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We consider the data-driven stochastic programming problem with binary en-
tries where the probability of existence of each entry is not known, instead
realization of data is provided. We applied the distributionally robust opti-
mization technique to minimize the worst-case expected cost taken over the
ambiguity set based on the Kullback-Leibler divergence. We investigate the
out-of-sample performance of the resulting optimal decision and analyze its
dependence on the sparsity of the problem.

1. Introduction

The impact of uncertainties on planning in
decision-making become even more vital than
ever, due to rapidly changing and highly volatile
business environment. The availability of data
is creating new opportunities for better deci-
sion making under uncertainty. The traditional
decision-making under uncertain data in oper-
ations research and management science is the
stochastic-programming, where objective func-
tion f : R™ — R depends on decision variable x
and uncertain parameter u. If we knew full joint-
distribution of u, say p(u), we could incorporate
uncertainty of u. However, it is often difficult in
practice to assume we know full knowledge of the
joint distribution. Birtsimas et al. [I] pointed out
that probability distribution is imaginary, based
on human-assumption, and never be observed in
the practice. Data is ever what really exists and
is observable. Therefore, they claim that a data-
driven decision-making without explicitly consid-
ering joint distribution should be appropriate, as
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it enables us to decide on the basis of evidence
rather than assumption.

Another problem of assuming distribution is that,
in today’s data-rich environment, the prediction
needs high-dimensional statistical analysis, as the
number of data and variables has been increas-
ing rapidly. This is typically computationally in-
tractable. Further even if it fits well with data set
{u1, -+ ,un} , it is time consuming, because one
needs to careful statistical analysis. In the context
of inventory management, there are thousands of
SKU (Stock-Keeping-Units), each of which have
different demand characteristics and shorter life
cycles. It is impossible to analyze all these SKUs
deeply. Given a need of quicker decision-making
and shortage of data-scientists, an autonomous
data-driven decision-making has been of great
practical interest.

The data-driven stochastic optimization is an al-
ternative paradigm, in which the probability dis-
tribution of uncertain parameter is not known,
instead realization of data is provided. The data
is composed of training-data and validation-data.
In the training phase, the data-driven decision
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and the certificate is output, and in the valida-
tion phase, the data-driven decision of the out-
of-sample performance is evaluated. A natural
approach to solve this problem is sample aver-
age approximation (SAA), in which the probabil-
ity distribution is approximated by the empirical
discrete distribution. This approach, however, of-
ten leads to the poor out-of-sample performance,
because of the optimization-based selection bias,
called the optimizer’s curse [2].

The distributionally robust optimization (DRO)
is a recent emerging topic in data-driven stochas-
tic programming, in which the objective func-
tion is the worst-case expectation taken over an
ambiguity set. DRO has several good proper-
ties [3]. First, the theoretical guarantee of the
out-of-sample performance has been derived. Sec-
ond, asymptotic optimality is proven, that is, as
the number of the samples goes to infinity, the
data-driven solution converges to the true optimal
solution of the problem. Third, the distribution-
ally robust problem can be transformed to the
convex programming problem, and thus can be
solved very efficiently by the off-the-shelf solver.
Finally, a worst-case approach mitigates the op-
timizer’s curse and often leads to the better out-
of-sample performance than SAA.

Despite these theoretical advances, the number
of applications is still limited. Especially, it is
not fully clear on how well the DRO performs for
which type of problems. This paper study the per-
formance evaluation of DRO with phi-divergence,
applied to the linear programming with partial
observed entries. Applications in many settings
contains massive data with binary entries, includ-
ing incidence matrix of the network optimization
problem. These data are recorded from observa-
tions or measurements, which changes over time
in practice. An important problem that arises
in applications is to understand how the decision
should be made based on the uncertainty of bi-
nary entries, using past observation of data. We
generate problem instances randomly and apply
the DRO and compare the results with SAA. We
investigate the out-of-sample performance of the
resulting optimal decisions experimentally and
analyze its dependence on the number of train-
ing samples and the sparsity.

The remainder of the paper is as follows: In sec-
tion 2, we review related research. In section 3, we
outline the conventional stochastic programming,
robust optimization, distributionally robust opti-
mization. In section 4, we present the result of
numerical experiments. In section 5, we discuss
potential extensions and variations.

2. Literature review

2.1. Stochastic programming and robust
optimization

Stochastic Programming is the traditional ap-
proach for the decision under uncertainty. A fun-
damental input of the stochastic programming
and the chance constrained programming is the
probability distribution. However, in practice, it
is often difficult to assume the probability distri-
bution.

Robust optimization and chance-constrained pro-
gramming are alternative popular approach to
optimization under uncertainty. Charnes and
Cooper [4] first proposed chance constrained pro-
gramming. Soyster [5] proposed the concepts of
uncertainty sets of parameters and find the so-
lution for worst-case value. Ben-Tal and Ne-
mirovski [6H8] and El-Ghaoui et al [9/10] built the-
oretical foundation for modern robust optimiza-
tion, with a focus on deriving tractable robust
counterpart for the linear programming under el-
lipsoidal parameter uncertainty. Bertsimas and
Sim [I1] proposed the concept “price of robust-
ness”, which flexibly adjust the level of conser-
vatism of the robust solutions in terms of proba-
bilistic bounds of constraint violations. Ben-Tal
et al. [I2] propose a systematic way to construct
the robust counterpart of a nonlinear uncertain
inequality that is concave in the uncertain pa-
rameters using support functions, conjugate func-
tions, Fenchel duality. There are extensive review
papers. See Ben-Tal et al. [13], Ben-Tal and Ne-
mirovski [14], Gorissen et al. [I5], Gabrel, Murat
and Thiele [16], Sozuer Thiele [17], Delage and
Iancu [I8] and the references therein.

Recent papers studies connection with stochastic
optimization. Bandi and Bertsimas [19] propose a
new approach to analyze stochastic systems based
on robust optimization, to overcome the compu-
tational intractability with high-dimension. Ne-
mirovski [20] presents several simulation-based
and simulation-free computationally tractable ap-
proximations of chance constrained convex pro-
grams, primarily, those of chance constrained lin-
ear, conic quadratic and semidefinite program-
ming.

The applications of robust optimization arises in
many field such as finance [21H23], control [24]
and supply chain management [25]. Ozmen et
al. [2I] proposed the methodology that generated
the future scenarios through Robust Conic Multi-
variate Adaptive Regression Splines (RCMARS)
that mitigates data uncertainty. They applied
their RCMAS to the real-world stock exchange
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market financial data. Savku & Weber [22] stud-
ied stochastic process model where the under-
lying regime is switched over time. They pro-
posed a stochastic maximum principle and ap-
plied the principle to finance. Kara et al. [23] ap-
plied parallelepiped uncertainty set methodology
to the portfolio optimization problem and form
CVaR. They showed the stability advances in ro-
bust portfolio optimization under parallelepiped
uncertainty. Baltas et al. [24] studied the optimal
control problem in which the model it self is un-
certain. They model the problem as the stochas-
tic differential game proposed a robust control of
parabolic stochastic partial differential equations
under model uncertainty. Sangaiah et al. [25] ap-
plied robust optimization and mixed-integer lin-
ear programming model for LNG supply chain
planning problem.

The key idea of the robust optimization is to
define an uncertainty set of possible realizations
of the uncertain parameters and then optimize
against worst-case realizations within this set
[14,26]. Defining uncertainty set relies on the
human-assumption or the probability distribu-
tion, which is often difficult. Therefore, the data-
driven decision-making approach is of practical
importance.

2.2. Distributionally robust optimization

Distributionally robust optimization is a para-
digm for decision making under uncertainty where
the uncertain problem data are governed by a
probability distribution that is itself subject to
uncertainty.

Delge and Ye [27] proposed the DRO model with
the moment based ambiguity set. Ben-Tal et
al. [28] studies the problem of constructing ro-
bust classifiers when the training is plagued with
uncertainty. They employ Bernstein bounding
schemes to relax the chance constrained problem
as a convex second order cone program whose
solution is guaranteed to satisfy the probabilis-
tic constraint. Dupacova and Kopa [29] stud-
ies the robustness for stochastic programs whose
set of feasible solutions depends on the unknown
probability distribution P and they derived lo-
cal bounds using contamination technique. Xu
et al. [30] investigate probabilistic interpretations
of robust optimization. They establish a con-
nection between robust optimization and distri-
butionally robust optimization, showing that the
solution to any optimization problem is also a so-
lution to a distributionally robust optimization
problem. They consider the case where multiple
uncertain parameters belong to the same fixed di-
mensional space and find the set of distributions

of the equivalent distributionally robust optimiza-
tion problem. Zymler et al. [31] develop tractable
semidefinite programming based approximations
for distributionally robust individual and joint
chance constraints, assuming that only the first-
and second-order moments as well as the support
of the uncertain parameters are given. Sun et
al. [32] develops a distributionally robust joint
chance constrained optimization model for a dy-
namic network design problem (NDP) under de-
mand uncertainty. Wiesemann et al. [33] intro-
duce standardized ambiguity sets that contain all
distributions with prescribed conic representable
confidence sets and with mean values residing
on an affine manifold. They derived conditions
under which distributionally robust optimization
problems based on our standardized ambiguity
sets are computationally tractable. Ben-Tal et al.
[34] proposed distributionally robust optimization
with the ambiguity set defined by ¢-divergences.
Bayraksan and Love [35] studies the value of ad-
ditonal data in the DRO with ¢-divergence-based
ambiguity set. Bertsimas et al. [26] proposed the
framework named “data-driven robust optimiza-
tion” where ambiguity set is formed by goodness-
to-fit test. Bertsimas and Kallus [I] proposed the
concept “predictive prescription”. In this frame-
work, the objective is to minimize conditional ex-
pected cost wherein a decision is chosen in an op-
timal manner to minimize an uncertain cost that
depends on a random variable on the basis of an
observation of auxiliary covariates. Bertsimas and
van Parys [36] proposed the framework named
“bootstrap robust analytics”, that integrate dis-
tributionally robust optimization and statistical
bootstrap that are designed to produce out- of-
samples guarantees by exploiting the use of a con-
fidence region, derived from ¢-divergence. Esfa-
hani and Kuhn [3] proposed an ambiguity set de-
rived from the Wasserstein distance.

2.3. Contribution

Our research makes the following contributions
over the above cited literature. In theory, the
DRO problem mitigate the optimizer’s curse and
is supposed to derive the better solution than
SAA. However, the applications of the DRO are
still limited. Therefore, it is important to un-
derstand with which types of problems the DRO
works well.

Most of the existing DRO research are applied to
the variance of data under the condition where en-
tries of uncertain parameters u are full or dense.
On the other hand, this research examines the
performance of the DRO under the condition
where the entries of uncertain parameters u are
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sparse. Further, we analyze the dependence per-
formance of the DRO on the sparsity. This result
provides the managerial implication of how valu-
able the observation of the data.

3. Distributionally robust optimization

The following section describes the modeling
framework. Section 3.1 provides the data-driven
two-stage stochastic programming.

3.1. Problem description

We consider the stochastic linear programming
problem ()

minimize Ef(x,u) (1)
subject to Eg;(z,u) <0, i=1,---,m

where x € R" is the decision variable v =
[cfal - Jal bT]T is the random variable,
f(z,u) = c'r is the objective function and
gi(z,u) = —al'x + b is the constraints. The prob-

lem can be expressed as (2).

minimize E[c! 2]
subject to E[alz —b] >0, i=1---,m.

(2)

We assume the k-th entries of u take 1 with proba-
bility 73 and 0 with probability 1—m. In practice
the distribution p(u) is not known, and therefore
must be inferred from data. This is called data-
driven settings. In the data-driven settings, p(u)
is partially observable through a finite set of M
independent samples, e.g. past realization of the
random variable

Ur == {u1, - umt,
called the training dataset. In the training phase,
we seek a decision Z7 by minimizing the training

problem (3]).

minimize  E[f(z, u)|Ur]
subject to  E[g;(z,u)|Ur] >0

The solution of the training problem zp is
called the data-driven solution and the objec-
tive function value of the training problem Zp =
E[f(2&p,u)|[Ur] is called certificate.

The goal of a data-driven problem is to minimize
out-of-sample performance of a data-driven solu-
tion &7 is defined as ().

zy = Ef(dr,u) (4)

As p(u) is unknown, however, the exact out-of-
sample performance cannot be evaluated in prac-
tice, therefore, it is evaluated by the walidation
dataset Uy = {1, -- ,un} as ().

N
Ef (&7, u %Zf (27, 1;) (5)
7j=1
A natural approach to generate data-driven solu-
tions Z7 is the sample approximate approxima-
tion (SAA) formulation that approximate p with
pj = (1/M),¥j € Up. SAA formulation with
training samples u; can be written as (@).

minimize ﬁ > =1 f (@, u5) (6)
subject to x € X

This formulation, however, often leads to the poor
out-of-sample performance.

3.2. Distributionally robust optimization

In this section, we present distributionally robust
optimization (DRO) problem. The DRO has a

form ([7)

minimize  sup,ep By f(z, 1)
subject to sup,ep E,, (u)gz(:n u) <0 (7)
1=1,---,m,

where P is ambiguity set of probability distribu-
tion, that is a family of probability distribution.
In the DRO, the worst case expected cost is min-
imized in which the expectation is taken over the
ambiguity set.

The ambiguity set P is the fundamental input
of the DRO, and desired to have the following
properties. P should be rich enough to contain
the true data-generating distribution with high
confidence. P should be small enough to ex-
clude pathological distributions, which would in-
centivize overly conservative decisions. P should
also be easy to parameterize from data. P should
facilitate a tractable reformulation of the distri-
butionally robust optimization problem.

There are several ways to form the ambiguity
set P from the data, e.g., moment ambiguity
sets, confidence regions of goodness-of-fit tests.,
a ball in the space of probability distributions
by using a probability distance function such as
the Prohorov metric, Wasserstein metric, the ¢-
divergence. This paper examines the properties
of DRO problems, where the distributional un-
certainty is handled via ¢-divergences (Ben-Tal
et al. [34]). ¢-divergences measure distances be-
tween distributions.
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¢-divergences measure the distance between two
nonnegative vectors p = (py,---,pay)’ and ¢ =
(qu,--- 7(]M) , where p and ¢ satisfy Z —1Dj =
Zj]\/il ¢; = 1. The ¢-divergence is defined by (&)

M .
q) = qu(%) (8)
j=1 !

where ¢(t), called the phi-divergence function,
which is a convex function on ¢t > 0. The ¢ diver-
gence satisfies D(p,q) > 0, and D(p,q) = 0 if and
only if p = ¢, and so can be used as a measure of
deviation between two positive vectors.

There are several ¢-divergence functions, that
hold these properties, each of which performs well.
In this research, we use the the Kullback-Leibler
(KL) divergence between p, g, given by ({d]).

M
Du(p,q) = (pjlog(p;/g;) —pj + ;) (9)
7j=1

Using the KL divergence, the ambiguity set P can
be expressed as (I0).

> Dulp.g) < p,

M
>j—1pi =1,
pj = 0,Vj},

P={p:
(10)

where ¢ is the nominal value with ¢; = 1/M, and
p is the target distance. By restricting the proba-
bility distribution in the ambiguity set, ¢.e.,p € P,
the optimization model hedge against the distri-
butional uncertainty. By setting p properly, the
decision-maker controls the risk preferences be-
tween risk-neutral and risk-averse approach.

3.3. Formulation

The formulation of the DRO with KL divergence
is presented as formulation ([T]).

M
SUPij 1 i f (2, uj)
subject to sup,, Z;V‘[lpjgl(ac u]) <0,

minimize

1=1,-
11
D%(p,q) < p, (1)
Zj:lpj =1
p=>0

To derive the closed-form of the inner maximiza-
tion, we present the dual formulation. For a given
x, the inner maximization is a convex optimizaion
problem. The inner problem is formulated as (I2]).

maximize, ij\il pjf(xa uj)
subject to Z]Nil Qj¢(%> <P

M
Zj:ﬂ)j =1,
pj =0

(12)

Let A and p denote the Lagrangian multipliers.
Multiplying the first and second constraints by
A and p and eliminating constraints we have La-

grangian as (I3)).

Z 1P]f(x uj)
+Ap — )‘Z] 1QJ¢(pJ)
ST Deug Y

maximize,>o

(13)

For simplicity of exposition, we use s; to denote

as (I4).

f(xauj) — K
A

Using this expression, we have the following re-
formulation.

55 = & flz,uj) =Asj+p (14)

maximize,>g Z]]Vi1 pi(Asj — )
+Ap = AL g0 (%)

M
= Y5 P

=+ u
AL (pss — a50(F)
=+ u

M . .
AT g5, — 9(22)
By definition of conjugate function ([I3])

¢"(s) = iglg{st — ()}, (15)

we have the following reformulation ().

Ap A+ p+ Sy AL (st — o ()

= M+p+AY g0t (s))
(16)

Applying the same discussion to the constraint
function sup,ep gi(z,u), we have the following
closed form.

sup gi(z, u) = /\P+M+)\Z% (tij),
peEP =1

where t;; is defined as (7).
gi(uj, ) —



6 S. Ohmori, K. Yoshimoto / IJOCTA, Vol.11, No.1, pp.1-9 (2021)

The conjugate function of KL divergence is de-

fined as (I8).

p*(s)=e’—1 (18)
Combining the dual problem with the outer min-
imization results in the dual formulation (I9]).

minimize g+ pA+ A Z]]Vil gj(e —1)

subject to p+ pA+ Azjf\il gj(ets —1),
i=1,--,m

A>0
(19)

Reader should refer to Ben-Tal et al. [34] and
Bayraksan and Love [35] for further details, such
as the DRO formulations for other ¢-divergence
functions and the confidence region on the true
distribution.

4. Performance evaluation

In this section, we examine the performance of
out-of-sample performance of the DRO, presented
in previous section. The primal intent of this sec-
tion is to examine if the DRO performs well with
the application to the linear programming with
partially observed data, compared to the SAA.
We also investigate how much impact the density
and sparsity of the data have on the performance
of the DRO and SAA solutions. We generate the
data set, each of which is a randomly generated
sample drawn from the know distribution. Each
of the data has different sparsity pattern. We ap-
plied both the DRO and the SAA and compared
the out-of-sample performance.

We have M training samples and N validation
samples. We repeat this same experiment where
the decision-maker sees M samples and solves the
problem 5000 times. Each time, we got an opti-
mal decision Zp which is random variable that
depends on training samples. Each of these deci-
sions, we evaluated the objective of the optimiza-
tion problem by using another N test samples to
compute the out-of-samples performance. Each
time, we record the optimal value of the optimiza-
tion problem 2y, .

Experimental conditions are Intel(R) CoreTM i7-
8700 (3.20GHz, 3.19GHz) with 32.0 GB memory.
Program was coded in Julia with Gurobi opti-
mizer called from Convex.jl.

4.1. Data generation

We use random instances of the data-driven sto-
chastic programming problem (2) generated in the
following way. The k-th entries of u takes one with

the probability 7, and takes zero with 1 — .
The probabilities of the entries of the cost vec-
tor ¢ are set as m, = 7., and the probabilities of
the entries of the constraints vectors a1, -« , am, b
are set as mp = 7gp, where w. and mwy, are set
from the {0.1,0.3,0.5,0.7,0.9}. Both the proba-
bility 7. and 7, can be used to control the degree
of density and sparsity of the parameters of the
problem. The dimensions of the variable is set
as n = 100 and the number of constraints are
set as m = 1000. The sample sizes are set as
M = 10000, N = 5000.

Table 1. Comparison of average out-
of-sample performance.

(a)average out-of-sample performance of the

SAA
T\Te | 01 03 05 0.7 09
0.1 9740 69.35 9.09 0.36 0.12
0.3| 99.17 32.65 12.25 0.75 0.45
0.5| 20.73 30.91 26.70 1.26 0.74
0.7| 4691 79.01 92.74 1.65 1.05
0.9 [175.13 24.44 7826 2.20 1.30

(b)average out-of-sample performance of the

DRO

T\Tay | 01 03 05 0.7 09
01| 1.6 078 056 025 0.13
03] 578 342 125 0.75 0.44
05| 9.75 6.73 252 1.24 0.74
0.714.02 8.68 3.37 1.62 1.05
0.9 [18.08 10.83 3.64 2.18 1.3

Table 2. Comparison of standard
deviation of out-of-sample perfor-
mance.

(a)standard deviation of out-of-sample
performance of the SAA

T\ | 01 03 05 0.7 09
0.1]10.290 61.7 51.64 0.31 0.25
0.3|52.67 28.19 556 028 0.17
0.5| 445 341 8.03 0.28 0.16
0.7] 662 1.3 262 028 0.15
09| 423 792 92 015 0.1

(b)standard deviation of out-of-sample
performance of the DRO

T\Tep | 0.1 03 05 07 09
0.11.18 0.62 0.39 0.24 0.13
03232 1.04 044 0.28 0.16
051199 1.56 0.5 0.27 0.15
0.71174 13 053 0.27 0.15
09127 1.05 034 0.14 0.1
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4.2. Results

The result of out-of-sample performance of the
SAA and the DRO is summarized in the table 1.
In all problem instances, the out-of-sample perfor-
mance of the DRO was lower than the SAA. Espe-
cially, when 7, is lower, the average out-of-sample
performance is lower. This is because there are
less entries in the objective function, which end

up in lower objective function value. when mg, is
lower, the average out-of-sample performance is
higher. This is because when there are less en-
tries in the constraints, the higher values are as-
signed to the values of x in order to avoid violence
of constraints, which end up in higher objective
function value.

The standard deviation of the out-of-sample per-
formance of the SAA and the DRO is summa-
rized in the table 2. The histograms of the out-
of-sample performance of the SAA and the DRO
for the (m. = 0.9, 74, = 0.9), (7. = 0.1, w4 = 0.3)
and (7. = 0.3, 7, = 0.5) and is shown in figure
1,2,3. The variance of the DRO is much smaller
than that of the SAA.

Especially, when 7., = 0.1,0.3,0.5, the gap be-
tween the DRO and the SAA is significant. This
implies that when the sparsity of the constraint
vectors has a significant impact on the out-of-
sample performance. Decision makers should
therefore take these factors into consideration.

All these results imply that the DRO performed
consistently better than the SAA the application
to the linear programming with partially observed
data.

5. Conclusion

The importance of a decision making under un-
certainty has never been higher than ever before.
The availability of data is creating new oppor-
tunities for better decision making under uncer-
tainty. The DRO is a recent emerging topic in op-
timization under uncertainty, in which the proba-
bility distribution of uncertain data is not known,
instead realization of data is provided. Despite
these theoretical advances, the number of applica-
tions is still limited, a decision maker is left with
the question of how well the DRO performs for
which type of problems.

In this study, this paper addresses the problem
in which the decision is made where the proba-
bility of existence of each entry is not known, in-
stead realization of data is provided. We present
a mathematical formulation of the DRO problem
using the ambiguity set of constraints based on
the KL divergence. We applied the DRO to ran-
domly generated problem instances and compare
the results with SAA. We show the DRO per-
formed consistently better than the SAA. We also
discovered that the DRO outperformed the SAA
when the constraint vectors have sparse entries.
This result raised the importance of analyzing the
data structure of the optimization problem for the
decision making under the data-driven settings.
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For future research, the analysis should be ex-
tended to the more general problem such as semi-
definite programming (SDP) or second-order cone
programming (SOCP). Another related topic is
application to the specific topics such as minimum
flow cost problem and shortest path problem.
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