2 ≤ t < 1.

(4)

Proof. Let

I =

1
∫

0

kf ′ (a+ tη (b, a)) dt

−

1
∫

0

(

tδ − (1− t)δ
)

f ′ (a+ tη (b, a)) dt

= I1 − I2, (5)

where

I1 =

1
∫

0

kf ′ (a+ tη (b, a)) dt, (6)

and

I2 =

1
∫

0

(

tδ − (1− t)δ
)

f ′ (a+ tη (b, a)) dt, (7)

k is defined by (3).

Clearly,

I1 =
2

η (b, a)

[

f
(

2a+η(b,a)
2

)

− (f (a) + f (a+ η (b, a)))] . (8)

Now, by integration by parts, I2 gives

I2 = 1
η(b,a)f (a+ η (b, a)) + 1

η(b,a)f (a)

− δ
η(b,a)





1
∫

0

tδ−1f (a+ tη (b, a)) dt

+

1
∫

0

(1− t)δ−1 f (a+ tη (b, a)) dt





= 1
η(b,a)f (a+ η (b, a)) + 1

η(b,a)f (a)

− α
ηδ+1(b,a)







a+η(a,b)
∫

a

(u− a)δ−1 f (u) du

+

a+η(a,b)
∫

a

(η (b, a) + a− u)δ−1 f (u) du







= 1
η(b,a)f (a+ η (b, a)) + 1

η(b,a)f (a)

− Γ(δ+1)
ηδ+1(b,a)

((

Iδa+f
)

(a+ η (b, a))

+
(

Iδ
(a+η(b,a))−

f
)

(a)
)

. (9)

Combining (8), (9) and (5), we obtain the desired
equality in (3). �

Theorem 1. Let f : [a, a+ η (b, a)] → R be a
positive differentiable mapping on (a, a+ η (b, a))
with η (b, a) > 0 and f ′ ∈ L ([a, a+ η (b, a)]). If
|f ′| is extended s-(α,m)-preinvex function where
α,m ∈ (0, 1] and s ∈ (−1, 1], then the following
fractional inequality holds for αs+ δ 6= −1



Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended... 77

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2

(

21−s − 1
αs+1 + 22−s

δ+1

(

1−
(

1
2

)δ
)

− 1
αs+δ+1 −B (αs+ 1, δ + 1)

)

∣

∣f ′(a)
∣

∣

+m
(

1
αs+1 + 2B 1

2

(αs+ 1, δ + 1)

−B (αs+ 1, δ + 1)

+ 1
αs+δ+1

(

1− 1
2αs+δ

)

)

∣

∣f ′
(

b
m

)∣

∣ ,

where B (., .) and B 1

2

(., .) are the beta and the in-

complete beta functions respectively.

Proof. From Lemma 3, and properties of modu-
lus we have

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2





1
∫

0

∣

∣f ′ (ta+ (1− t) b)
∣

∣ dt

+

1

2
∫

0

(

(1− t)δ − tδ
)

∣

∣f ′ (ta+ (1− t) b)
∣

∣ dt

+

1
∫

1

2

(

tδ − (1− t)δ
)

∣

∣f ′ (ta+ (1− t) b)
∣

∣ dt






.

(10)

Since |f ′| is extended s-(α,m)-preinvex function,
(10) gives

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2





1
∫

0

(1− tα)s

×
∣

∣f ′(a)
∣

∣+m (tα)s
∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

dt

+

1

2
∫

0

(

(1− t)δ − tδ
)

(

(1− tα)s
∣

∣f ′(a)
∣

∣

+mtαs
∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

)

dt

+

1
∫

1

2

(

tδ − (1− t)δ
)

(

(1− tα)s
∣

∣f ′(a)
∣

∣

+mtαs
∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

)

dt

)

. (11)

Now, applying Lemma 1 for (11), we get

∣

∣

∣

∣

Γ (δ + 1)

2ηδ (b, a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤
η (b, a)

2









1
∫

0

(

21−s − tαs
)

dt

+

1

2
∫

0

(

21−s
(

(1− t)δ − tδ
)

×
(

tαs+δ − tαs (1− t)δ
))

dt

+

1
∫

1

2

(

21−s
(

tδ − (1− t)δ
)

− tαs+δ

−tαs (1− t)δ
)

dt
)

∣

∣f ′(a)
∣

∣

+m







1

2
∫

0

(

tαs (1− t)δ − tαs+δ
)

dt

+

1
∫

1

2

(

tαs+δ − tαs (1− t)δ
)

dt

+

1
∫

0

tαsdt









∣

∣f ′
(

b
m

)∣

∣

=
η (b, a)

2

((

21−s − 1
αs+1 + 22−s

δ+1

(

1−
(

1
2

)δ
)

− 1
αs+δ+1 −B (αs+ 1, δ + 1)

)

∣

∣f ′(a)
∣

∣

+m
(

1
αs+1 + 2B 1

2

(αs+ 1, δ + 1)

−B (αs+ 1, δ + 1)

× 1
αs+δ+1

(

1− 1
2αs+δ

)

)

∣

∣f ′
(

b
m

)∣

∣

)

,
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which is the desired result. �

Remark 2. Theorem 1 will be reduces to Theo-
rem 2.3 from [12], if we choose s = α = m = 1
and η (b, a) = b− a.

Theorem 2. Let f : [a, a+ η (b, a)] → R be a
positive differentiable mapping on (a, a+ η (b, a))
with η (b, a) > 0 and f ′ ∈ L ([a, a+ η (b, a)]).
If |f ′|q q > 1 with 1

p
+ 1

q
= 1, is extended s-

(α,m)-preinvex function, where α,m ∈ (0, 1] and
s ∈ [−1, 1], and q > 1, then the following frac-
tional inequality holds for sα 6= −1

∣

∣

∣

Γ(δ+1)
2ηα(b,a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤ η(b,a)
2

((

(21−s − 1
sα+1)

∣

∣f ′(a)
∣

∣

q

+ m
sα+1

∣

∣f ′
(

b
m

)∣

∣

q
) 1

q

+
(

1
δp+1

(

1−
(

1
2

)δp
)) 1

p

×
(((

1
2s − 1

(sα+1)2sα+1

)

∣

∣f ′(a)
∣

∣

q

+ m
(sα+1)2sα+1

∣

∣f ′
(

b
m

)∣

∣

q
) 1

q

×
((

1
2s − 2sα+1

−1
(sα+1)2sα+1

)

∣

∣f ′(a)
∣

∣

q

+ m 2sα+1
−1

(sα+1)2sα+1

∣

∣f ′
(

b
m

)∣

∣

q
) 1

q

))

.

Proof. From Lemma 3, properties of modulus,
Hölder inequality, and Lemma 2, we have

∣

∣

∣

Γ(δ+1)
2ηδ(b,a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤ η(b,a)
2











1
∫

0

dt





1− 1

q

×





1
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt





1

q

+







1

2
∫

0

(

(1− t)δ − tδ
)p

dt







1

p

×







1

2
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

+







1
∫

1

2

(

(1− t)δ − tδ
)p

dt







1

p

×







1
∫

1

2

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q









≤ η(b,a)
2











1
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt





1

q

+







1

2
∫

0

(

(1− t)δp − tδp
)

dt







1

p

×







1

2
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

+







1
∫

1

2

(

tδp − (1− t)δp
)

dt







1

p

×







1
∫

1

2

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q









= η(b,a)
2











1
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt





1

q

+
(

1
δp+1

(

1− 1
2δp

)

) 1

p

×















1

2
∫

0

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

+







1
∫

1

2

∣

∣f ′ (a+ tη (b, a))
∣

∣

q
dt







1

q

















.

Using the fact that |f ′|q is extended s-preinvex
function, and Lemma 1, (3) gives
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∣

∣

∣

Γ(δ+1)
2ηα(b,a)

[(

Jδ
a+f

)

(a+ η (b, a))

+
(

Jδ
(a+η(b,a))−

f
)

(a)
]

− f
(

2a+η(b,a)
2

)∣

∣

∣

≤ η(b,a)
2









1
∫

0

(21−s − tsα)
∣

∣f ′(a)
∣

∣

q

+m (tsα)

∣

∣

∣

∣

f ′(
b

m
)

∣

∣

∣

∣

q

dt

)
1

q

+

(

1
δp+1

(

1−

(

1

2

)δp
)) 1

p

×













1

2
∫

0

(21−s − tsα)
∣
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which is the desired result. �
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[13] Pečarić, J.E., Proschan, F. and Tong, Y.L.
(1992). Convex functions, partial orderings,
and statistical applications. Mathematics in
Science and Engineering. 187. Academic
Press, Inc., Boston, MA.



80 B. Meftah, A. Souahi / IJOCTA, Vol.9, No.1, pp.73-81 (2019)

[14] Dragomir, S.S., Pečarić, J.E. and Persson,
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