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Coronavirus disease of 2019 or COVID-19 (acronym for coronavirus disease
2019) is an emerging infectious disease caused by a strain of coronavirus called
SARS-CoV-22, contagious with human-to-human transmission via respiratory
droplets or by touching contaminated surfaces then touching them face. Faced
with what the world lives, to define this problem, we have modeled it as an
optimal control problem based on the models of William Ogilvy Kermack et
Anderson Gray McKendrick, called SEIR model, modified by adding compart-
ments suitable for our study. Our objective in this work is to maximize the
number of recovered people while minimizing the number of infected. We
solved the problem theoretically using the Pontryagin maximum principle, nu-
merically we used and compared results of two methods namely the indirect
method (shooting method) and the Euler discretization method, implemented
in MATLAB.
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1. Introduction

COVID-19 disease, which appeared in China in
late 2019, is caused by SARS-CoV-2, a virus that
belongs to the large family of coronaviruses. Very
common, they can cause a simple cold as well as a
serious respiratory infection like pneumonia, caus-
ing fatal epidemics as it was the case with Sras
or Mers and this year, COVID-19. This virus
passes into humans via animal secretions, under
special conditions, then it is transmitted from hu-
man to human. Long-term contact is required for
the transmission of this virus.

As with many infectious diseases, people with
pre-existing chronic diseases such as hypertension,
cardiovascular disease, diabetes, liver disease, res-
piratory disease, etc. Seem more likely to develop
severe forms. Note that there are serious forms of
the disease, even in young adults. Children under
the age of fifteen are unlikely to trigger a severe
form of coronavirus[CSSE].

In our work, we used a compartmental model
in epidemiology based on the work of Kermack

and Mckendrick [1], using ordinary differential
equations we modeled this epidemic as an opti-
mal control problem, our objective (and of course
the objective of all humanity) is to maximize the
number of recovered and minimize the number
of infected and then draw the attention of the
Algerian people to the seriousness of the situa-
tion. Initially the two authors proposed a found-
ing model in which the population was divided
between individuals susceptible to contracting the
disease (compartment S), and infectious individu-
als (compartment I), it is noted model SI. Then
they added the proportion of healed people, we
get the SIR model [2].

In the first part of this work, we consider the SIR
model with adding other compartments namely
the proportion of individuals most exposed to the
disease (chronic diseases and the elderly), people
who have recovered as well as those who have
died. In this model, compartment S is neces-
sary, since it must initially exist individuals who
have not yet been infected, when an individual
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in compartment S is exposed to the disease, he
does not necessarily become capable of transmit-
ting it immediately, the virus requires a few days
to make the individual sick [3], this is called the
latency period, where the existence of compart-
ment E then compartment I. After an individual
has been infected, two scenarios can occur. First,
the individual can die, in which case he belongs
to compartment D, or recovered, in this case he
belongs to compartment R. In our work, the com-
mand u(.) represents the vaccination rate [4]. Our
goal is to minimize the number of infected people
and maximize recoveries. The study is made in
the case of Algeria. We estimate the states at
70 days and 150 days, from 02 April 2020 when
the number of infected reached 986 people. This
work is structured as follows: after a brief intro-
duction, in section 2, we defined the model used
and explained the importance of each of its com-
partments. Section 3 is devoted to the theoretical
resolution of the modeled problem, using the Pon-
tryagin maximum principle [4–8]. The numerical
resolution is evoked in section 4, we solved the
considered problem with two numerical methods,
namely the direct method (Euler discretization )
and an indirect method (shooting method). We
developed an implementations with the MATLAB
programming language, then we presented some
simulation results. In the numerical application,
two scenarios were considered, T = 70 days and
T = 150 days, with and without an effective vac-
cine. In the rest of the work, we considered com-
partment Q of people quarantined, the obtained
problem is solved thoerically then numerically in
section 5. In the rest of the work, in the absence of
treatment, the only remedy to face this epidemic
is quarantine. We discussed and commented the
results found with two methods of the previous
section, in section 6. Then we finished our docu-
ment with a conclusion.

2. Statement of the problem

Starting from the basic model (SIR), we tried
to improve the equations so that it better corre-
spond to reality. Indeed, many parameters come
into play during the spread of a virus and are not
taken into account in the basic model. The letter
used to represent a compartment is also used to
represent the number of individuals in the com-
partment. At all epidemic, some susceptible peo-
ples become infected. The study is done over a
period of T = 70 days, and T = 150 days. For
t ∈ [0, T ], denote α the infection rate, S(.) verify
the following relation:

Ṡ(t) = −αS(t)I(t), S(0) = S0 > 0. (1)

As in any epidemic, infected people are vacci-
nated, note u(t), t ∈ [0, T ] the vaccination rate,
0 ≤ u(.) ≤ umax, in this case we will have:

Ṡ(t) = −(αI(t) + u(t))S(t), S(0) = S0 > 0. (2)

I(.) Is such that:

İ(t) = βE(t)− (δ + γ)I(t), I(0) = I0 > 0, (3)

where E(.), t ∈ [0, T ] denotes people witch are
exposed to the epidemic, it verify the following
differential equation:

Ė(t) = αI(t)S(t)− βE(t), E(0) = E0 > 0. (4)

As in any epidemic, infected people are either re-
covered (compartment R) after being vaccinated
or dead (compartment D), this is governed by the
following differential equations:

Ṙ(t) = γI(t) + u(t)S(t), R(0) = R0, (5)

and

Ḋ(t) = δI(t), D(0) = D0, t ∈ [0, T ]. (6)

The positive coefficients are such that:

α > 0 is infection rate, incubation rate β, is
the rate of latent individuals becoming infectious.
Given the known average duration of incubation
Y , β = 1

Y
, γ = 1

K
, is determined by the aver-

age duration of recovery K, of infection. δ is the
mortality rate.

The evolution of the considered states is shown in
the following figure(see Figure 1):
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Figure 1. Evolution of stats.

After this modeling, our goal is to minimize the
number of infected people and maximize recover-
ies . The objective function in our case is:

J(u) = −I(T ) +R(T ) → max
u

.
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We will therefore solve a following optimal control
problem:
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J(u) = −I(T ) +R(T ) → max
u

,

Ṡ(t) = (−αI(t)− u(t))S(t), S(0) = S0 > 0,

Ė(t) = αI(t)S(t)− βE(t), E(0) = E0 > 0,

İ(t) = βE(t)− (δ + γ)I(t), I(0) = I0 > 0,

Ṙ(t) = γI(t) + u(t)S(t), R(0) = R0 > 0,

Ḋ(t) = δI(t), D(0) = D0 > 0,

0 ≤ u(t) ≤ umax, t ∈ [0, T ].

(7)

3. Theoretical resolution

Taking the case of Algeria, out of 10.0000 healthy
people, 3000 are exposed to the virus (among oth-
ers doctors, nurses and people at risk). As of 02
April 2020, 986 person are infected in this coun-
try, 83 died and 108 were cured(Pasteur Institute
results).

Each exposed person (E) is transformed into the
infected person (I) with rate β, the incubation
period refer to the time of infection to clinical
symptoms of the disease. We shall assume that
incubation period is a maximum of 7 days then
β = 1

7 . An infected person is healed up after 6

days, as well γ = 1
6 [3].

This obtained problem is solved theoretically by
using the Pontryagin maximum principle(PMP),
then numerically, we implemented two methods
on MATLAB namely the indirect method (shoot-
ing method) and a direct one.

The Hamiltonian of problem (7) is given for t ∈

[0, T ] as follows:

H(x(t), p(t), u(t)) = −pS(t)S(t)(αI(t) + u(t))

+pE(t)(αI(t)S(t)− βE(t))

+pI(t)(βE(t)− (δ + γ)I(t))

+pR(t)(γI(t) + u(t)S(t))

+pD(t)(δI(t)),

where, x(t) = (S(t), I(t), E(t), R(t), D(t)) and
p(t) = (pS(t), pI(t), pE(t), pR(t), pD(t)) is adjoint
vector, it is solution of the system:
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ṗS(t) = αI(t)(pS(t)− pE(t))

−(−pS(t) + pR(t))u(t),

ṗE(t) = β(pI(t)− pE(t)),

ṗI(t) = αS(t)(pS(t)− pE(t)) + (δ + γ)pI(t)

−γpR(t)− δpD(t),

ṗR(t) = 0,

ṗD(t) = 0, t ∈ [0, T ].

(8)

The transversality conditions are such that:

pS(T ) = −
∂g(S(T ), E(T ), I(T ), R(T ), D(T ))

∂S(T )
,

pE(T ) = −
∂g(S(T ), E(T ), I(T ), R(T )), D(T )

∂E(T )
,

pI(T ) = −
∂g(S(T ), E(T ), I(T ), R(T ), D(T ))

∂I(T )
,

pR(T ) = −
∂g(S(T ), E(T ), I(T ), R(T ), D(T ))

∂R(T )
,

pD(T ) = −
∂g(S(T ), E(T ), I(T ), R(T ), D(T ))

∂D(T )
.

where

g(S(T ), E(T ), I(T ), R(T ), D(T )) = −I(T )+R(T ).

That gives:

pS(T ) = 0, pE(T ) = 0, pI(T ) = −1,

pR(T ) = 1, pD(T ) = 0.

Let us Calculate the optimal controle u(.):

The Hamiltonien’s maximum is given by:

H∗ = max
0≤u(t)≤umax

H(t, x(t), p(t), u(t))

= −αS(t)I(t)(pS(t)− pE(t))− βpE(t)E(t)

+pI(t)(βE(t)− (δ + γ)I(t)) + γpR(t)I(t)

+δpD(t)I(t)

+S(t) max
0≤u(t)≤umax

[(−pS(t) + pR(t))u(t)]

where H∗ = H(x∗(t), p∗(t), u∗(t)).

The control which maximizes the Hamiltonian is

u∗(t) =

{

umax if pS(t) ≤ 1,

0 if pS(t) > 1.
(9)

Then:

u∗(t) = −umaxmin(0, sign(pS(t)− 1)).
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4. Numerical implementation and

methods

To compute the solution of the optimality sys-
tem and maximize the objective functional J(u),
two implementations are considered: indirect and
direct methods, these implementations were com-
pared in terms of model dynamics for the first 70
days (t ∈ [0, 70]) using both the parameter values
α, β, γ, and σ in section 3, and the initial condi-
tions
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S(0) = 106,

E(0) = 3000,

I(0) = 986,

R(0) = 103,

D(0) = 86.

(10)

Indirect method to solve optimal control problems
are based on the Pontryagin’s maximum princi-
ple to compute the optimal solution. Therefor,
these methods require the state system with ini-
tial value [4], and necessary conditions [4,5,7], to
find the solution of a given optimal control prob-
lem, by convering it into a boundary value prob-
lem.

On the other hand, direct methods use discretiza-
tion with respect to time to solve optimal control
problems, in which the cost functionl is directly
optimized, treating the optimal control problem
as a nonlinear optimization problem (NLP ).

Some advantages and drawbacks can be pointed
out to both indirect and direct methods. Accord-
ing to Trélat [4], direct methods are more robust
and less sensitive to the choice of the initial condi-
tions than indirect methods, being more easier to
implement. However, in comparison with indirect
methods, reaching to a desirable precision is not
so easy when direct methods are employed. In ad-
dition, the author states not only the possibility
of obtain local minima when the direct discretiza-
tion of an optimal control problem is employed,
but also the necessity of a large amount of mem-
ory, which in turn can lead to inefficiencies when,
for instance, a large dimension problem is consid-
ered. On the other hand, indirect methods pro-
vide high levels of numerical accuracy, but their
implementation can be quite difficult due to the
necessity of computing derivatives and necessary
conditions related to the PMP.

4.1. Resolution by Shooting method

The shooting method is based on the Pontrya-
gin’s maximum principle [9]. It consists in find-
ing a zero of the shooting function associated with

the original problem. It is a fast, high-precision
method that does not require assumptions about
the control structure. The shooting method con-
sists in three main steps [7, 8]:

• Step 1: Form a boundary value problem
using the model equations and the adjoint
vectors equations as well as the transver-
sality conditions.

• Step 2: Determine the shooting function.
• Step 3: Solve a system of nonlinear equa-
tions.

The Pontryagin maximum principle leads us to
the following boundary value problem:
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ẋ1(t) = −αx3(t)x1(t) + F (p1(t))x1(t),

ẋ2(t) = αx3(t)x1(t)− βx2(t),

ẋ3(t) = βx2(t)− (σ + γ)x3(t),

ẋ4(t) = γx3(t)− F (p1(t))x1(t),

ẋ5(t) = σx3(t),

ṗ1(t) = αx3(t)(p1(t)− p2(t))

−(p1(t)− p4(t))F (p1(t)),

ṗ2(t) = β(p2(t)− p3(t)),

ṗ3(t) = αx1(t)(p1(t)− p2(t)) + (σ + γ)p3(t),

−γp4(t)− σp5(t),

ṗ4(t) = 0,

ṗ5(t) = 0,

x1(0) = S0, x2(0) = E0, x3(0) = I0,

x4(0) = R0, x5(0) = D(0), p1(T ) = p2(T ) = 0,

p3(T ) = −1, p4(T ) = 1, p5(T ) = 0, t ∈ [0, T ].

(11)

where

x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))

= (S(t), E(t), I(t), R(t), D(t)),

p(t) = (pj(t), j = 1 . . . 5)

= (pS(t), pE(t), pI(t), pR(t), pD(t)).

and

F (p1(t)) = umaxmin(0, sign(p1(t)− 1).

We construct the following shooting function:

G : R10 −→ R10

(p(0), p(T )) 7−→ G(p(0), p(T )),
(12)

with
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G(p(0), p(T )) =
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where λi ∈ R, i = 1 . . . 3.

Hence, the problem (11) is equivalent to the fol-
lowing problem:
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ż1(t) = −αz3(t)z1(t) + F (z6(t))z1(t)

ż2(t) = αz3(t)x1(t)− βz2(t),

ż3(t) = βz2(t)− (σ + γ)z3(t),

ż4(t) = −F (z6(t))z1(t) + γz3(t)

ż5(t) = σz3(t),

ż6(t) = αz3(t)(z6(t)− z7(t))

−(z6(t)− z9(t)) + F (z6(t)),

ż7(t) = β(z7(t)− z8(t)),

ż8(t) = αz1(t)(z6(t)− z7(t)) + (σ + γ)z8(t)

−γz9(t)− σz10(t),

ż9(t) = 0,

ż10(t) = 0,

z1(0) = S0, z2(0) = E0, z3(0) = I0, z4(0) = R0,

z5(0) = D0, G(p(0), p(T )) = 0, t ∈ [0, T ],

(13)

where

z(t) = (zj(t), j = 1, ..., 10) = (x(t), p(t)),

and

F (z6(t)) = umaxmin(0, sign(z6(t)− 1).

Using shooting method, in the presence of an ef-
fective vaccine, after 70 days, the results found are
illustrated in the following figure (see Figure2):
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Figure 2. Evolution of stats after 70
days with vaccine.

After 70 days, in the presence of an effective treat-
ment, the number of people recovered is very high,
the number of infected decreases considerably.

In the absence of an effective vaccine, we will use
the shooting method, after for T = 150 days,
the results are illustrate in the following figure(see
Figure3):

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

t

u
(
t)

Control

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

5

t

S
(
t)

Trajectory S(t) 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

t

E
(
t)

Trajectory E(t) 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5
x 10

5

t

I(
t)

Trajectory I(t) 

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

5

t

R
(
t)

Trajectory R(t) 

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2
x 10

4

X: 140
Y: 1.779e+004

t

D
(
t)

Trajectory D(t) 

Figure 3. Evolution of stats after
150 days without vaccine.

After 150 days, in the absence of an effective vac-
cine, the number of susceptible individuals does
not almost decrease, the number of deaths in-
creases. The number of susceptible individuals
as well as the number of exposed to the virus in-
creases considerably(see Figure 3). The execution
time of the shooting method is CPU time equals
3.18s.
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4.2. Resolution by the Euler

discretization method

For a number of subintervalsN chosen in advance,
we will have the step of discretization h = T

N
and

the following times:

0 = t0 < t1 < · · · < tN−1 < tN = T.

The application of the Euler discretization scheme
for solving boundary value problems gives us the
following nonlinear programming problem:

Minimize J(u) = I(T )−R(T ),

S(tk+1) = S(tk)− h(αI(tk) + u(tk))S(tk),

E(tk+1) = E(tk) + h(αI(tk)S(tk)− βE(tk)),

I(tk+1) = I(tk) + h(βE(tk)− (σ + γ)I(tk)),

R(tk+1) = R(tk) + h(γI(tk) + u(tk)S(tk)),

D(tk+1) = D(tk) + hσI(tk), k = 0, 1, . . . , N − 1,

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = 0,

D(0) = D0, 0 ≤ u(tk) ≤ umax, k = 0, 1, . . . , N.

(14)

We also solved the nonlinear program (14) with
the interior-point method implemented in MAT-
LAB for N = 1500. The obtained results are
presented in figure (see Figure4)
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Figure 4. Evolution of stats with
vaccine, after 70 days.

After 70 days, in the presence of an effective vac-
cine, the number of infected individuals decreases,
and the number of deaths stabilizes around 180
dead from 40 days. The number of people recov-
ered is considerable(see Figure 4).

It has been noted in the previous sections that in
the absence of treatment the number of infected
persons increases considerably, the best solution

is therefore isolation. The execution time of the
shooting method is CPU time equals 26.85s.

5. Advantage of quarantine

Based on China’s experience, the vast majority
of people who contracted COVID-19 contracted
it from contact with infected relatives, hence the
importance of isolation so that the epidemic can
be controlled. taking the example of the Ebola
epidemic and the case of China with this new
virus, peoples had been deprived of their freedom
of movement, this has paid off, the number of in-
fected individuals has decreased considerably.

Figure 5. SEIQR model.

Based on this protection strategy, we modeled an-
other problem inspired by the SEIRD model, by
adding the compartment of quarantined people
(see Figure 5), the following optimal control prob-
lem has been obtained:
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J(u) = −I(T ) +R(T ) → max
u

,

Ṡ(t) = −(αI(t) + u(t))S(t), S(0) = S0 > 0,

Ė(t) = αI(t)S(t)− βE(t), E(0) = E0 > 0,

İ(t) = βE(t)− κI(t), I(0) = I0 > 0,

Q̇(t) = κI(t)− (γ + σ)Q(t), Q(0) = Q0 > 0,

Ṙ(t) = γQ(t) + u(t)S(t) R(0) = R0,

Ḋ(t) = σQ(t), D(0) = D0,

0 ≤ u(t) ≤ umax, t ∈ [0, T ], T : Fix.
(15)

Where: α is the infection rate, β−1 average la-
tente time, κ−1 average isolation time ,γ is cure
time and σ is the mortality rate.

We notice

Ṡ(t) + Ė(t) + İ(t) + Q̇(t) + Ṙ(t) + Ḋ(t) = 0,
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therefore

S(t)+E(t)+I(t)+Q(t)+R(t)+D(t) = NP , Np ∈ R,

and like

S(0) + E(0) + I(0) +R(0) +D(0) = Np,

deduce that

Np = 1005075,

therefore

D(t) = −S(t)− E(t)− I(t)−Q(t)−R(t) +Np.

We can simplify the problem.
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J(u) = −I(T ) +R(T ) → max
u

,

Ṡ(t) = −(αI(t) + u(t))S(t), S(0) = S0 > 0,

Ė(t) = αI(t)S(t)− βE(t), E(0) = E0 > 0,

İ(t) = βE(t)− κI(t), I(0) = I0 > 0,

Q̇(t) = κI(t)− (γ + σ)Q(t), Q(0) = Q0 > 0,

Ṙ(t) = γQ(t) + u(t)S(t), R(0) = R0,

0 ≤ u(t) ≤ umax, t ∈ [0, T ], T : Fix.

(16)

5.1. Theoretical resolution

The Hamiltonian of problem (16) is given for
t ∈ [0, T ] as follows:

H(x(t), p(t), u(t)) = pS(t)(−αI(t)− u(t))S(t)

+pE(t)(αI(t)S(t)− βE(t))
+pI(t)(βE(t)− κI(t))

+pQ(t)(κI(t)− (γ + σ)Q(t))

+pR(t)(γQ(t) + u(t)S(t)),

where, x(t) = (S(t), E(t), I(t), Q(t), R(t)) and

p(t) = (pS(t), pE(t), pI(t), pQ(t), pR(t)) is adjoint
vector, it’s solution of the system:
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ṗS(t) = αI(t)(pS(t)− pE(t))

+(pS(t)− pR(t))u(t),

ṗE(t) = β(pE(t)− pI(t)),

ṗI(t) = αS(t)(pS(t)− pE(t))

+κ(pI(t)− pQ(t)),

ṗQ(t) = (γ + σ)pQ(t)− γpR(t),

ṗR(t) = 0, t ∈ [0, T ].

(17)

The transversality conditions are such that:

pS(T ) = −
∂g(S(T ), E(T ), I(T ), Q(T ), R(T ))

∂S(T )
,

pE(T ) = −
∂g(S(T ), E(T ), Q(T ), I(T ), R(T ))

∂E(T )
,

pI(T ) = −
∂g(S(T ), E(T ), Q(T ), I(T ), R(T ))

∂I(T )
,

pQ(T ) = −
∂g(S(T ), E(T ), Q(T ), I(T ), R(T ))

∂Q(T )
,

pR(T ) = −
∂g(S(T ), E(T ), Q(T ), I(T ), R(T ))

∂R(T )
.

That gives:

pS(T ) = 0, pE(T ) = 0, pI(T ) = −1,

pQ(T ) = 0, pR(T ) = 1.

ṗR(t) = 0, pR(t) = 1, ∀t ∈ [0, T ],

implies
pR(t) = 1, ∀t ∈ [0, T ].

ṗQ(t) = (γ + σ)pQ(t)− γpR(t), ∀t ∈ [0, T ],

pQ(T ) = 0,

implies

pQ(t) = e(γ+σ)(t−T ) +
γ

γ + σ
, t ∈ [0, T ].

Let us Calculate the optimal controle u(.):

The Hamiltonien’s maximum is given by

H∗ = max
0≤u(t)≤umax

H(x(t), p(t), u(t))

= −αpS(t)S(t)I(t) + pE(t)(αI(t)S(t)

−βE(t)) + pI(t)(βE(t)− κI(t))

+pQ(t)(κI(t)− (γ + σ)Q(t))

+γpR(t)Q(t)

+S(t) max
0≤u(t)≤umax

[(−pS(t) + pR(t))u(t)].

where H∗ = H(x∗(t), p∗(t), u∗(t)).

The control which maximizes the Hamiltonian is

u∗(t) =

{

umax if pS(t) ≤ 1,

0 if pS(t) > 1.
(18)

Then:

u∗(t) = −umaxmin(0, sign(pS(t)− 1)).

6. Numerical implementation

To compute the solution of the optimality sys-
tem and maximize the objective functional J(u),
two implementations are considered: indirect and
direct methods, these implementations were com-
pared in terms of model dynamics for the first 70
days (t ∈ [0, 70]) using both the parameter values
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α, β, γ, and σ in section 3, and the initial condi-
tions:


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S(0) = 106,

E(0) = 3000,

I(0) = 986,

Q(0) = 900,

R(0) = 103,

D(0) = 86.

(19)

The results obtained for T = 150 days in the ab-
sence of the vaccine, using the shooting method
are illustrated in the following figure(see Figure6)

0 50 100 150
−1

−0.5

0

0.5

1

t

u
(
t)

Control

0 50 100 150
2

4

6

8

10
x 10

5

t

S
(
t)

Trajectory S(t) 

0 50 100 150
0

2

4

6

8
x 10

4

t

E
(
t)

Trajectory E(t) 

0 50 100 150
0

0.5

1

1.5

2
x 10

4

t

I(
t)

Trajectory I(t) 

0 50 100 150
0

2

4

6

8
x 10

4

t

Q
(
t)

Trajectory Q(t) 

0 50 100 150
0

2

4

6

8
x 10

5

t

R
(
t)

Trajectory R(t) 

0 50 100 150
0

2000

4000

6000

8000

10000

12000

t

D
(
t)

Trajectory D(t) 

Figure 6. Evolution of stats without
vaccine, after 150 days.

The results obtained for T = 70 days in the ab-
sence of the vaccine, using the Euler discretization
method are illustrated in the following figure(see
Figure7):
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Figure 7. Evolution of stats with
vaccine, after 70 days.

7. Numerical comparison with results

discussion

The direct method is characterized by the simplic-
ity of its implementation, without a priori knowl-
edge of the solution, this method is not very sen-
sitive to the choice of the initial condition, but it
has low numerical precision. The indirect method
has very high digital precision, but it is very sen-
sitive to the choice of the initial condition.

We tried by this work and with two methods, to
evaluate the considered states (in particular the
infected and the recovered) with and without ef-
fective vaccine against Coronavirus. The results
found by those methods are similar, but at least,
the results found by shooting method are more
accurate and the execution time of the shooting
method is much less.
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Figure 8. Numerical comparaison.

8. Conclusion

In this work, we have modeled a topical problem
(COVID-19 problem) as a nonlinear optimal con-
trol problem. We considered the SEIR model by
adding a compartment D for dead persons. In
the first part of the work, we added compartment
D, then we discussed and compared the results,
in the second part of the work, we included in
the considered model, compartment Q of people
under quarantine.

First, the Pontryagin’s maximum principle has
been used which gives a necessary condition of op-
timality. By implementing two numerical meth-
ods (the shooting method and the Euler dis-
cretization method) on the MATLAB software,
we have traced the evolutions of the states con-
sidered in the problem, at a duration of 70 days
and 150 days with and without vaccine.

The results found show that the shooting method
is fast and gives accurate results. We deduce that
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finding an effective vaccine is more than essential
to fight against this virus. if not, the solution is
quarantining the infected (see Figure 8).
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