
*Corresponding author

37

An International Journal of Optimization and Control: Theories & Applications

ISSN: 2146-0957 eISSN: 2146-5703

Vol.10, No.1, pp.37-46 (2020)

https://doi.org/10.11121/ijocta.01.2020.00796

RESEARCH ARTICLE

A multi-start iterated tabu search algorithm for the multi-resource agent

bottleneck generalized assignment problem

Gulcin Bektur*

Department of Industrial Engineering, Iskenderun Technical University, Turkey

gulcin.bektur@iste.edu.tr

ARTICLE INFO ABSTRACT

Article history:
Received: 4 March 2019

Accepted: 25 September 2019

Available Online: 6 October 2019

 In this study, a multi-resource agent bottleneck generalized assignment problem

(MRBGAP) is addressed. In the bottleneck generalized assignment problem

(BGAP), more than one job can be assigned to an agent, and the objective function

is to minimize the maximum load over all agents. In this problem, multiple

resources are considered and the capacity of the agents is dependent on these

resources and it has minimum two indices. In addition, agent qualifications are

taken into account. In other words, not every job can be assignable to every agent.

The problem is defined by considering the problem of assigning jobs to employees

in a firm. BGAP has been shown to be NP- hard. Consequently, a multi-start

iterated tabu search (MITS) algorithm has been proposed for the solution of large-

scale problems. The results of the proposed algorithm are compared by the results

of the tabu search (TS) algorithm and mixed integer linear programming (MILP)

model.

Keywords:
Multi- start iterated local search

Multi- resource bottleneck generalised

assignment problem

Agent qualifications

Integer linear programming model

AMS Classification 2010:
90C10, 90C59

1. Introduction

Assignment problems (AP) are an important topic

which is frequently studied in the literature. AP is

generally considered in three classes. The simplest

form of the AP, in which each agent can be assigned a

job at most, is the classic AP. There are m number of

agents and n number of jobs in this problem. Each job

must be assigned to an agent so that the total cost is

minimal. Each agent should also be assigned a job (one-

to-one). Another class of the AP is generalized

assignment problem (GAP). In GAP, more than one job

can be assigned to an agent. Some subclasses of GAP

are multi-resource generalized assignment problem

(MRGAP), bottleneck generalized assignment problem

(BGAP). Another class of AP is multidimensional AP.

In multidimensional AP, jobs are assigned to at least

two different resources. Detailed information can be

reached from the literature review by Pentico [1].

In the GAP, each agent has a certain capacity. Jobs use

this capacity and the capacity of the agent cannot be

exceeded. In MRGAP, multiple resources are used for

the completion of the jobs. Therefore, the capacity of

agents depends on these resources. The capacity

parameter of the agents has at least two indices due to

parameter dependent on the agent and the resource.

There are many applications of the MRGAP in real life.

For example, in vehicle routing problems, as vehicles

are agents, and jobs are considered to be the places

where vehicles should be visited, and the capacity of

the vehicles depends on both the weight and the volume

of the vehicle, the problem can be considered as the

MRGAP [2].

In bottleneck assignment problems (BAP), the

objective function is the minimization of the maximum

assignment cost or maximum load over all agents.

Completion time of the jobs also can be taken into

account. In other words, completion time of the last job

is minimized in the BAP [3].

GAP is an important problem frequently studied in

literature. Studies in the literature can be categorized as

studies that proposes exact algorithms and heuristic

algorithms. In the studies that propose exact

algorithms, the branch-bound algorithm ([4] and [5]),

the cutting plane algorithm [6], the branch and price

algorithm [7, 8], branch- and- cut algorithm for GAP

with additional pair constraints [9] and with min- max

regret criterion [10] were used. When the exact solution

approaches are used, the solution time of the problem

is quite prolonged. Since the GAP problem is an NP-

hard problem, it is quite common to use heuristic

algorithms that gives the near optimal solution in a

short time [11]. In the studies using heuristic

http://www.ams.org/msc/msc2010.html

38 G. Bektur / IJOCTA, Vol.10, No.1, pp.37-46 (2020)

algorithms, tabu search algorithm [12-14], genetic

algorithm [15], bees algorithm [16], a heuristic based

on Lagrangian relaxation [17, 18], LP- based heuristic

[19], a hybrid heuristic based on scatter search [20],

improved differential evolution algorithm [21], a

parallel genetic algorithm [22] and simulated annealing

algorithm [14] were used. Degroote et al. [23], poposed

a methodology for selection the most suitable algorithm

for GAP. Chakravarthy et al. [24], proposed a heuristic

algorithm for bottleneck generalized assignment

problem. For a strategic variant of GAP, approximation

algorithm is proposed by Fadaei and Bichler [25].

Detailed information for GAP can be found in the

literature review by Öncan [11].

Although there are many studies related to GAP, the

number of studies dealing with the MRGAP is less.

MRGAP is the generalization of the GAP. GAP has

been shown to be NP- hard and MRGAP is also NP-

hard [26]. Karsu and Azizoğlu [3], proposed a branch-

bound algorithm for the multi-resource bottleneck

GAP. Mazzola and Wilcox [2], proposed a three stage

heuristic algorithm for the MRGAP. In the first stage, a

suitable solution is obtained and at the other stages, this

solution is improved. Yagiura et al. [27], proposed a

new algorithm for multi-resource generalized quadratic

assignment problem. In the algorithm, the path

relinking approach was used in the neighborhood

generation. Gavish and Pirkul [28], proposed a

heuristic algorithm and branch-bound algorithm for the

MRGAP. They also proposed some rules for the

reduction of the problem dimensions. Yagiura et al.

[29], proposed a TS-based heuristic algorithm for the

MRGAP. Mitrovic-Minic and Punnen [30], proposed a

heuristic algorithm based on a variable neighborhood

search for the MRGAP.

The MRGAP problem is the generalized version of

GAP and is a more difficult problem to solve. However,

many studies in the literature propose an heuristic

algorithm for GAP. Wu et al. [10], Souza et al. [20],

Sethanan and Pitakaso [21], and Moussavi et al. [31]

proposed an heuristic algorithm for the generalized

assignment problem. Difference from the literature, in

this study an heuristic algorithm is proposed for the

multi-resource agent bottleneck generalized

assignment problem with agent qualifications. The

differences of the study from literature are agent

qualifications are taken into account, a different

heuristic algorithm is proposed for the larger size test

problems than the problem sizes in the literature and the

success of the proposed heuristic is shown through test

problems by comparing with Tabu Search in the

literature. The TS algorithm has been proposed by

Karsu and Azizoğlu [3] in the literature for the problem

of MRGAP. The proposed iterated local search

algorithm is compared with the TS algorithm. Test

problems are generated in two different ways as that

takes into account agent qualification and not takes into

account agent qualification. In addition, larger size test

problems are solved and the success of the algorithm

has been shown through test problems. In addition,

iterative local search algorithm was proposed for the

first time for the MRGAP.

The remainder of this paper is organized as follows.

The first section of the study is the introduction, in the

second section the problem is defined and MILP model

is given. In the third section, the proposed solution

method is explained. In the fourth section, experimental

results are given and conclusions are given in the final

section.

2. Problem description

In this study, multi-resource bottleneck generalized

assignment problem (MRBGAP) with agent

qualifications was addressed. The problem addressed in

this study is defined by the problem of assigning

employees to jobs in a firm. Employees are considered

as agents. Each jobs must be assigned to an employee.

More than one job can be assigned to an employee.

Employee capacities depend on employee and shift.

The shifts are defined as morning, noon, afternoon,

evening and night. Employees' capacities (working

hours) vary according to shifts. For example, an

employee can work more in the morning shift than in

the evening shift. For this reason, the employees'

capacity parameter has two indices due to the parameter

depending on the employee and the shift. The objective

function is the minimization of the completion time of

the last job, and this objective function is the bottleneck

objective function.

The sets, indices, parameters, decision variables,

constraints and objective function of the MILP model

are given below;

Sets and indices

N:Set of jobs, N= {1, 2, …, n}

M: Set of agents, M= {1, 2,…, m}

R: Set of resource, R= {1, 2,…,r}

 j: job indices where j⋲ N .

i: agent indices where i⋲ M .

k: resource indices where k⋲ R .

Parameters

pijk: processing time for job j on agent i and resource k

bik: capacity for agent i on resource k

hij= {
1; 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑗𝑜𝑏 𝑗
0; 𝑜. 𝑤.

M: very large positive number

Decision variables

 xij = {
1; 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑔𝑒𝑛𝑡 𝑖
0; 𝑜. 𝑤.

A multi- start iterated tabu search algorithm for the multi-resource agent bottleneck… 39

Lmax: maximum completion time

Model

Min Z= Lmax (1)

s.t.

∑ 𝑝𝑖𝑗𝑘𝑥𝑖𝑗𝑗 ≤ bik ∀ i, k (2)

∑ 𝑥𝑖𝑗𝑖 =1 ∀ j (3)

∑ ∑ 𝑝𝑖𝑗𝑘𝑥𝑖𝑗𝑗𝑘 ≤ Lmax ∀ i (4)

𝑥𝑖𝑗≤ hij ∀ i, j (5)

xij⋲ {0,1} ve Lmax ≥ 0 (6)

Constraint (1) shows the objective function,

minimization of the maximum completion time.

Constraint (2) ensures agent capacities are not

exceeded. With constraint (3), each job is assigned to

an agent. The constraint (4) calculates the completion

of the last job. The constraint (5) ensures agent

qualifications are satisfied. Constraints (6) are the sign

constraints.

Table 1: Parameters of pijk

 pij1 pij2 pij3

i 1 2 3 4 1 2 3 4 1 2 3 4

1 18 25 6 5 10 23 37 42 36 31 25 14

2 45 41 17 7 9 10 40 15 19 46 15 8

3 44 13 18 10 10 36 9 17 46 9 11 32

4 37 28 45 5 6 28 25 14 10 25 41 15

5 6 31 45 29 24 29 49 35 42 37 9 17

6 37 41 4 11 17 4 30 47 37 38 11 34

7 6 44 30 36 23 40 14 10 45 21 33 12

8 20 25 28 46 42 44 23 11 9 45 26 29

9 21 14 39 14 28 5 27 32 41 44 31 32

10 34 47 48 41 28 8 21 33 48 12 15 32

11 32 44 45 17 4 45 21 45 23 11 16 17

12 32 11 20 44 21 43 25 6 39 26 5 47

13 37 45 8 32 46 17 47 24 20 25 15 11

14 12 27 22 38 5 29 12 40 14 10 5 33

15 34 29 13 24 33 11 16 35 13 36 4 42

The problem is also explained by an example. In the

example, there are 15 jobs, 4 employees (agents) and 3

shifts (resources). Table 1 shows pijk values. hij and bjk

parameters are given in Table 2 and Table

3,respectively.

Example: 15 jobs, 4 employee (agent) and 3 shifts

(resource)

Table 2: Parameters of hij

i hij

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1

2 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1

3 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0

4 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1

Table 3: Parameters of bjk

i
 bik

1 2 3

1 138 102 147

2 120 100 110

3 130 132 95

4 90 105 100

In the best solution, jobs 2, 7 and 10 are assigned to

agent 1; jobs 11, 13 and 15 are assigned to agent 2; jobs

3, 6, 9, 12 and 14 are assigned to agent 3; jobs 1, 4, 5,

and 8 are assigned to agent 4. Loads of the agents are

254, 263, 269 and 262, respectively. The objective

function value is 269.

3. Multi-start iterated tabu search algorithm

Since the problem is NP-Hard, a multi-start iterated

tabu search algorithm has been proposed to solve large

problem instances.

The iterated local search algorithm is a heuristic

algorithm that has three basic stages. The first stage is

the generation of the initial solution. At the second

stage the solution is improved by a local search method.

The third stage is the perturbation stage. The steps of

the iterated local search algorithm are given in Figure

1. Once the initial solution is obtained, the algorithm

repeats the local search and perturbation steps until the

stopping criterion is achieved. If the solution obtained

from the local search is better than the current solution,

the solution is considered to be the current solution. The

perturbation mechanism is intended to escape from

local optimal. In the perturbation phase, the solution is

changed slightly.

Iterated local search algorithm is applied to many

combinatorial optimization problem successfully.

Iterated local search algorithm is proposed for the

scheduling problem [32], vehicle routing problem [33-

36], quadratic assignment problem [37], quadratic

knapsack problem [38], hub location problem [39] and

shift scheduling [40].

Firstly, abbreviations used in algorithm are given:

S0(c)(n): Initial (current) (neighbor) solution;

Sp: Perturbated solution;

E0(c)(n): Obj. func. value of the initial (current)

(neighbor) solution;

40 G. Bektur / IJOCTA, Vol.10, No.1, pp.37-46 (2020)

CL: Set of jobs;

TLL: Tabu list length;

v: maximum iteration number of TS;

MTLS: Maximum tabu list size;

Ebest: Objective function value of the best solution;

maxStart: Multi- start number of the algorithm

In this study, multi- start iterated tabu search algorithm

is proposed for the multi resource bottleneck

generalized assignment problem. Different features

have been used to increase the success of the proposed

algorithm.

Procedure ILS

Generate initial solution S0;

Apply local search procedure to S0 and obtain S*;

While termination condition not meet

 Apply perturbation to S* and obtain Sp;

 Apply local search procedure to Sp and obtain 𝑆′′;

 If f(𝑆′′)<f(S*)

 S*←𝑆′′;

 End

End

Figure 1. Algorithm of the iterated local search

One of the important features of the proposed algorithm

is to start the search process multiple times. This feature

provides diversification. Initial solution of the

algorithm is generated by randomly or by a greedy

algorithm. Throughout our preliminary experiments, it

was observed that the algorithm reached better

solutions faster by using greedy algorithm as an initial

solution finding mechanism. However, only the use of

the greedy algorithm caused starting with very similar

solutions. Thus, random solutions also taken as an

initial solution for the investigation of the unexplored

regions in the search space. For this, a random number

is derived. If this random number is greater then q (a

predetermined parameter) the algorithm uses the

greedy algorithm. Otherwise random initial solution is

generated. TS algorithm is used as a local search

algorithm. The TS algorithm and perturbation

mechanisms are applied respectively until the stopping

criterion is achieved. Once the stopping criterion has

been achieved, an initial solution is generated again and

the steps are repeated until the number of multiple

starting is reached.

In the next section, initial solution finding mechanisms,

TS algorithm used in local search, perturbation

mechanism and all steps of algorithm will be described.

3.1. Initial solution finding mechanism

3.1.1. A greedy construction heuristic

When generating the initial solution, a job is assigned

to the agent with the smallest completion time as

possible. For this, pij values are calculated using

Equation 7. pij denotes the total completion time of the

job according to agent on the basis of resource.

pij=∑ 𝑝𝑖𝑗𝑘𝑘 ∀i,j (7)

The pij values are sorted in ascending order and the spij

matrix is obtained. The aim is to assign the job to the

first agent in the spij matrix. However, since each agent

has a capacity and agent qualifications are taken into

account, the agent cannot be assigned to first agent in

the spij matrix. If the job is not assigned to the first

agent, the job is assigned to second order of the agent

in the spij matrix. Algorithm is repeated until each job

is assigned to an agent and a solution is obtained. The

algorithm is given on Figure 2.

3.1.2. Random initial solution

In the random solution finding algorithm, the randomly

selected job j* is assigned to the randomly selected

agent i*. If job j* is not assignable to i*, another agent

is randomly generated. The algorithm is working until

a solution is obtained.

3.2. Local search algorithm

The TS algorithm was used as the local search

algorithm in the proposed heuristic method.

Two methods are used to generate the neighboring

solutions from current solution. The first method is to

assign each job in the agent with the largest completion

time to the other agents. The other method is the

reciprocal displacement of jobs in the agent with the

largest completion time with the jobs in other agents.

All solutions are derived from the current solution by

using neighboring solution generation methods.

The best of these solutions is taken, and if the

movement in the generation of the neighbor solution is

not in the tabu list, the solution is taken directly as the

current solution. If a movement is made in the tabu list

and the solution is not a better solution than the best

solution, the neighbor solution with the second smallest

objective function is chosen and the same test is also

applied to this solution. This step is repeated until a

solution is accepted.

The length of the tabu list is considered as fixed, and

when the tabu list is full, the movement that has been in

the list for the longest period is deleted. It is forbidden

to carry out the movements in the tabu list. If a better

solution is obtained than the best solution, the tabu is

eliminated and the relevant solution is taken as the

current solution.

If the solution is obtained as a result of the use of the

first neighboring method, the job and the relevant agent

are added to the tabu list. The movement of this job to

the relevant agent during the tabu is prohibited. If the

solution is obtained as a result of the use of the second

neighboring method, replacement of these jobs is

prohibited. The algorithm works until it reaches the

predetermined number of iterations. The steps of the

tabu search algorithm are given in Figure 3.

A multi- start iterated tabu search algorithm for the multi-resource agent bottleneck… 41

Procedure a greedy construction heuristic

Input: pijk, hij, bik, spij

Output: Initial solution (S0), Objective funct. value of

S0 (E0)

exit1←0, 𝑛′←0; CL←{1,…,n}

While exit1==0

 exit2←0; x←1; flag←0;

 While exit2==0

Select the job j* randomly from the CL and assign

the j* to the x th order of the agent in the spij*

matrix;

 For k=1 to r

 If bi*k<pi*j*k or hi*j*==0

 flag←1;

 End

 End

 If flag==1

 x←x+1;

 Else

 exit2←1; 𝑛′←𝑛′+1;

 bi*k←bi*k-pi*j*k;CL←CL\{j*};

 End

 If x==m

 exit2←1; 𝑛′←0; Initialize CL and bik;

 End

 End

 If 𝑛′==n

 exit1←1;

 End

End

Figure 2. Greedy Construction Heuristic

Procedure TS algorithm

Input: pijk, bik, hij, m, n, r, v, MTLS, S0, E0

Output: Near optimal solution (S*)

S*←S0; E*←E0; Sc←S0; Ec←E0; TLL←1;

While iter<v

Generate neighbor solutions and sort ascending

order according to obj. func.value (Sn
t); t←1;

check←0;

 While check==0

 If the movement of Sn
t not tabu or En

t<Ebest

 Sc←Sn
t; Ec←En

t;

 Insert the movement of Sc at the tabu list;

 TLL←TLL+1; check←1;

 Else

 t←t+1;

 End

 End

 If TLL==MTLS+1

 Delete the first element in the tabu list;

 TLL←1;

 End

 If Ec<E*

 S*←Sc; E*←Ec;

 End

 iter←iter+1;

End

Figure 3. Tabu search algorithm

3.3. Perturbation mechanism

The iterative local search algorithm uses the

perturbation mechanism to escape the local optimal. If

the perturbation is too strong, the algorithm can move

away from promising regions. If perturbation is too

small, the algorithm may loop in previously searched

regions. Therefore, it is very important to determine the

appropriate perturbation length. With perturbation, a

new solution (𝑆′′) is derived from one of the methods

of the neighboring solution from the current solution

(𝑆′). If objective function value of 𝑆′′ is less than

objective function value 𝑆′, then the perturbated

solution will be 𝑆′′.

If 𝑆′′ is accepted, the value Ɣ is increased by λ.

Otherwise, a new 𝑆′′ solution is derived. λ is taken as a

value between 0 and 1. If the number of consecutive

rejected solutions reaches a predetermined value

(maxTry), the value of Ɣ is increased by λ. The

algorithm works until the number of applied moves

equal to pertLength. The perturbation mechanism is

given in Figure 4.

Procedure Perturbation

Input: 𝑆′, pertLength, λ, maxtry

Output: Sp

p←1; Ɣ←1+ λ; Sp←𝑆′; try←0;

While p≤pertLength

 Generate a random solution 𝑆′′, from 𝑆′ by

applying a randomly selected neighborhood structure;

 If f(𝑆′′)≤ Ɣ* f(𝑆′)

 Sp←𝑆′′; Ɣ← Ɣ + λ; p←p+1; try←0;

 Else

 try←try+1;

 If try>maxtry

 Ɣ← Ɣ +λ; try←0;

 End

 End

End

Figure 4. Perturbation mechanism

42 G. Bektur / IJOCTA, Vol.10, No.1, pp.37-46 (2020)

3.4. Steps of the algorithm

The steps of the proposed multistart iterated tabu search

algorithm are given in Figure 5.

Procedure MS- ITS

Input: problem data, maxStart, λ, maxTry, pertLength,

v, MTLS, q, maxiter

Output: Near optimal solution (S*)

For s=1:maxStart

 pertLength←1;

 Generate a random number rnd;

 If rnd≤q

 Construct a random initial solution S0 with the

objective function E0;

 (S0,E0)←RandomInitialSolution(problem data)

 Else

 Construct an initial solution S0 with the objective

function E0 using greedy algorithm;

 (S0,E0)←GreedyInitialSolution(problem

data,spij)

 End

 (S*,E*)←TabuSearchAlgorithm(problem data,

v, MTLS,S0,E0)

 𝑆′=S*; 𝐸′=E*;

 While iteration<maxiter

 (Sp,Ep)←Perturbation(pertLength,λ,maxtry, 𝑆′,

 𝐸′)

 (𝑆′′, 𝐸′′)←TabuSearchAlgorithm(problem data,

v, MTLS,Sp,Ep)

 If 𝐸′′<E*

 S*←𝑆′′; E*←𝐸′′;

 End

 iteration← iteration+1;

 End

End

Figure 5. Steps of the algorithm

4. Computational results

The success of heuristic algorithms strongly depends

on the selection of the right parameters. The parameters

of the heuristic are maxStart, λ, maxTry, pertLength, v,

MTLS, maxiter and q. Taguchi experimental design

(TED) reduces the number of experiments and it is a

successful method for determining the parameters of

heuristic algorithms. If the number of parameters is

high TED is preferred because it reduces the number of

experiments [41]. The parameters of the algorithm were

determined with TED due to proposed algorithm has

many parameters. Factor levels are given in Table 4.

There has been 8 factors and 3 levels. L27 orthogonal

array is selected. Since the objective function of the

problem is minimization, smaller-the-better type

function is selected for the Taguchi design. S/N ratio is

given below (Eq- 8). n is the number of observations in

each experiment and Yi is the objective function value.

S/N ratio= −10 ∗ 𝑙𝑜𝑔 (
1

𝑛
∑ 𝑌𝑖

2𝑛
𝑖=1) (8)

Table 4: Factor levels

Factors Levels

maxStart (A) 10; 15 and 20

λ (B) 0.02; 0.03 and 0.04

maxTry (C) 25, 50 and 75

pertLength (D) 10; 20 and 30

v (E) 500; 750 and 1000

MTLS (F) 40; 60 and 80

maxiter (G) 50; 75 and 100

q (H) 0.3; 0.4 and 0.5

In this study, instead of applying TED to each test

problem, the following test problems were selected and

TED was applied. In Table 5 selected test problems and

determined parameters are given. In the selected

problems, U [15,25], number of agent is 10 and number

of jobs is 200. The largest problem size was preferred.

Test problems are generated as described in the study

by Karsu and Azizoğlu [3].

Table 5. Selected test problems and determined

parameters

c hij A B C D E F G H

1.4 1 10 0.04 25 10 500 80 50 0.4

0.7 10 0.02 25 20 500 40 50 0.4

1.6 1 10 0.03 50 20 500 60 50 0.5

0.7 10 0.02 50 10 500 40 50 0.3

Response table of S/N ratios for the test problem with

c=1.4 and h=1 in Table 6.

Table 6. Response table of S/N ratios

Factors S/N Ratio

1 2 3

A -63,30 -63,32 -63,33

B -63,31 -63,30 -63,27

C -63,14 -63,17 -63,16

D -63,26 -63,31 -63,34

E -63,08 -63,21 -63,10

F -63,32 -63,30 -63,26

G -63,13 -63,30 -63,25

H -63,31 -63,26 -63,32

According to the highest S/N values, the levels of the

factors are determined and given in Table 5. Taguchi

experimental design is analyzed using Minitab 16 for

A multi- start iterated tabu search algorithm for the multi-resource agent bottleneck… 43

Windows (Minitab Inc.).

The MILP model was coded in GAMS 24.1.3 program

and the Cplex solver was used. Heuristic algorithms

were coded in the MATLAB R2012b and implemented

on an Intel (R) Core ™ i7- 5500 U CPU at 2.40 GHz

with 12 GB of RAM memory and the Windows 10

operating system. The proposed algorithm is compared

with the Tabu Search algorithm. The tabu search

algorithm and the proposed algorithm were run in equal

iterations. For this reason, the tabu search algorithm has

been run with a (maxStart * v * maxiter) number of

iterations. The neighbor generation of the TS algorithm

is same with proposed heuristic approach. The results

of the proposed algorithm, the tabu search algorithm,

and the MILP (mixed integer linear programming)

model are given in Table A1-A2. In Table A1 agent

number is 5 and job numbers are 75 and 100. In Table

A2 agent number is 10 and job numbers are 150 and

200. The problem specifications including the number

of jobs, distribution of the processing times, the value

of the c, probability of the parameter hij are given in the

first, second, third and fourth columns, respectively.

The MILP solution and CPU time, iterated local search

solution and CPU time of the algorithm, TS solution

and CPU time are given in Table A1-A2. The results of

the ILS and TS algorithms are compared by the MILP

solution. The heuristic error was calculated as follows:

%𝐸𝑟𝑟𝑜𝑟 =
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑀𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑀𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×100

In the study, 48 test problems were solved by MILP

model, ILP algorithm and TS algorithm. The success of

the proposed algorithm is shown by comparing the

results of the MILP model and TS algorithm. The

proposed heuristic algorithm gave better results than

TS algorithm in all test problems except 2 test

problems. ILS algorithm gave the same result with TS

for 5 test problems. The average error rates in heuristic

algorithms according to the number of jobs are given in

the Table 7.

Table 7. Average error according to job number

Job number
Average Error

ILS TS

75 0 0,31

100 0,005 0,28

150 0,005 0,87

200 0,13 1,23

Average 0,035 0,6725

The proposed heuristic algorithm found the optimal

results for test problems with 75 jobs. When the number

of jobs is taken as 100, ILS found the optimal results in

all test problems except 1 test problem. MILP model

cannot find the best results for test problems with 150

jobs at 3600 sec. The proposed heuristic algorithm

found a better solution in a shorter time than the MILP

model for 5 test problems out of 12 test problems.

When the number of jobs was 200, the ILS algorithm

gave better solutions for 6 test problems out of 12 test

problems in a shorter time than the MILP model. If the

tables are interpreted considering the number of agents,

the MILP model found optimal solution for all test

problems with 5 agents. The proposed heuristic

algorithm found optimal solution for test problems with

5 agents except 1 test problem. MILP model could not

find the best solution in 3600 seconds for test problems

with 10 agents. The proposed heuristic algorithm

provided better solution in 11 test problems out of 24

test problems in a shorter time than the MILP model.

When the number of agents was 10, the TS algorithm

provided a better solution for only 2 test problems than

the ILS algorithm. The proposed heuristic algorithms

were run in equal iteration number and ILS algorithm

provided solutions in a shorter time than TS algorithm

for all test problems. As a result, ILS algorithm

displayed better performance than TS algorithm for

MRBGAP.

5. Conclusion

In this article, multi-resource agent bottleneck

generalized assignment problem (MRBGAP) is

considered. The MRBGAP problem is the generalized

version of GAP and is a more difficult problem to solve.

However, many studies in the literature propose

heuristic algorithms for GAP. Agent qualifications are

examined firstly with this study for the MRBGAP. Due

to the NP hardness of the problem, a multi- start iterated

tabu search algorithm is proposed for the solution of the

problem. In addition, proposed heuristic algorithm is

compared with TS algorithm. According to

experimental comparisons, ILS algorithm yielded

better results than TS algorithm. ILS algorithm found

better results than the MILP model in a shorter time for

10 agents. With this study, large problem instances are

generated for MRBGAP. This study is the first to use

ILS algorithm for the MRBGAP. Future studies will

focus on matheuristic algorithm, other meta heuristic

algorithms and stochastic version of the problem.

References

[1] Pentico, D.W. (2007). Assignment problems: A

golden anniversary survey. European Journal of

Operational Research, 176, 774- 793.

[2] Mazzola, J. B., & Wilcox, S.P. (2001). Heuristics for

the multi- resource generalized assignment problem.

Naval Research Logistics, 48, 468- 483.

[3] Karsu, Ö., & Azizoğlu, M. (2012). The multi-

resource agent bottleneck generalised assignment

problem. International Journal of Production

Research, 5(2), 309- 324.

[4] Ross, G. T. (1975). A branch and bound algorithm

for the generalized assignment problem.

Mathematical Programming, 8, 91- 103.

[5] Posta, M., Ferland, J.A., & Michelon, P. (2012). An

exact method with variable fixing for solving the

generalized assignment problem. Computational

Optimization and Applications, 52, 629- 644.

[6] Avella, P., Boccia, M., & Vasilyev, I. (2010). A

computational study of exact knapsack separation

44 G. Bektur / IJOCTA, Vol.10, No.1, pp.37-46 (2020)

for the generalized assignment problem.

Computational Optimization and Applications, 45,

543- 555.

[7] Savelsbergh, M. (1997). A branch- and- price-

algorithm for the generalized assignment problem.

Operations Research, 831- 841.

[8] Pigatti, A., Poggi, M., & Uchoa, E. (2005).

Stabilized branch- and- cut- and- price for the

generalized assignment problem. Electronic Notes in

Discrete Mathematics, 19, 389- 395.

[9] Öncan, T., Şuvak, Z., Akyüz, M. H., & Altınel, İ. K.

(2019). Assignment problem with conflicts.

Computers and Operations Research (In press).

[10] Wu, W., Iori, M., Martello, S., & Yagiura, M.

(2018). Exact and heuristic algorithms for the

interval min- max regret generalized assignment

problem. Computers and Industrial Engineering,

125, 98- 110.

[11] Öncan, T. (2007). A survey of the generalized

assignment problem and its applications.

Information Systems and Operational Research, 45

(3), 123- 141.

[12] Higgins, A. J. (2001). A dynamic tabu search for

large- scale generalised assignment problems.

Computers and Operations Research, 28, 1039-

1048.

[13] Diaz, J. A., & Fernandez, E. (2001). A tabu search

heuristic for the generalized assignment problem.

European Journal of Operational Research, 132,

22- 38.

[14] Osman, İ. (1995). Heuristics for the generalized

assignment problem: simulated annealing and tabu

search approaches. Operations Research- Spektrum,

17, 211- 225.

[15] Chu, P. L., & Beasley, J. E. (1997). A genetic

algorithm for the generalized assignment problem.

Computers and Operations Research, 24 (1), 17- 23.

[16] Ozbakır, L., Baykasoğlu, A., & Tapkan, P. (2010).

Bees algorithm for generalized assignment problem.

Applied Mathematics and Computation, 11, 3782-

3795.

[17] Jeet, V., & Kutanoglu, E. (2007). Lagrangian

relaxation guided problem space search heuristics

for generalized assignment problem. European

Journal of Operational Research, 182 (3), 1039-

1056.

[18] Litvinchev, I., Mata, M., Rangel, S., & Saucedo, J.

(2010). Lagrangian heuristic for a class of the

generalized assignment problems. Computers and

Mathematics with Applications, 60 (4), 1115- 1123.

[19] French, A. P., & Wilson, J. M. (2007). An LP- based

heuristic procedure for the generalized assignment

problem with special ordered sets. Computers and

Operations Research, 34 (8), 2359- 2369.

[20] Souza, D. S., Santos H. G., & Coelho, I. M. (2017).

A hybrid heuristic in GPU- CPU based on scatter

search for the generalized assignment problem.

Procedia Computer Science, 108, 1404- 1413.

[21] Sethanan, K., & Pitakaso, R. (2016). Improved

differential evolution algorithms for solving

generalized assignment problem. Expert Systems

with Applications, 45, 450- 459.

[22] Liu, Y. Y., & Wang, S. (2015).A scalable parallel

genetic algorithm for the generalized assignment

problem. Parallel Computing, 46, 98- 119.

[23] Degroote, H., Velarde, J., & Causmaecker, P.

(2018). Applying algorithm selection- a case study

for the generalized assignment problem. Electric

Notes in Discrete Mathematics, 69, 205- 212.

[24] Chakravarthy, V. K., Ramana, V., & Umashankar,

C. (2018). Investigation of task bottleneck

generalized assignment problems in supply chain

optimization using heuristic techniques. IOSR

Journal of Business and Management, 20 (5), 41- 47.

[25] Fadaei, S., & Bichler, M. (2017). Generalized

assignment problem: truthful mechanism design

without money. Operations Research Letters, 45 (1),

72-76

[26] Sahni, S., & Gonzalez, T. (1976). P-complete

approximation problems. Journal of the Association

for Computing Machinery, 23, 556- 565.

[27] Yagiura, M., Komiya, A., Kojima, K., Nonobe, K.,

Nagamochi, H., Ibaraki, T., & Glover, F. (2007). A

path- relinking approach for the multi- resource

generalized quadratic assignment problem.

Engineering stochastic local search algorithms,

designing, implementing and analyzing effective

heuristics, 4638, 121- 135.

[28] Gavish, B., & Pirkul, H. (1991). Algorithms for the

multi- resource generalized assignment problem.

Management Science, 37 (6).

[29] Yagiura, M., Iwasaki, S., Ibaraki, T., & Glover, F.

(2004). A very large- scale neighborhood search

algorithm for the multi- resource generalized

assignment problem. Discrete Optimization, 1, 87-

98.

[30] Mitrovic- Minic, S., & Punnen, A. (2009). Local

search intensified: Very large scale variable

neighborhood search for the multi- resource

generalized assignment problem. Discrete

Optimization, 6, 370- 377.

[31] Moussavi, S. E., Mahdjoub, M., & Grunder, O.

(2018). A hybrid heuristic algorithm for the

sequencing generalized assignment problem in an

assembly line. IFAC- Papers OnLine, 51(2), 695-

700.

[32] Qin, T., Peng, B., Benlic, U., Cheng, T. C. E., Wang,

Y., & Lü, Z. (2015). Iterated local search based on

multi- type perturbation for single- machine

earliness/ tardiness scheduling. Computers and

Operations Research, 61, 81- 88.

[33] Ibaraki, T., Imahori, S., Nonobe, K., Sobue, K., Uno,

T., & Yagiura, M. (2008). An iterated local search

algorithm for the vehicle routing problem with

convex time penalty functions. Discrete Applied

Mathematical, 156 (11), 2050- 2069.

[34] Subramanian, A., Drummond, L. M. D. A., Bentes,

C., Ochi, L. S., & Farias, R. (2010). A parallel

heuristic for the vehicle routing problem with

simultaneous pickup and delivery. Computers and

Operations Research, 37 811), 1899- 1911.

[35] Penna, P. H. V., Subramanian, A., & Ochi, L. S.

(2013). An iterated local search heuristic for the

heterogeneous fleet vehicle routing problem.

Journal of Heuristics, 19 (2), 201- 232.

[36] Michallet, J., Prins C., Amodeo, L., Yalaoui, F., &

Vitry, G. (2014). Multi- start iterated local search for

the periodic vehicle routing problem with time

A multi- start iterated tabu search algorithm for the multi-resource agent bottleneck… 45

Windows and time spread constraints on services.

Computers and Operations Research, 41, 196- 207.

[37] Stützle, T. (2006). Iterated local search for the

quadratic assignment problem. European journal of

Operations Research, 174 (3), 1519- 1539.

[38] Avcı, M., & Topaloglu, S. (2017). A multi- start

iterated local search algorithm for the generalized

quadratic multiple knapsack problem. Computers

and Operations Research, 83, 54- 65.

[39] Guan, J., Lin, G., & Feng, H. (2018). A multi- start

iterated local search algorithm for the uncapacitated

single allocation hub location problem. Applied Soft

Computing, 73, 230- 241

[40] Meignan, D., & Knust, S. (2019). A neutrality- based

local search for shift scheduling optimization and

interactive reoptimization. European Journal of

Operational Research, 279 (2), 320- 334.

[41] Mozdgir, A., Mahdavi, I., Badeleh, I. S., &

Solimanpur, M. (2013). Using the Taguchi method

to optimize the differential evolution algorithm

parameters for minimizing the workload smoothness

index in simple assembly line balancing.

Mathematical and Computer Modelling, 57 (1-2),

137- 151.

Gülçin Bektur received her MSc (2013) and PhD (2018)

degrees from Department of Industrial engineering,

Eskisehir Osmangazi University, Turkey. Her research

areas include optimization and heuristic search. She is an

Assistant Professor at the Department of Industrial

engineering, Iskenderun Technical University.

 http://orcid.org/0000-0003-4313-7093

Appendices

Table A1. Five agent and 75 or 100 jobs (* denotes optimal solutions)

 MILP ILS TS

n pij1 c hij Solution CPU Solution CPU %Error Solution CPU %Error

75 U[5,25] 1,4 1 697,35 * 0,49 697,35 45,22 0 699,77 85,79 0,35

75 U[5,25] 1,4 0,7 728,3 * 1,08 728,3 27,41 0 729,64 40,42 0,19

75 U[5,25] 1,6 1 574,27 * 1,31 574,27 48,98 0 575,07 82,75 0,14

75 U[5,25] 1,6 0,7 814,46 * 1,2 814,46 20,13 0 814,46 42,42 0

75 U[15,25] 1,4 1 1153,9 * 0,81 1153,9 35,26 0 1153,9 82,19 0

75 U[15,25] 1,4 0,7 1219,56 * 1,7 1219,56 22,19 0 1220,53 45,42 0,08

75 U[15,25] 1,6 1 1157,64 * 1,42 1157,64 39,84 0 1169,14 88,46 1

75 U[15,25] 1,6 0,7 978,86 * 1,03 978,86 20,46 0 978,86 42,46 0

75 U[25,35] 1,4 1 1806,47 * 3,56 1806,47 41,21 0 1812,16 85,64 0,32

75 U[25,35] 1,4 0,7 1915,14 * 2,57 1915,14 25,12 0 1915,14 41,53 0

75 U[25,35] 1,6 1 1770,45 * 2,7 1770,45 41,54 0 1775,76 86,79 0,3

75 U[25,35] 1,6 0,7 1921,74 * 1,25 1921,74 21,89 0 1948,96 48,86 1,42

100 U[5,25] 1,4 1 814,47 * 2,8 814,96 81,69 0,06 818,29 102,85 0,47

100 U[5,25] 1,4 0,7 917,57 * 1,76 917,57 67,88 0 917,57 85,69 0

100 U[5,25] 1,6 1 860,59 * 5,53 860,59 82,87 0 861,32 105,18 0,09

100 U[5,25] 1,6 0,7 1008,28 * 0,89 1008,28 61,95 0 1008,28 80,25 0

100 U[15,25] 1,4 1 1522,29 * 5,44 1522,29 89,22 0 1522,49 109,18 0,02

100 U[15,25] 1,4 0,7 1616,18 * 1,43 1616,18 69,28 0 1628,33 81,43 0,76

100 U[15,25] 1,6 1 1537,62 * 2,18 1537,62 87,87 0 1545,82 106,17 0,54

100 U[15,25] 1,6 0,7 1645,26 * 2,06 1645,26 68,51 0 1649,96 88,88 0,29

100 U[25,35] 1,4 1 2451,96 * 5,5 2451,96 86,54 0 2463,93 101,6 0,49

100 U[25,35] 1,4 0,7 2514,61 * 42,54 2514,61 64 0 2514,61 87,67 0

100 U[25,35] 1,6 1 2435,7 * 4,41 2435,7 83,75 0 2451,57 107,62 0,66

100 U[25,35] 1,6 0,7 2645,9 * 3,59 2645,9 55,88 0 2647,86 80,86 0,08

http://orcid.org/0000-0003-4313-7093

46 G. Bektur / IJOCTA, Vol.10, No.1, pp.37-46 (2020)

Table A2. Ten agent and 150 or 200 jobs

 MILP ILS TS

n pij1 c hij Solution CPU Solution CPU %Error Solution CPU %Error

150 U[5,25] 1,4 1 500,19 3600 501,18 1656,85 0,2 501,68 2258,5 0,3

150 U[5,25] 1,4 0,7 568,62 3600 562,13 1258,45 -1,14 570,8 1874,6 0,38

150 U[5,25] 1,6 1 487,87 3600 489,23 1845,74 0,28 499,49 2156,8 2,38

150 U[5,25] 1,6 0,7 585,68 3600 588,74 1152,41 0,52 587,16 1745,7 0,25

150 U[15,25] 1,4 1 1068,17 3600 1069,5 1985,12 0,12 1071,63 2275,3 0,32

150 U[15,25] 1,4 0,7 1115,84 3600 1114,14 1158,46 -0,15 1120,07 1856,4 0,38

150 U[15,25] 1,6 1 1062,19 3600 1064,89 1585,45 0,25 1074,3 2041,9 1,14

150 U[15,25] 1,6 0,7 1111,28 3600 1114,23 985,12 0,27 1119,24 1765,2 0,72

150 U[25,35] 1,4 1 1683,83 3600 1683,55 1289,13 -0,02 1684,24 2256,5 0,02

150 U[25,35] 1,4 0,7 1766,41 3600 1762,5 1258,45 -0,22 1784,49 1946,4 1,02

150 U[25,35] 1,6 1 1685,86 3600 1684,28 1365,75 -0,09 1720,34 2178,7 2,04

150 U[25,35] 1,6 0,7 1770,04 3600 1770,95 1058,43 0,05 1798,02 1845,5 1,58

200 U[5,25] 1,4 1 655,5 3600 660,76 2156,52 0,8 658,02 2985,4 0,38

200 U[5,25] 1,4 0,7 748,35 3600 752,63 1985,63 0,57 762,46 2441,1 1,89

200 U[5,25] 1,6 1 666,2 3600 670,19 2045,12 0,6 669,13 2874,3 0,44

200 U[5,25] 1,6 0,7 769,65 3600 766,38 1756,42 -0,42 789,1 2045,5 2,53

200 U[15,25] 1,4 1 1425,66 3600 1425,28 2378,41 -0,03 1425,37 2796,1 -0,02

200 U[15,25] 1,4 0,7 1494,56 3600 1494,46 1974,23 -0,01 1499,15 2248,6 0,31

200 U[15,25] 1,6 1 1432,5 3600 1431,54 2685,42 -0,07 1498,45 2213,9 4,6

200 U[15,25] 1,6 0,7 1465,53 3600 1468,01 1545,78 0,17 1496,42 2016,2 2,11

200 U[25,35] 1,4 1 2251,16 3600 2250,43 1985,45 -0,03 2289,15 2845,3 1,69

200 U[25,35] 1,4 0,7 2338,99 3600 2339,41 1845,12 0,02 2339,95 2156,2 0,04

200 U[25,35] 1,6 1 2234,67 3600 2232,55 2156,45 -0,1 2256,78 2845,3 0,99

200 U[25,35] 1,6 0,7 2330,87 3600 2333,75 1585,12 0,12 2328,86 2045,9 -0,09

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of the

copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA,

so long as the original authors and source are credited. To see the complete license contents, please visit

http://creativecommons.org/licenses/by/4.0/.

http://ijocta.balikesir.edu.tr/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

