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The maximum cut problem is known to be NP-hard, and consists in deter-
mining a partition of the vertices of a given graph such that the sum of the
weights of the edges having one end node in each set is maximum. In this
paper, we formulate the maximum cut problem as a maximization of a simple
non-smooth convex function over the convex hull of bases of the polymatroid
associated with a submodular function defined on the subsets of vertices of a
given graph. In this way, we show that a greedy-like algorithm with O(mn

2)
time complexity finds a base of a polymatroid that is a solution to the maxi-
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to a base of a polymatroid, we formulate the maximum cut problem as a max-
imum flow problem between a source and a sink. We then investigate the
necessary and sufficient conditions on the optimality of the base in terms of
network flow.
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1. Introduction

The well-known maximum cut problem consists in
determining a partition of the vertices of a given
graph such that the sum of the weights of the
edges having one end node in each set is maxi-
mum. The maximum cut problem is very easy
to state but hard to solve. This problem is one
of the first problems whose NP-hardness was es-
tablished in [1] by Karp. Note that the problem
remains NP-hard even for unit edge weights [2,3].

The solution of the maximum cut problem has
been approached by mathematical programming.
In terms of design variables for every vertex,
an integer quadratic programming formulation is
given in [4]. Further integer linear programming
formulations of the maximum cut problem using
the boolean design variables are given in [5]. The
algorithm in [6] for finding solutions of the max-
imum cut problem is an efficient method from a
practical point of view. Goemans and Williamson
use a semidefinite relaxation technique. Their ex-
periments show that exact solutions are obtained

in a reasonable time for any maximum cut in-
stance of size up to 100 vertices. Using a semidef-
inite relaxation, the authors achieve an approx-
imation ratio of 0.87856 for this difficult combi-
natorial optimization problem. Semidefinite pro-
gramming is a convex optimization approach with
a linear objective function of the design variables
for a symmetric matrix, subject to linear con-
straints, and also convex constraints requiring the
matrices to be positive semidefinite. Despite the
fact that the algorithm in [6] has one of the best
worst-case performance, Bertoni, Campadelli and
Grossi [7] show that the algorithm improved by
Goemans and Williamson has a complex design
and its computation time may be prohibitive on
large problem instances having more than 500 ver-
tices. By solving experimental test problems on
large random graphs, Bertoni et al. also show
that their algorithm is better than the semidefi-
nite programming algorithm of [6] and they define
cuts with the same values in less time on standard
benchmarks. Ben-Ameur et al. discuss the com-
plexity of the maximum cut problem and some
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cases where the problem can be solved in polyno-
mial time [8]. They also introduce some approx-
imation methods for the maximum cut problem,
both with and without guarantees.

In all references mentioned, the topological prop-
erties of a given graph did not play an essen-
tial role in proofs or in solving the maximum cut
problem. Differently from the investigations men-
tioned above, to solve the maximum cut problem,
some polynomial time algorithms have been de-
veloped based on topological properties of given
graphs such as planar graphs [9,10], weakly bipar-
tite graphs with non-negative edge weights [11],
graphs without K5 minors [12]. The problem is
solved using a linear time algorithm for series-
parallel graph [13].

For definitions used in the paper, we refer read-
ers to [14,15]. Following the success of the theory
of polymatroids in solving difficult combinatorial
problems, we apply a polymatroid approach to
the maximum cut problem.

Section 2 contains necessary notations and defini-
tions in the theory of polymatroids used through-
out the paper. In Section 3, we present the max-
imum cut problem as a maximization of a simple
non-smooth function over a special polytope P (f)
called a polymatroid [14, 16] associated with the
submodular function f(S) defined on subset S of
V of a given graph G = (V,E). This model in-
cludes variables for each node in V . The convexity
of the objective function implies that an optimal
solution to the maximum cut problem is among
extreme points (bases) of the polytope (polyma-
troid) P (f) [17].

It is well known that the greedy algorithm defines
bases of P (f) according to different linear order-
ing of vertices, in polynomial time (see [14, 16]).
One might say that for each maximum cut prob-
lem, an optimal linear ordering of vertices has to
be chosen such that an optimal base of P (f) (an
optimal solution) can be defined by the greedy
algorithm in polynomial time. Hardness of the
maximum cut problem implies that an optimal
linear ordering cannot be defined in polynomial
time. In [18], Sharifov proposes a O(mn2) time
algorithm which defines different linear ordering
and related bases of P (f) based on the topological
properties of a given graph. We show that a so-
lution to the maximum cut problem with the ap-
proximation ratio 0, 75λ can be defined in O(mn2)
time by this algorithm, where λ ≤ 1.3 is some pos-
itive number and m = |E|, n = |V |. In Section
4, we present a new model of the maximum cut
problem in terms of flows with respect to a base
of P (f). This model is used in the proof of new

necessary and sufficient conditions for optimality
of a base of P (f).

2. Basic notions and preliminary

results

Consider an undirected graph G = (V,E) with
non-negative weights ce ≥ 0 on the edges e ∈ E.
We assume that G is a graph without loops and
parallel edges. An edge with endpoints v and u
is denoted by (v, u) and uv denotes the arc whose
tail is v, and head is u. We use S = V \ S for
S ⊆ V and S + v for S ∪ {v} when v /∈ S, and
S − v for S \ {v} when v ∈ S.

Let γ(S) and κ(S) denote the subsets of edges
having at least one of endpoints in S ⊆ V and
both endpoints in S ⊆ V , respectively. Consider
functions

f(S) =
∑

(ce : e ∈ γ(S))

g(S) =
∑

(ce : e ∈ κ(S)).

Obviously f(S) and g(S) are monotone functions
by definitions, moreover, it is well known that f
is submodular, i.e.,

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

and g is supermodular, i.e.,

g(S) + g(T ) ≤ g(S ∪ T ) + g(S ∩ T )

for any S, T ⊆ V [16].

The cut given by a subset S ⊂ V is denoted by
δ(S). We will use c(E) for

∑
e∈E ce, and c(δ(S))

for
∑

(cij ; (i, j) ∈ E, i ∈ S, j ∈ S). The vector
d = (dv = c(δ(v)); v ∈ V ) is called the weighted
degree vector of the graph G. From the definition
of the sets γ(S) and κ(S) it follows that

f(S) + g(S) = d(S) =
∑

v∈S

dv,

and

f(S)− g(S) = c(δ(S))

for the cut δ(S) given by any S ⊂ V . Clearly,
f(S)− g(S) is a submodular function.

Let RV denote the set {(u(v) ∈ R : v ∈ V )}. For
u = (u(v) : v ∈ V ) ∈ R

V and a subset S ⊆ V , we
denote u(S) =

∑
v∈S uv. The following two sets

of vectors in R
V associated with the functions f
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and g are called polymatroid and superpolyma-
troid [14], respectively:

P (f) = {x ∈ R
V ; x(S) ≤ f(S), S ⊆ V },

Q(g) = {y ∈ R
V ; y(S) ≥ g(S), S ⊆ V }.

The following polytope associated with the func-
tion f − g is called extended polymatroid [14]:

EP (f−g) = {w ∈ R
V ; w(S) ≤ f(S)−g(S), S ⊆ V }.

Vectors x ∈ P (f) and y ∈ Q(g) are called bases
of the polymatroid and the superpolymatroid if
x(V ) = f(V ) and y(V ) = g(V ), respectively.
Note that, for any bases x ∈ P (f) and y ∈ Q(g),

x(V )− y(V ) = f(V )− g(V ) = 0,

since

γ(V ) = E = κ(V )

by definition of the sets γ(S) and κ(S). So, a
vector w ∈ EP (f − g) is a base of EP (f − g) if
w(V ) = 0.

Let xL ∈ P (f) and yL ∈ Q(g) be bases computed
by the greedy algorithm in [18] with respect to
any linear ordering L of the vertices. The first
observation is that the difference wL = xL−yL of
the bases xL and yL is a base of EP (f − g) which
can also be found by the greedy algorithm with
respect to the linear ordering L of the vertices. In
what follows, we will write x, y and w instead of
xL, yL and wL, respectively.

We write v ≺L u if v precedes u in the linear or-
dering L of the vertices. According to the linear
ordering L of vertices, one can orient the edges of
the graph G = (V,E) in such a way that the re-
sulting digraph G = (V,A) is an acyclic oriented
graph. This requires each edge (v, u) to be re-
placed by an arc vu if v ≺L u or an arc uv if
u ≺L v. The opposite is also true; each acyclic
orientation of the edges of the graph G = (V,E)
defines a linear ordering L of its vertices. In an
acyclic oriented graph G = (V,A) with weights
cvw on arcs, let δ+(v) be the set of arcs entering
to node v, and let δ−(v) be the set of arcs leaving
from node v.

Our key observation is that the bases x ∈ P (f)
and y ∈ Q(g) satisfy the equalities

∑

u∈δ+(v)

cvu = c(δ+(vi)) = xv, v ∈ V, (1)

∑

u∈δ
−
(v)

cuv = c(δ−(vi)) = yv, v ∈ V. (2)

In other words, xv is the sum of weights on the
leaving arcs from the node v, and yv is the sum
of weights on the entering arc to the node v.

All the above equalities are satisfied by any bases
of x ∈ P (f) and y ∈ Q(g) which are computed
with respect to any linear ordering of the vertices
in any graph. Their proof immediately follows
from the greedy algorithm formula for computing
bases of P (f) and Q(g) with respect to a given
linear ordering of the vertices. So, we can state
the following claims.

Claim 1. Let x ∈ P (f) and y ∈ Q(g) be any
bases computed by the greedy algorithm developed
in [18] with respect to any linear ordering L of the
vertices, then

x+ y = d

and the difference x−y = w is a base of EP (f−g),
for which the following the zero sum equality

∑
(wv;wv > 0) = −

∑
(wv;wv <= 0)

holds.

Proof. Since dv = c(δ+(vi)) + c(δ−(vi)) in the
graph, obtained by orientation of the edges G =
(V,E) according to the linear ordering L, then
xv + yv = dv for any node v ∈ V . From x(V ) =
y(V ) it follows that w(V ) = x(V ) − y(V ) = 0.
Since x ∈ P (f) and y ∈ Q(f), x(S) − y(S) ∈
EP (f − g). Besides, w(V ) = 0 can be written
as the zero sum equality by performing algebraic
operations. Therefore, x − y = w is a base of
EP (f − g). �

Claim 2. For a given linear ordering L =
{v1, ...vn} of the vertices in V , the bases x(L) ∈
P (f), y(L) ∈ Q(g) and w(L) ∈ EP (f − g) can be
found in O(m) time.

Proof. For Li = {v1, ...vi} and i = 1, ..., n, by
the greedy formula

xvi = f(Li)− f(Li−1) = c(δ+(vi)),

it follows that xvi is the sum of weights on the
edges (vi, vj) ∈ E for which vi ≺L vj in L. So,
each edge of E appears only once in comput-
ing the base x. From y = d − x ∈ Q(g) and
w = x − y ∈ EP (f − g), we obtain the bases y



Maximum cut problem: new models 107

and w in O(m) time with respect to the linear
order L. �

We make the following useful observation whose
proof immediately follows from equalities (1) and
(2), for two graphs obtained after the orientation
of the edges in G with respect to linear orderings
L = {v1, v2, ..., vn} and I = {vn, ..., v2, v1}.

Claim 3. If the greedy algorithm defines the bases
x1 ∈ P (f) and x2 ∈ P (f) with respect to the L
and I, respectively, then x2 = y1 = d− x1 ∈ Q(g)
and x1 = y2 = d− x2 ∈ Q(g).

Proof. Consider two acyclic oriented graphs
G(L) and G(I) obtained after replacing edges in
E by arc according to L and I, as above. If
v ≺L u, then an edge (v, u) corresponds to arc
vu in G(L) and arc uv in G(I). Let x1v and
y1v = dv − x1v be bases defined by the greedy al-
gorithm [18] with respect to L, that is, equalities
(1) and (2) hold for x1v and y1v with respect to
G(L). Let x2v and y2v = dv − x1v be bases defined
by the greedy algorithm with respect to I. Since
an edge (v, u) corresponds to arc vu in G(L) and
arc uv in G(I), then x1 defined by (1) for G(L) is
y2 for G(I) and y1 defined by (2) for G(L) is x2

for G(I). By Claim 1, x1, x2 ∈ Q(g). �

The greedy algorithm [18] defines the following
bases with respect to the linear order L = (W,U)
for a bipartite graph H = (W,U,A):

xv = dHv , for v ∈ W, xu = 0, for u ∈ U,

yv = 0, for v ∈ W, yu = dHu , for u ∈ U.

Therefore,

∑

v∈W∪U

|xv − yv| (3)

is equal to the double weight of the maximum
cut separating the sets W and U , in the bipartite
graph H = (W,U,A). To the best of our knowl-
edge, there is no an algorithm to define a linear
ordering L of vertices for non-bipartite graph in
order to determine a maximum cut. Our goal in
the next sections is to develop some new ideas
for finding maximum cut in a non-bipartite graph
G = (V,E).

3. Models with convex objective

function

The maximum cut problem of a graph G = (V,E)
is to find the set of vertices S that maximizes
the weight of the edges in the cut (S, S), i.e., the
weight of the edges with one end node in S and the

other in S. In this section, we propose an alter-
native formulation for the maximum cut problem.
First, the relationship between cuts and bases of
the polymatroids P (f) is established. In a linear
ordering L of vertices, if v ≺L u for any vertices
v and u such that v ∈ S ⊂ V and u ∈ S, we write
it as L = (S, S) for short.

Theorem 1. The double weight of a cut δ(S) sep-
arating sets S and S is equal to

∑

v∈V

|xLv − yLv |, (4)

where bases xL ∈ P (f) and yL ∈ Q(g) are com-
puted by the greedy algorithm with respect to the
linear ordering L = (S, S) of vertices in V .

Proof. Consider the linear ordering L = (S, S)
of the vertices in V , that is, v ≺L u for any
node v ∈ S and u ∈ S, and let xL ∈ P (f) and
yL = d− xL. According to the linear ordering L,
we can direct each edge (v, u) of the graph as arc
vu, if v ≺L u or as uv if u ≺L v. Then all edges
in E will be directed as arcs v1v2, if v1 ≺L v2 for
vertices v1, v2 ∈ S, as arcs u1u2 if u1 ≺L u2 for
vertices u1, u2 ∈ S and as arcs vu, where v ∈ S
and u ∈ S. Clearly, after deleting the arcs v1v2
with end nodes v1, v2 ∈ S and the arcs u1u2 with
end nodes u1, u2 ∈ S, in G, the resulting subgraph
is a bipartite subgraph H = (S, S,A) (S ⊂ V
and A ⊆ E). With respect to H, one can de-
fine the functions f0 and g0, also the matroids
P (f0), Q(g0) and E(f0 − g0). Consider the bases
h ∈ P (f0) and t ∈ Q(g0) defined by the greedy
algorithm with respect to L, i.e.,

hv = dHv , for v ∈ S, hu = 0, for u ∈ S,

tv = 0, for v ∈ S, tu = dHu , for u ∈ S.

Hence, tv = dHv − hv for any node v ∈ V , and

2
∑

(u,v)∈A

cuv =
∑

v∈S

dHv +
∑

v∈S

dHv =

= h(S)− t(S) + |h(S)− t(S)|.

Since h is defined with respect to L and tv =
dHv − hv, then

h(T )− t(T ) = xL(T )− yL(T ), for T = S, S.

Therefore,

2
∑

(u,v)∈A

cuv = xL(S)− yL(S) + |xL(S)− yL(S)|



108 H. Kutucu, F. Sharifov / IJOCTA, Vol.10, No.1, pp.104-112 (2020)

=
∑

v∈V

|xLv − yLv |.

Thus, H is a maximum bipartite subgraph (the
sum of weights on its edges is maximum) of G,
if the last sum is maximum for the bases xL and
yL. �

Since f is a monotone submodular function, the
convex hull of bases P (f) is the following poly-
tope [14]

B(f) = {x;x ≥ 0, x(S) ≤ f(S), S ⊂ V, x(V ) = f(V )}.

We recall that x + y = d (Claim 1) for the bases
x and y generated by the greedy algorithm with
respect to any linear ordering L of vertices. Thus,
yv = dv − xv for all v ∈ V , and hence

|xv − yv| = |2xv − dv|.

We now present our original formulation of the
problem. By Theorem 1, the maximum cut prob-
lem can be formulated as the following special
convex program;

MaxCut∗ = max{Cut(x) =
∑

v∈V

|2xv − dv|} (5)

subject to

x ∈ B(f). (6)

In what follows, we propose further formulations
for the max-cut problem. To this end, we first
state the following lemma. Let

f+(x) =
∑

v∈V+(x)

(2xv − dv),

f−(x) =
∑

v∈V
−
(x)

(dv − 2xv),

where

V+(x) = {v ∈ V ; 2xv − dv > 0},

V−(x) = {v ∈ V ; 2xv − dv ≤ 0},

for any base x ∈ B(f).

Lemma 1. For any base x ∈ B(f)

Cut(x) = 2f+(x) = 2f−(x).

Proof. From the equality

f+(x)− f−(x) =
∑

v∈V

(2xv − dv) = 0

it follows that

Cut(x) = f+(x) + f−(x) + 0 = 2f+(x),

Cut(x) = f+(x) + f−(x)− 0 = 2f−(x).

�

By Lemma 1,

MaxCut∗ = f+(x
∗)+f−(x

∗) = 2f+(x
∗) = 2f−(x

∗),

where x∗ is an optimal solution to the problem
(5)-(6). Since z = 2x − d = x − y for any
z ∈ EP (f − g) and x ∈ B(f) by Claims 1-3, the
vector z+ = {z+v ; v ∈ V }, where z+v = max{zv, 0}
can be defined with respect to each base x ∈ B(f).
By the equality Cut(x) = 2f+(x), the following
problem

max{z+(V ); z ∈ EP (f − g)}

is equivalent to the maximum cut problem (5)-(6).
In addition to the above models, by the equality
Cut(x) = f+(x) + f−(x), the problem

max{f+(x) : x ∈ B(f)} = c(E)

−min{x(V−) + y(V+), x ∈ B(f), y = d− x} (7)

is also equivalent to the maximum cut problem
(5)-(6). The problem in the right hand side of
equality (7) can be considered as dual of the prob-
lem (5)-(6). We note that z = 2x− d = x− y for
x ∈ B(f) and y = d − x. We can also define the
vector z− = {z−v ; v ∈ V }, where z−v = min{zv, 0}
for any v ∈ V . It is easy to show that the follow-
ing problem

min{z−(V ); z ∈ EP (f − g)},

is equivalent to the above dual problem (7). Thus,
the latter problem can be considered as another
dual problem of the problem (5)-(6).

Moreover, Lemma 1 says that to solve the max-
imum cut problem on a given undirected graph,
one can find a base z ∈ EP (f − g)} for which ei-
ther z+(V ) is maximum or z−(V ) is minimum. It
is well known that the latter problem is used es-
sentially to design polynomial algorithms for min-
imizing a submodular function. For more details,
the reader can refer to [16].
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The above models are also useful for solv-
ing the maximum cut problem. For exam-
ple, since the algorithm in [18] defines O(n)
bases of B(f) in O(mn2) time, we can apply
it to handle different bases and related strings
Cut(x), V+(x), V−(x). Let LIST (Cuts) contains
strings Cut(x), V+(x), V−(x) for each these bases.

Theorem 2. In LIST (Cuts), if there are strings
for some pair of different bases x∗, x ∈ B(f) such
that

Cut(x∗) ≥ x(V+) + y(V−),

for y = d− x, V+ = V+(x) and V− = V−(x), then

MaxCut∗
2

≥
3

4
c(E).

Proof. If LIST (Cuts) contains the string for
base x, then Claim 3 implies that x(V+) = f(V+)
and y(V−) = f(V−). Let LIST (Cuts) contains
the string for the base x∗, too. Then

Cut(x∗) ≥ f(V+) + f(V−)

= f(V+) + g(V−) +
Cut(x)

2
= c(E) +

Cut(x)

2
.

To define Cut(x), the algorithm in [18] chooses a
node w 6= s for which 2xw−dw ≥ 2xv−dv > 0 for
v /∈ V+, and sets V+ := V+ +w, where V+ := s at
the beginning of the algorithm, and V− = V \V+.
This implies that Cut(x)/2 ≥ c(E)/2. Thus,

Cut(x∗) ≥ c(E) +
c(E)

2
=

3

2
c(E),

which completes the proof of the theorem. �

In LIST (Cuts), let

Cut(x∗) = max{Cut(x);Cut(x) ∈ LIST (Cuts)},

and let x(V+) + y(V−) be minimum for a base x
(y = d−x). In other words, Theorem 2 states that
Cut(x∗) is a solution to the maximum cut prob-
lem with the approximation ratio at least 0.75. In
this case, clearly the graph G has a cut with value
at least 3/4c(E). If the graph G does not have a
cut with value 3/4c(E), then Theorem 2 is not
true. In this case, we define λ from the equality

Cut(x∗) = λ(x(V+) + y(V−)).

Clearly, λ is a positive number and λ ≤ 1.3. By
the proof of Theorem 2, it can be shown that

MaxCut∗
2

≥ λ
3

4
c(E).

So, the graph G has a cut with value at least
3/4λc(E). In this case, the algorithm in [18] de-
fines a solution to the maximum cut with the ap-
proximation ratio at least 0.75λ for some positive
number λ < 1.

As a conclusion of this section, we note that sim-
plicity of the algorithm in [18] allows to solve real
practical large problems effectively by Theorem
2. In future, we plan to do some investigations in
this direction.

4. Maximum flow model

Now, we formulate the maximum cut problem
by another model. Let x ∈ B(f) be a base
generated by the greedy algorithm with respect
to a linear ordering L of vertices in V and let
z = 2x− d = x− y ∈ EP (f − g). Since z(V ) = 0,
we can define subsets

V+ = {v; zv = 2xv − dv > 0, v ∈ V }

and

V− = {w; zw = 2xw − dw < 0, w ∈ V }.

We consider an acyclic oriented graph G = (V,A)
obtained after replacing all edges by arcs accord-
ing to the linear ordering of L. The capacity on
each arc vu equals to the given weight of the edge
(v, u) ∈ E. We add two new vertices, a source
s and a sink r, to the graph G = (V,E). For
each vertex v ∈ V+ and w ∈ V−, we add arcs sv
and wr with capacity zv and |zw| to the graph
G = (V,E), respectively. In the resulting net-
work Gz = (Vz, Ez), let δ+(S) denote the set of
entering arcs to the vertices S ⊂ Vz and δ−(S)
denote the set of leaving arcs from the vertices of
the subset S. Recall that the capacity of the cut
separating a subset of S is defined as the sum of
the flows on the leaving arcs entering to vertices
v ∈ S minus the sums of the flows on the enter-
ing arcs to vertex v ∈ S. A cut with a minimum
capacity is called a minimum cut.

Theorem 3. In the network Gz = (Vz, Ez), any
maximum s − r flow (source s, and sink r) satu-
rates all arcs, i.e., on all arcs vu with end node
v, u ∈ V , the value of the maximum flow equals to
cvu, and on all arcs sv and rw, the value of the
maximum flow equals to zv and |zw|, respectively.

Proof. Let x be a base generated by the linear
ordering of L and y = d − x. From the defini-
tions of the capacity of arcs sv and rw, it follows
that c(δ+(v)) = c(δ−(v)) in the network Gz. This
means that the sums of capacities of arcs in the
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sets δ+(v) and δ−(v) are the same for each ver-
tex v ∈ V . Therefore, to maintain a balance be-
tween leaving and entering flows for each vertex
v ∈ V , the value of the maximum flow on arcs
of the acyclic oriented graph G = (V,A) must be
equal to its capacity. In addition, since

z(δ+(s)) = x(V+)− y(V+) = y(V−)− x(V−)

= |z(δ−(r))|

it follows that zv and |zw| are the maximum flow
values on the arcs sv and rw, respectively. �

By Theorem 3, since the value of the flow on all
arcs is equal to its capacity, that is, any cut sep-
arating the source s and the sink r are the mini-
mum cut in the network Gz = (Vz, Ez). Thus, we
obtain that f+(x) is the value of the maximum
flow from the source s to the sink r in the con-
structed network Gz = (Vz, Ez) according to the
base z = 2x− d ∈ EP (f − g).

So, Theorem 3 implies that to solve the maxi-
mum cut problem on a given undirected graph
G = (V,E), it needs to find a base z ∈ EP (f − g)
such that the capacity of any minimum cut sepa-
rating the source and sink is maximum in the con-
structed network Gz = (Vz, Ez). Such a model of
the maximum cut problem can have applications
for transportation of natural products from time
to time in different directions through pipelines of
the transport network.

Definition 1. Let Gz = (Vz, Ez) be a network
constructed for the base z = 2x− d ∈ EP (f − g).
The flow on each arc vw is called transit, if ver-
tices v, w are either in V+(x) or in V−(x).

Theorem 4. A base z = 2x − d ∈ EP (f − g) is
an optimal solution to the problem (5)–(6) if and
only if a maximum flow from source to sink has
a minimum sum of transit flows in the network
Gz = (Vz, Ez) constructed for the base z.

Proof. Let x be the base generated by the lin-
ear ordering of L and the network Gz constructed
for z = 2x − d contains the minimum sum of
transit flows on the arcs vw. By definition of a
cut in the graph G with respect to the bases x
and y = d − x, if v, w ∈ V+(x), then y(V+(x)) if
v, w ∈ V+(x), then x(V−(x)) are the total number
of transit flows on the arcs vw. Therefore, from
the dual equality (7), we obtain that δ(V+(x)) is
a maximal cut in the graph G.

If we consider that y(V+(x))+x(V−(x)) is the sum
of the transit flows in the network Gz constructed
for arbitrary bases z = 2x−d and x ∈ B(f), then

the opposite also follows from the dual equality
(7). �

In other words, Theorem 4 states that if the min-
imum number of variables satisfies inequalities
0 < xv < dv in solving the problem (5)-(6), then
a definite cut for xv is maximal in the graph G.
It is relatively difficult to design an effective al-
gorithm based on this theorem. At a first glance,
one might think that the network Gz = (Vz, Ez)
should not contain much more transit flows if
x(V+(x)) = y(V−(x)). However, the situation is
very complicated, since it is easy to design some
small maximum cut problems for which this is not
true. Indeed, this theorem states some connec-
tion between the maximum independent set and
the maximum cut problems, that require new in-
vestigations on network flow problems.

5. Concluding remarks

The value of applications of the theory of poly-
matroids ensures that the optimal solution of
many combinatorial optimization problems can
be found in polynomial time bounded algorithms.
For example, the vector z ∈ P (f) maximizes cz
in polynomial time for the monotonic submodular
function f . A deep understanding of this theory
makes it possible to use known methods devel-
oped for solving the network flows, as a solver
of subtasks enumerating in solving optimization
problems with a nonlinear objective function over
polymatroids structures (see [14]). Considering
topological properties of graphs under considera-
tion in solving combinatorial problems over poly-
matroids leads to a polynomial algorithm as a
solver for the maximum cut problem. In [10],
topological properties of planar graphs namely
the geometric duality is used to develop a polyno-
mial time bounded for finding a maximal cut of
these graphs. Since we do not know about unam-
biguous connections between NP and P , it is dif-
ficult to come up with a polynomial time bounded
algorithm for solving (5)-(6), only using the above
described and other specifics of the problem. But,
with respect to the specifics of the objective func-
tion (5) and constraints (6), we hope that the next
two weaker questions can be solved by a polyno-
mial time algorithm.

(1) Is it possible to design greedy type algo-
rithm by using the subgradient of the ob-
jective function at a current point (base)
x to compute the next point xk such that
(5) will be strongly increased?

(2) How topological properties of a given
graph and the techniques described in the
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paper could be combined for finding an ex-
act upper bound of the objective function
(5)?

Based on positive answers to these two questions
a polynomial time algorithm can be developed for
finding an optimal solution to (5)-(6) on graphs
with unit edge weights and as a result, we could
get NP = P .
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