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1. Introduction

Partial differential equations have several appli-
cations in engineering, finance, physics and seis-
mology [1–3]. They have several approximation
methods which are different from each other.
Some of these methods are solvable with respect
to variables time and space. The space- heat
equations were presented by difference schemes
in previous works [4–6]. The partial differen-
tial equations depend on time were worked on in
some papers [7–9], The telegraph partial differen-
tial equations is a special equation of the partial
differential equations. In the literature, Telegraph
equations can be defined based on time and space.
Many important studies have been done on these
equations in [10–12]. The telegraph partial differ-
ential equations were solved by difference schemes
and methods in [13–16].

In this paper, the initial boundary value problem
for variable coefficient partial differential equation
is investigated



















∂
∂t

(α(t)ut(t, x))−
∂
∂x

(β(x)ux(t, x)) + pu(t, x)

= f(t, x), 0 < t < T, 0 < x < L

u(0, x) = ϕ(x), ut(0, x) = ψ(x), 0 ≤ t ≤ T,

u(t, 0) = g1(t), u(t, L) = g2(t), 0 ≤ x ≤ L.

(1)

Here, α(t), β(x) are variable as to t, x, respec-
tively. Now, we shall construct first order differ-
ence scheme. Then, we will prove the stability
estimates for this problem.

2. First and second order difference

schemes for variable telegraph

partial differential equation

If taking as α(t) = t2, β(x) = x2 and p = 1 in the
formula (1), this formula can be written as follow

*Corresponding Author

237

http://creativecommons.org/licenses/by/4.0/


238 M. Modanli, B.M. Faraj, F.W. Ahmed / IJOCTA, Vol.10, No.2, pp.237-243 (2020)



















t2utt(t, x) + 2tut(t, x)− x2uxx(t, x)− 2xux(t, x)

+u(t, x) = f(t, x), 1 < t < eT , 1 < x < eL

u(0, x) = In(ϕ(x)), ut(0, x) = In(ψ(x)),

u(t, 0) = u(t, L) = 0, 1 ≤ t ≤ eT , 1 ≤ x ≤ eL.

(2)

This equation represents a variable time-space
telegraph partial differential equation. It is not
easy to find out the analytical solution of this
equation.

Therefore, if the Cauchy-Euler formula is applied
to the last part of the equation separately for the
x and t variables, the formula (2) can be written
as



















utt(t, x) + ut(t, x)− uxx(t, x)− ux(t, x) + u(t, x)

= f(t, x), 0 < t < T, 0 < x < L

u(0, x) = ϕ(x), ut(0, x) = ψ(x), 0 ≤ t ≤ T,

u(t, 0) = u(t, L) = 0, 0 ≤ x ≤ L.

(3)

The problem (3) is a coefficient time-space tele-
graph partial differential equation.

Now, we shall construct the first and the second
order of accuracy difference scheme for the equa-
tion (2). In the first step, we consider the set
wτ,h = [0, 1]τ × [0, π]h of a family of grid points
depending on the small parameters τ and h. To
evaluate difference scheme for problem (2), the
following formula

[0, 1]τ × [0, π]h = {(tk, xn) : tk = kτ, 0 ≤ k ≤ N,

Nτ = 1, xn = nh, 0 ≤ n ≤M ;Mh = π},

is used. For the formula (2), we get the first order
difference scheme











































































t2k
uk+1
n − 2ukn + uk−1

n

τ2
+ 2tk

uk+1
n − ukn

τ

−x2n
ukn+1 − 2ukn + ukn−1

h2
− 2xn

ukn+1 − ukn−1

2h

+ukn = fkn , xn = nh, tk = kτ,

1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

uk0 = ukM = 0, u0n = In(ϕ(xn)), 0 ≤ k ≤ N

u1n − u0n
τ

= In(ψ(xn)), 0 ≤ n ≤M,

(4)

and the second order difference scheme for the
formula (2)
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



























































































































t2k
uk+1
n − 2ukn + uk−1

n

τ2
+ 2tk

uk+1
n − uk−1

n

2τ

−x2
n

2

uk+1
n+1 − 2uk+1

n + uk+1
n−1

h2

−x2
n

2

uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2

−xn

2

uk+1
n+1 − uk+1

n−1

h
− xn

2

uk−1
n+1 − uk−1

n−1

h

+1
2u

k+1
n + 1

2u
k−1
n = fkn ,

xn = nh, tk = kτ, 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

u1n − u0n
τ

= In(ψ(xn)) +
τ
2

u2n − 2u1n + u0n
τ2

,

u0n = In(ϕ(xn)), u
k
0 = ukM = 0,

0 ≤ k ≤ N, 0 ≤ n ≤M.

(5)

Similarly, the first order difference schemes for the
formula (3) are



























































uk+1
n − 2ukn + uk−1

n

τ2
+
uk+1
n − ukn

τ
−
ukn+1 − 2ukn + ukn−1

h2

−
ukn+1 − ukn−1

2h
+ ukn = fkn , xn = nh, tk = kτ,

1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

uk0 = ukM = 0, u0n = ϕ(xn),
u1n − u0n

τ
= ψ(xn),

0 ≤ k ≤ N, 0 ≤ n ≤M,

(6)

and the second order difference schemes




































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






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




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



















































uk+1
n − 2ukn + uk−1

n

τ2
+
uk+1
n − uk−1

n

2τ

−1
2

uk+1
n+1 − 2uk+1

n + uk+1
n−1

h2

−1
2

uk−1
n+1 − 2uk−1

n + uk−1
n−1

h2

−1
4

uk+1
n+1 − uk+1

n−1

h
− 1

4

uk−1
n+1 − uk−1

n−1

h

+1
2u

k+1
n + 1

2u
k−1
n = fkn ,

xn = nh, tk = kτ, 1 ≤ k ≤ N − 1, 1 ≤ n ≤M − 1,

u0n = ϕ(x),
u1n − u0n

τ
= ψ(x) + τ

2

u2n − 2u1n + u0n
τ2

,

uk0 = ukM = 0, 0 ≤ k ≤ N, 0 ≤ n ≤M.

(7)

The formula (4) is rewritten as



Using matrix stability for variable telegraph partial differential equation 239

(

t2k
τ2

+ 2
tk
τ

)

uk+1
n +

(

−
x2n
h2

−
xk
h

)

ukn+1

+

(

−2
t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2

)

ukn

+

(

−
x2n
h2

+
xn
h

)

ukn−1 +

(

t2k
τ2

)

uk−1
n = fkn .

(8)

Then, the last formula can be written as

auk+1
n + bukn+1 + cukn + dukn−1 + euk−1

n = fkn . (9)

Here,

a =
t2k
τ2

+ 2
tk
τ
, b = −

x2n
h2

−
xk
h
,

c = −2
t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2
,

d = −
x2n
h2

+
xn
h

and e =
t2k
τ2
.

From the formula (9), the following matrices’ for-
mulas are obtained as

AUk+1 +BUk + CUk−1 = φk. (10)

where, A,B and C are (N +1)× (N +1) matrix,
Uk+1, Uk, Uk−1 and φk = F k

n is (N +1)×1 vector
as the following

A = a























0 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 0























(N+1)×(N+1)

,

(11)

B =





























c b 0 0 . . . 0 0 0 0
d c b 0 . . . 0 0 0 0
0 d c b . . . 0 0 0 0
0 0 d c . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . c b 0 0
0 0 0 0 . . . d c b 0
0 0 0 0 . . . 0 d c b
0 0 0 0 . . . 0 0 d c





























(N+1)×(N+1)

,

(12)

C = e























1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 1























(N+1)×(N+1)

,

(13)

Uk−1 =































uk−1
0

uk−1
1

uk−1
2

...

uk−1
N−1

uk−1
N































(N+1)×1

Uk =































uk0

uk1

uk2

...

ukN−1

ukN































(N+1)×1

Uk+1 =































uk+1
0

uk+1
1

uk+1
2

...

uk+1
N−1

uk+1
N































(N+1)×1.

Modified Gauss elimination method is applied to
solve the above difference equations. After that,
a solution of the matrix equation is looked for as
the following form

uj = αj+1uj+1+βj+1; uM = 0; j =M−1, . . . , 2, 1.
(14)

Using boundary conditions, the formula

u0 = α1u1 + β1 = 0

is obtained. Then, α1 is obtained the (N +
1) × (N + 1) zero matrix and β1 is obtained the
(N+1)×1 zero column vector. Using the formula
(14), the following formula is found

Auj+1 +B[αj+1uj+1 + βj+1] + C[αjuj + βj ] = φj ,

Auj+1 +B[αj+1uj+1 + βj+1] + C[αj [αj+1uj+1

+ βj+1] + βj ] = φj ,

Auj+1 +Bαj+1uj+1 +Bβj+1 + Cαjαj+1uj+1

+ Cαjβj+1 + Cβj = φj ,
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[A+Bαj+1 + Cαjαj+1]uj+1 +Bβj+1

+ Cαjβj+1 + Cβj = φj ,

and then also

[A+Bαj+1 + Cαjαj+1]uj+1 = 0

and

Bβj+1 + Cαjβj+1 + Cβj = φj .

(15)

From the (15), the formulas are found

αj+1 = −(B + Cαj)
−1A,

and

βj+1 = (B+Cαj)
−1(Dφ−Cβj), j = 1, 2, . . . ,M−1.

Here, αj is (N + 1)× (N + 1) zero matrix and βj
is (N + 1)× 1 zero column vector.

Now, we shall prove the stability estimate by
applying the method of analyzing the eigen-
values of the iteration matrices of the schemes
for the formula (4). For this, we express

‖A‖ = ‖A‖∞ = max
1≤k≤N−1

[

∑N−1
i=1 |akm|

]

, where

A = [akm](N−1)×(N−1), I is unit matrix.

Let ρ(A) be the spectral radius of a matrix A,
which means the maximum of the absolute value
of the eigenvalues of the matrix A. We can write
the following theorem.

Theorem 1. If −2
t2k
τ2

−2
tk
τ
+1+2

x2n
h2

> 0, then,

the difference scheme (4) is stable.

Proof. From the method [18], we should prove
that ρ(αn) < 1, 1 ≤ n ≤M.

ρ(α1) = 0 < 1 is clearly.

ρ(α2) =
∥

∥−BA−1
∥

∥ ≤ ‖−B‖
∥

∥A−1
∥

∥

= ‖B‖
1

min
1≤k≤N−1







|akk| −
N−1
∑

m 6=k,
m=1

|akm|







=

∣

∣

∣

∣

−2
t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2

∣

∣

∣

∣

∣

∣

∣

∣

t2k
τ2

+
tk
τ

∣

∣

∣

∣

+

∣

∣

∣

∣

−
x2n
h2

−
xk
h

∣

∣

∣

∣

+

∣

∣

∣

∣

−
x2n
h2

+
xk
h

∣

∣

∣

∣

∣

∣

∣

∣

t2k
τ2

+
tk
τ

∣

∣

∣

∣

=
−2

t2k
τ2

− 2
tk
τ

+ 1 + 2
x2n
h2

−
x2n
h2

−
xk
h

−
x2n
h2

+
xk
h

t2k
τ2

+
tk
τ

=
1− 2

t2k
τ2

− 2
tk
τ

t2k
τ2

+
tk
τ

=
1− 2(k2 + k)

(k2 + k)
≤ 1, k = 1, 2, ...M.

If ρ(αn) < 1, let us calculate ρ(αn+1) for the
formula (3) and procedure [19]. We know that
αni = ρ(αn) and 0 ≤ ρ(αn) < 1 for 2 ≤ i ≤ N+1.
Then, we can obtain that ρ(αn+1) < 1. Thus, the
proof of the theorem is completed. �

For the stability estimate of the second order dif-
ference schemes formula (5), a similar procedure
can be used. The stability estimates of the for-
mulas (6) and (7) were given in the [13], [17].

Now let’s find the approximate solutions of a few
examples for the application of these theoretical
expressions.

3. Numerical experiments

In this section, some numerical example for the
telegraph partial differential equation by the first
and second order difference schemes method will
be present. We can calculate the maximum norm
of the error of the numerical solution as

EN
M = max

1≤k≤N−1,1≤n≤M−1
|u(tk, xn)− ukn|.

Where u(tk, xn) represents the exact solution
and ukn represents numerical solution at points
(tk, xn). Result of calculations tell us the second
order has more accurate than the first order of
accuracy difference scheme.

Example 1. Consider the following initial
boundary value problem for Telegraph partial dif-
ferential equation
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





























utt(t, x) + ut(t, x)− uxx(t, x)− ux(t, x) + u(t, x)

= cos(x− t)− sin(x) cos(t), 0 < t < 1, 0 < x < π,

u(0, x) = − sin(x), ut(0, x) = 0,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1, 0 ≤ x ≤ π.

(16)

Using the Laplace transform method, the ex-
act solution of the problem (16) is u(x, t) =
− sin(x) cos(t). Error analysis Table 1 is shown
the approximation solution of the problem (16).

Table 1. Error analysis for exact and
approximation solution for example
16.

τ = 1/N ,
h = π/M

First
Order

Difference
Scheme

Second
Order

Difference
Scheme

N =M = 20 1.1102× 10−2 1.8527× 10−3

N =M = 50 3.8794× 10−3 2.9979× 10−4

N =M = 100 1.8400× 10−3 7.5204× 10−5

N =M = 200 8.9448× 10−4 1.8815× 10−5

N =M = 400 4.4078× 10−4 4.7025× 10−6

N =M = 600 2.9241× 10−4 2.0896× 10−6

Example 2. Investigate the following initial
boundary value problem for Telegraph partial dif-
ferential equation















































utt(t, x) + ut(t, x)− uxx(t, x)− ux(t, x) + u(t, x)

= (x2 − 2x− 2)e−t + π(1− x)e−t,

0 < t < 1, 0 < x < π,

u(0, x) = x(x− π), ut(0, x) = −x(x− π),

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1, 0 ≤ x ≤ π.

(17)

The exact solution of the problem (17) is u(x, t) =
(x2−πx)e−t. Error analysis Table 2 is shown the
approximation solution of the problem (17).

Table 2. Error analysis for exact and
approximation solution for example
17.

τ = 1/N ,
h = π/M

First
Order

Difference
Scheme

Second
Order

Difference
Scheme

N =M = 20 3.7052× 10−2 2.1852× 10−3

N =M = 50 1.5780× 10−2 3.5362× 10−4

N =M = 100 8.0644× 10−3 8.8693× 10−5

N =M = 200 4.0783× 10−3 2.2207× 10−5

N =M = 400 2.0505× 10−3 5.5558× 10−6

N =M = 600 1.3695× 10−3 2.4698× 10−6

The exact and approximate solution of these ex-
amples are also presented in the following figures.
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Figure 1. Figure of exact solution
for problem16, where N=M=20.
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Figure 2. Figure of approxima-
tion solution for problem 16, where
N=M=20.
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Remark 1. Using the first order difference
scheme formula (4), we obtain the the following
numerical results for the problem (2) and exam-
ple ( 17). For example; Taking N = 21,M = 20,
we obtain maxerror = 8.7021 × 10−1. For these
values, the figures are the added as follow:
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Figure 3. Figure of exact solution
for problem(2) and example (16),
where N=21, M=20.
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Figure 4. Figure of approximation
solution for problem(2) and example
(16), where N=21, M=20.

Remark 2. The following results are obtained
through using the Cauchy-Euler formula:
i. The non-uniform region becomes a smooth re-
gion. And this is easier made calculation of the
Matlab program.
ii. This also provides to obtain more appropriate
and beautiful numerical results.

4. Conclusion

In this paper, the variable telegraph partial differ-
ential equation has been investigated. Then, this
equation is transformed to the constant coefficient

via using Cauchy-Euler formula. For this equa-
tion, we construct the first and second order dif-
ference schemes. Stability estimate is proved for
these difference schemes. The exact and approx-
imate solution of the problem were compared to
obtain the error analysis in the maximum norm.
Numerical examples show that this method is ap-
propriate for this problem.
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