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1. Introduction

In recent years, studies conducted on findings
new analytical solutions of differential equations
have attracted attention of scientists from all
over the world [1–21]. Especially the dynam-
ics of optical soliton is one of the most fascinat-
ing areas of research in the field of mathematical
physics. There are a great number of models that
studies the dynamics of optical soliton propaga-
tion through a large variety of waveguides such
as optical fibers, optical couplers, crystals, opti-
cal metamaterials and metasurfaces. The com-
plex Ginzburg-Landau equation (CGLE) is one
of these models and it is extended kind of the
nonlinear Schrodinger equation that is the gov-
erning model of this context.The CGLE describes
various phenomena including nonlinear optical
waves, second-order phase transitions, Rayleigh–
Bnard convection superconductivity, superfluid-
ity, Bose–Einstein condensation and liquid crys-
tals [1–4]. It is studied widely all over the world
by a variety researchers [1–12]. A wealth of re-
sults have been reported in this context. Some

of the integration methods that have been im-
plemented to this model are trial solution ap-
proach [7], modified simple equation method [8],
first integral method [9], semi-inverse variational
pirinciple [10] and others.The current paper will
use Jacobi elliptic functions to extract cnoidal and
snoidal wave solutions to the model.These will get
soliton solutions in the limiting case of the mod-
ulus of ellipticity.

2. Mathematical analysis

The dimensions form of CGLE is [5]- [8]

iqt + aqxx + bF
(

|q|2
)

q =
1

|q|2 q∗

[

α |q|2
(

|q|2
)

xx

−β
{(

|q|2
)

x

}2
]

+ γq, (1)

where q (x, t) is a complex-valued function which
represents the soliton molecule in an optical fiber.
The independent variables x and t show spatial
and temporal coordinates, respectively. Then a
and b represent coefficients of the group velocity
dispersion (GVD) and nonlinearity, respectively.
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Also α and β are additional nonlinear terms and
γ stem from the detuning effect [11].

In (1), if we think the complex plane C as a two-
dimensional linear space R2, it can be written

F
(

|q|2
)

q ∈ ∪∞

ℓ,n=1C
k
(

(−n, n)× (−ℓ, ℓ) ;R2
)

.

(2)

The initial hypothesis for (1) is taken by the fol-
lowing form:

q (x, t) = u (ξ) eiφ(x,t), (3)

In (3), u and φ represent amplitude and phase
component of the soliton respectively and here

ξ = x− vt, (4)

and
φ = −κx+ wt+ θ (5)

where v represents the soliton velocity, κ and w
represent the frequency and wave number of the
soliton respectively and θ is the phase constant.

Substituting (3) into (1) and then decomposing
real and imaginary parts, the real part is given

(a− 4β)u′′ −
(

w + aκ2 + γ
)

u+ F
(

u2
)

u

= 2 (α− 2β)
(u′)2

u
. (6)

It is also note that u′ = du/dξ, u′′ = d2u/dξ2 and
so on. The choice

α = 2β, (7)

Eq. (1) modifies to

iqt + aqxx + F
(

|q|2
)

q =
β

|q|2 q∗

[

2 |q|2
(

|q|2
)

xx

−
{(

|q|2
)

x

}2
]

+ γq, (8)

and the real part reduces

(a− 2α)u′′ −
(

w + aκ2 + γ
)

u+ F
(

u2
)

u = 0,
(9)

and then imaginary part of the Eq. (1) gives the
soliton velocity as:

v = −2aκ. (10)

The velocity of the soliton, given by (10), is in-
dependent of the type of nonlinearity. So it stays
the same for all forms of fiber in question.

2.1. Kerr law

In this case,
F (s) = bs, (11)

where b is the real-valued constant. So, Eq. (8)
reduces to

iqt + aqxx +
(

b |q|2
)

q =
β

|q|2 q∗

[

2 |q|2
(

|q|2
)

xx

−
{(

|q|2
)

x

}2
]

+ γq, (12)

and the real part equation (9) simplifies to

(a− 4β)u′′ −
(

w + aκ2 + γ
)

u+ u3 = 0. (13)

We assumed that u is in the form

u (ξ) = Asnρ (Bξ, ℓ) , ξ = x− vt, (14)

where ℓ is the modulus of Jacobi elliptic function
and 0 < ℓ < 1. Also A represents the amplitude,
B is the inverse width of the soliton and unknown
index ρ will be determined.

Substituting Eq. (14) and its necessary deriva-
tives in the real part Eq. (13), we have

(a− 4β) (ρ− 1) ρAB2snρ−2 (Bξ, ℓ)

− (a− 4β) ρ
[

ℓ2 (ρ− 1) + ℓ+ ρ
]

AB2snρ (Bξ, ℓ)

+ (a− 4β) ℓρ (ℓρ+ 1)AB2snρ+2 (Bξ, ℓ) (15)
(

w + aκ2 + γ
)

Asnρ (Bξ, ℓ)+bA3sn3ρ (Bξ, ℓ) = 0.

From Eq.(15), matching the exponents
snρ+2 (Bξ, ℓ) and sn3ρ (Bξ, ℓ) yields

ρ+ 2 = 3ρ, (16)

which gives
ρ = 1. (17)

Equating coefficients of them and setting coeffi-
cients of snρ+j (Bξ, ℓ), for j = −2, 0, to zero in
(15) as these are linearly independent functions
yields

A =

√

w + aκ2 + γ

bℓ
, (18)

B =

√

w + aκ2 + γ

(4β − a) (ℓ+ 1)
, (19)

which requires the constraints
(

w + aκ2 + γ
)

b > 0, (20)

(

w + aκ2 + γ
)

(4β − a) > 0. (21)

So, for Kerr law nonlinearity, the Jacobi elliptic
function solution is

q (x, t) =

√

w + aκ2 + γ

bℓ
.sn

[
√

w + aκ2 + γ

(4β − a) (ℓ+ 1)

(x+ 2aκt) , ℓ] .ei(−κx+wt+θ), (22)

If the modulus ℓ → 1 in Eq. (22), we obtain fol-
lowing dark optical soliton solution

q (x, t) =

√

w + aκ2 + γ

b
. tanh

[
√

w + aκ2 + γ

2 (4β − a)

(x+ 2aκt)] .ei(−κx+wt+θ). (23)
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In solutions (22) and (23), q (x, t) represents the
soliton molecule in fiber. κ and w are the fre-
quency and wave number of the soliton respec-
tively, θ is the phase constant. Also γ depicts
detuning effect, a , b and β are constants.

In order to construct exact solutions for Eq. (12);
we use hypothesis in the form

u (ξ) = Acnρ (Bξ, ℓ) , (24)

From (24), Eq. (13) reduces to

(a− 4β)
(

1− ℓ2
)

(ρ− 1) ρAB2cnρ−2 (Bξ, ℓ)

+ (a− 4β) ρ
[

ℓ2 (2ρ− 1) + ℓ− ρ
]

AB2cnρ (Bξ, ℓ)

− (a− 4β) ℓρ (ℓρ+ 1)AB2cnρ+2 (Bξ, ℓ) (25)

−
(

w + aκ2 + γ
)

Acnρ (Bξ, ℓ)+bA3cn3ρ (Bξ, ℓ) = 0,

Setting the exponents and coefficients of functions
cnρ+2 (Bξ, ℓ) and cn3ρ (Bξ, ℓ) equal to one an-
other, and again setting the coefficients functions
of cnρ+j (Bξ, ℓ) to zero for j = −2, 0, we acquire
the same value of which is in (17) and following
equations

A =

√

ℓ (ℓ+ 1) (w + aκ2 + γ)

b (ℓ2 + ℓ− 1)
, (26)

B =

√

w + aκ2 + γ

(a− 4β) (ℓ2 + ℓ− 1)
, (27)

with the conditions
(

w + aκ2 + γ
)

b
(

ℓ2 + ℓ− 1
)

> 0, (28)
(

w + aκ2 + γ
)

(a− 4β)
(

ℓ2 + ℓ− 1
)

> 0. (29)

Hence, we get the Jacobi elliptic function solution
for CGLE with Kerr law nonlinearity as

q (x, t) =

√

ℓ (ℓ+ 1) (w + aκ2 + γ)

b (ℓ2 + ℓ− 1)

.cn

[
√

w + aκ2 + γ

(a− 4β) (ℓ2 + ℓ− 1)
(x+ 2aκt) , ℓ

]

(30)

.ei(−κx+wt+θ).

When ℓ → 1, solution (30) reduces bright optical
soliton solution which is given by

q (x, t) =

√

2 (w + aκ2 + γ)

b

. sech

[
√

w + aκ2 + γ

(4β − a)
(x+ 2aκt)

]

(31)

.ei(−κx+wt+θ),

where κ represents the soliton frequency, while w
depicts the wave number of the soliton. θ, a, b and
β are constants and so γ arise from the detuning
effect.

2.2. Parabolic law

In this case,

F (s) = b1s+ b2s
2, (32)

where b1 and b2 are constants. So, Eq. (8) reduces
to

iqt + aqxx +
(

b1 |q|
2 + b2 |q|

4
)

q =
β

|q|2 q∗

.

[

2 |q|2
(

|q|2
)

xx
−
{(

|q|2
)

x

}2
]

+ γq, (33)

and the real part Eq. (9) simplifies to

(a− 4β)u′′ −
(

w + aκ2 + γ
)

u+ b1u
3 + b2u

5 = 0.
(34)

The initial hypothesis as given below

u (ξ) = A [D + sn (Bξ, ℓ)]ρ , (35)

So we get

(a− 4β) (ρ− 1) ρAB2
(

1−D2
) (

1− ℓ2D2
)

. [D + sn (Bξ, ℓ)]ρ−2 + (a− 4β) ρ
{

2ρ
(

1− ℓ2D2
)

+ℓ
(

1−D2
)

+ ℓ2
(

3D2 − 2
)

− 1
}

AB2D

. [D + sn (Bξ, ℓ)]ρ−1 + (a− 4β) ρ
{

ℓD2 (6ℓρ− 4ℓD + ℓ+ 2) + ℓ2 (1− 2D − ρ)

−ℓ− ρ}AB2 [D + sn (Bξ, ℓ)]ρ + (a− 4β) (36)

.ℓρ (−4ℓρ+ 3ℓ− 3)AB2D [D + sn (Bξ, ℓ)]ρ+1

+(a− 4β) ℓρ (ℓρ+ 1)AB2 [D + sn (Bξ, ℓ)]ρ+2

−
(

w + aκ2 + γ
)

A [D + sn (Bξ, ℓ)]ρ

+b1A
3 [D + sn (Bξ, ℓ)]3ρ+b2A

5 [D + sn (Bξ, ℓ)]5ρ = 0.

Setting the exponents and the coefficients
[D + sn (Bξ, ℓ)]ρ+1and [D + sn (Bξ, ℓ)]3ρ and also

[D + sn (Bξ, ℓ)]ρ+2 and [D + sn (Bξ, ℓ)]5ρ equal
to one another, again equating the coefficients of
[D + sn (Bξ, ℓ)]ρ+j to zero, for j = −2,−1, 0, in
the Eq. (36), yields

ρ =
1

2
, (37)

D = ±1, (38)

A =

√

b1 (ℓ+ 2)

2b2 (ℓ− 3)D
, (39)

B = 2

√

√

√

√

√

(w + aκ2 + γ)

(a− 4β) [4ℓ (1 + 2ℓ− 2ℓD)
+ℓ2 (1− 4D)− 2ℓ− 1

]

, (40)

with conditions

b1b2 (ℓ− 3)D > 0, (41)

and
(

w + aκ2 + γ
)

(a− 4β) [4ℓ (1 + 2ℓ− 2ℓD)

+ℓ2 (1− 4D)− 2ℓ− 1
]

> 0. (42)
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Thus, the Jacobi elliptic function solution for the
CGLE with parabolic law nonlinearity is given by

q(x, t) =

√

b1 (ℓ+ 2)

2b2 (ℓ− 3)D
.











D + sn











2

√

√

√

√

√

(w + aκ2 + γ)

(a− 4β) [4ℓ (1 + 2ℓ− 2ℓD)
+ℓ2 (1− 4D)− 2ℓ− 1

]

(43)

(x+ 2aκt), ℓ)] .ei(−κx+wt+θ)

When the modulus ℓ → 1 , we obtain following
dark optical soliton solution

q(x, t) =
b1
2

√

−3

b2D
.

[

D + tanh

(
√

2 (w + aκ2 + γ)

(a− 4β) (5− 6D)
(44)

(x+ 2aκt))] .ei(−κx+wt+θ).

In solutions (43) and (44), q (x, t) represents the
soliton molecule in fiber. κ and w are the fre-
quency and wave number of the soliton respec-
tively, θ is the phase constant. Also γ depicts
detuning effect, a, b1, b2, D are constants.

Now, if we take the starting assumption as

u (ξ) = A [D + cn (Bξ, ℓ)]ρ , (45)

Eq. (34) changes to

(a− 4β) (ρ− 1) ρAB2
(

1−D2
) (

ℓ2 + 1
)

. [D + cn (Bξ, ℓ)]ρ−2 + (a− 4β) ρ
{[

ℓ2(4ρ− 3) + ℓ
] (

D2 − 1
)

+ 2ρ− 1
}

.AB2D [D + cn (Bξ, ℓ)]ρ−1+(a− 4β) ρ
{

(1− 3D2)

(2ℓ2ρ− ℓ2 + ℓ)− ρ
}

AB2 [D + cn (Bξ, ℓ)]ρ (46)

+ (a− 4β) ℓρ (4ℓρ− ℓ+ 3)AB2D [D + cn (Bξ, ℓ)]ρ+1

− (a− 4β) ℓρ (ℓρ+ 1)AB2D [D + cn (Bξ, ℓ)]ρ+2

−
(

w + aκ2 + γ
)

A [D + cn (Bξ, ℓ)]ρ + b1A
3

[D + cn (Bξ, ℓ)]3ρ + b2A
5 [D + cn (Bξ, ℓ)]5ρ = 0.

Doing similar operations, value of the parameters
ρ and D obtained the same as Eq.s (37) and (38)
respectively and yields

A =

√

−b1 (ℓ+ 2)

2b2 (ℓ+ 3)D
, (47)

B = 2

√

w + aκ2 + γ

(a− 4β) [2ℓ (1− 3D2)− 1]
, (48)

where
b1b2D > 0, (49)

(

w + aκ2 + γ
)

(a− 4β)
[

2ℓ
(

1− 3D2
)

− 1
]

> 0.
(50)

So, we obtain

q(x, t) =

√

−b1 (ℓ+ 2)

2b2 (ℓ+ 3)D
[

D + cn

(

2

√

w + aκ2 + γ

(a− 4β) [2ℓ (1− 3D2)− 1]
(51)

(x+ 2aκt), ℓ)] .ei(−κx+wt+θ).

If the modulus ℓ → 1, we get following bright op-
tical soliton solution

q(x, t) =

√

−3b1
8b2D

.

[

D + sech

(

2

√

w + aκ2 + γ

(a− 4β) [1− 6D2]
(52)

(x+ 2aκt))] .ei(−κx+wt+θ).

where q(x, t) represents the soliton molecule in
fiber. κ represents the soliton frequency, while w
depicts the wave number of the soliton. θ, a, b and
β are constants and so γ arise from the detuning
effect.

3. Conclusion

This paper consider CGLE in kerr and parabolic
law media. Jacobi elliptic functions are used for
the integration scheme here. Bright and dark
optical soliton solutions are obtained using two
types Jacobi elliptic functions. The existence cri-
teria of these solutions are also indicated. These
solutions provide recognise physical phenomena
described by the equation. Due to the fact that
bright and dark optical soliton solutions always
help to address the soliton dynamics in long dis-
tance telecommunication system, the results of
the paper are useful in the fiber optics communi-
cation technology. It can be obtained different so-
lutions of the CGLE using the other Jacobi elliptic
functions. This technique is very useful and effec-
tive to get soliton solutions of nonlinear partial
differential equations in mathematical physics.
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