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 In this paper, exact analytical solutions of the biological population model, the 

EW and the modified EW equations with a conformable derivative operator have 

been examined by means of the trial solution algorithm and the complete 

discrimination system. Dark, bright and singular traveling wave solutions of the 

equations have been obtained by algorithm. Also, revealed singular periodic 

solutions have been listed. All solutions were verified by substituting them into 

their corresponding equation via Mathematica package program. 
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1. Introduction 

Due to the applications in nonlinear optics, biology, 

population dynamics, biomathematics, and other 

areas, fractional order differential equations have been 

considered more often. Differential equations of non-

integer order construct more accurate models for the 

phenomena they describe. Hence, to find analytical 

and numerical solutions of these equations, some 

effective methods have been introduced and applied so 

far. Even so, a general method could not be proposed 

so scientists are still trying to develop new 

approaches. Finding exact analytical solutions of non-

integer order differential equations play an essential 

role in describing the behavior of the considered 

model. This study implements the trial solution 

algorithm with the aid of complete discrimination 

system to establish exact solutions of non-integer 

order differential equations.  

To this purpose, we first consider time fractional 

biological population model [1-4]. The equation 

describes population dynamics and gives ideas about 

complex interactions. Then, space-time fractional 

equal width (EW) equation [5] which describes 

complex physical phenomena in many fields has been 

considered. Finally, space-time fractional modified 

equal width equation [6] that describes the wave 

propagation with dispersion processes for one-

dimensional nonlinear form was considered. Exact 

analytical solutions of the considered equations have 

been obtained successfully. All of these solutions have 

been confirmed by substituting them into their 

corresponding equation with the aid of Mathematica. 

Also, some solutions have been plotted with Maple to 

depict the structure of the solution equations. These 

models are quite important for mathematical physics 

and finding exact analtyical solutions of them may 

help the further analytical studies.  

2. Conformable fractional derivative and trial 

solution algorithm 

Fractional derivative reveals more suitable models for 

real world problems than integer order derivative. For 

this reason, many researchers have paid attention to 

develop new definitions of fractional derivative such 

as Caputo-Fabrizio [7] and Riemann-Liouville [8]. 

Also, a new definition, conformable derivative is 

proposed to overcome some setbacks of the existing 

derivatives, see Khalil et al. [9]. 

Conformable fractional derivative for a function f of 

order  is defined as 

1

0

( ) ( )
( )( ) lim

f t t f t
T f t




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



−

→

+ −
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where  ): 0,f R →  for all 0t   and ( )0,1 [9]. 

Some properties of the conformable fractional 

derivative are summarized as [9, 10]: 

( ) ( ) ( )T cf kg cT f kT g  + = + , for all , .c k R  

( ) ,T t t  
  −=  for all .R   

( ) ( )1 ( ) ( ).T fog t f g t g t


−  =  

Also, fractional versions of the Laplace transform, 

Taylor power series expansions and integration by 

parts are given by Abdeljawad, see [10]. 

 

Some authors [11-16] have studied fractional 

differential equations by different methods. Besides 

these, to investigate analytical solutions of PDEs, Liu 

proposed an approach called trial equation method 

which aims to reduce the examined equation to the 

solvable differential equations. Also Liu proposed 

complete discrimination system (CDS) to find exact 

solutions of PDEs, see [17-19]. The method is studied 

by some authors [20-23] to investigate analytical 

solutions of integer and non-integer order partial 

differential equations.  

 

Solution steps of the trial solution algorithm can be 

outlined as follows [17-19]: 

 

Step 1. We can consider a PDE of .u Using a wave 

transformation, it can be reduced to an ODE. 

Step 2.Trial equation can be chosen as 

                             1

n
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U aU
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(2) 

or 
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U a U
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 =                             (3) 

according to the structure of the reduced equation. 

Using the balance procedure, the value of n can be 

determined.  

Step 3. Rewriting these equations into integral form 
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                    (5) 

and using the CDS for polynomial yield the exact 

solution of the considered PDE. 

We will apply this procedure for the fractional models. 

3. Governing models 

3.1. The time fractional biological population 

model 

Consider the time fractional biological population 

model: 

             

( ) ( ) ( )
2 2

2 2 2

2 2
,

u
u u h u r

t x y





  
= + + −

  
      

(6) 

where 0, 0 1, , ,t x y R    and ,h r are constants.

u is the population density and 2( )h u r−
 
denotes the 

population supply as a result of births and deaths. [1-

4]. 

Under the transformation  

           
( , , ) ( ), ,

ct
u x y t U kx iky



 


= = + −            (7) 

where ,c k are constants and 2 1,i = − Eq.(6) turns into 

the following ODE: 

                          
2 0.cU hU hr + − =                         (8) 

Balancing U   and 
2U yields 2.n =  Then trial equation 

is: 

                         
2

0 1 2 .U a aU a U = + +                       (9) 

Substituting Eq.(9) into Eq.(8) and letting all the 

coefficients of obtained polynomial to zero yields an 

algebraic equation system: 

0

1

2

0
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From the system above, coefficients are determined 

as: 

                       
0 1 2, 0, .

hr h
a a a

c c
= = = −                (10) 

Substituting these coefficients into Eq.(4) and 

integrating the equation gives the following exact 

traveling wave solutions of the Eq.(6): 

   

( , , ) tanh ,
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c


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  
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( , , ) coth ,
h t
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c
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  
= + −  
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which are dark and singular soliton solutions for 
0.r   The solutions (11) and (12) signify singular 

periodic solutions  

 

( , , ) tan ,
h t

u x y t r r kx iky c
c





  
= − − − + −  

   
   (13) 

 

( , , ) cot ,
h t

u x y t r r kx iky c
c





  
= − − + −  

   
     (14) 

as long as 0.r   

Figures 1-2 represent the graphs of the solution 

Eq.(11) for some arbitrary constants. 
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(a) Solution Eq.(11) for 0.05 =  

 
(b) Solution Eq.(11) for 0.5 =  

 

                  (c) Solution Eq.(11) for 1 =                                                  

Figure 1. Solution Eq.(11) for 0.01, 50,h r= = 1,c k= =

10t =  and indicated   values. 

 

(a) Solution Eq.(11) for 0.2 =  

 
(b) Solution Eq.(11) for 0.5 =  

 
                        (c) Solution Eq.(11) for 1 =  

Figure 2. Solution Eq.(11) for 0.01, 50,h r= = 1,c k= =

5y =  and indicated   values. 
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3.2. The space-time fractional equal width (EW) 

equation  

Consider the space-time fractional EW equation [5] 

                    
2 3 0,t x xxtD u D u D u   + − =                 (15) 

where 0, 0 1,t     and ,   are real parameters. 

Under the transformation  

                 
( , ) ( ), ,

x t
u x t U k c

 

 
 

= = −            (16) 

Eq.(15) converts into the ODE: 

                  
2 2( ) 0.cU k U ck U   − + + =              (17) 

Integrating Eq.(17)and letting the constant of 

integration zero yields 

                      
2 2 0.cU kU ck U  − + + =               (18) 

Balancing U   and 
2U results with 3.n =  Then, trial 

equation is: 

                    
( )

2 2 3
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With the same procedure, corresponding system of 

algebraic equation  
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is obtained. So, the coefficients are determined as 

           
0 0 1 2 32

1 2
, 0, , .

3
a a a a a
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


= = = = −      (20) 

Using the coefficients into Eq.(5) gives  
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Integrating (21) aid of the CDS, exact solutions of 

fractional EW equations have been emerged as 

traveling wave solutions along with 0   
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Solutions (22) and (23) mean periodic function 

solutions along with 0   
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 
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Figure 3 shows the graphs of the solution Eq.(22) for 

some values of the arbitrary constants. 

 

                              (a) Solution Eq.(22) for 0.4 =  

 
                                     (b) Solution Eq.(22) for 0.8 =  

 
                                     (c) Solution Eq.(22) for 1 =  

 
Figure 3. Solution Eq.(22) for 1, 1c k  = = = = −  and 

indicated  values. 
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3.3. The space-time fractional modified EW 

equation 

Now we consider the space-time fractional modified 

EW equation [6] 

                    
3 3 0,t x xxtD u D u D u   + − =                 (26) 

where 0t   and 0 1.   

Using the transformation (16), Eq.(26) reduces into 

the ODE: 

              
3 2( ) 0.cU k U ck U   − + + =

                 
(27) 

Integrating Eq.(27) and letting the constant of 

integration to zero gives: 

               
3 2 0.cU kU ck U  − + + =                      (28) 

Balancing the terms  U   and 
3U  gives 4.n =  Trial 

equation can be chosen as 
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2 2 3 4

0 1 2 3 4 .U a a U a U a U a U = + + + +
       

(29) 

If one uses the same procedure above, corresponding 
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is obtained. So, the coefficients are determined as 

0 0 1 2 3 42

1
, 0, , 0, .

2
a a a a a a

ckk




= = = = = −

    
(30) 

Using the coefficients into Eq.(5) and applying 

solution procedure of the trial solution algorithm, 

exact solutions to the modified EW equation are 

determined as bright and dark traveling wave 

solutions for when 0   

     

2 1
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c x t
u x t k c
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 
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2 1
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(32) 

Solutions (31) and (32) purport singular periodic 

function solutions provided that 0   

    

2 1
( , ) sec ,

c x t
u x t k c

k k

 

  

  −
= −  

−            

(33) 

    

2 1
( , ) csc .

c x t
u x t k c

k k

 

  

  −
= −  
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(34) 

 

Figures 4-5 represent graphs of the solutions (31) and 

(33). 

 

                    (a) Solution Eq.(31) for 0.4 =  

 

                       (b) Solution Eq.(31) for 0.8 =  

 
                             (c) Solution Eq.(31) for 1 =  

Figure 4. Solution Eq.(31) for 1, 2c k  = = = = −   and 

indicated  values. 
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                   (a) Solution Eq.(33) for 0.4 =  

 
(b) Solution Eq.(33) for 0.8 =  

 
(c) Solution Eq.(33) for 1 =  

Figure 5. Solution Eq.(33) for 1, 1k c = = = = −   and 

indicated  values. 

4. Conclusion 

The trial solution algorithm with aid of CDS was 

implemented to find exact traveling wave solutions of 

the fractional biological population model, the 

fractional EW and the fractional modified EW 

equations in sense of conformable derivative. Using 

this algorithm, significant dark, bright and also 

singular periodic traveling wave solutions of these 

equations were obtained. All solutions were checked 

by Mathematica and some of them were plotted by 

Maple. Finding exact analytical solutions of the 

models may play a quite important role for explaining 

the physical phenomenon they characterize. 
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