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 In this study, a multi-resource agent bottleneck generalized assignment problem 

(MRBGAP) is addressed. In the bottleneck generalized assignment problem 

(BGAP), more than one job can be assigned to an agent, and the objective function 

is to minimize the maximum load over all agents. In this problem, multiple 

resources are considered and the capacity of the agents is dependent on these 

resources and it has minimum two indices. In addition, agent qualifications are 

taken into account. In other words, not every job can be assignable to every agent. 

The problem is defined by considering the problem of assigning jobs to employees 

in a firm. BGAP has been shown to be NP- hard. Consequently, a multi-start 

iterated tabu search (MITS) algorithm has been proposed for the solution of large-

scale problems. The results of the proposed algorithm are compared by the results 

of the tabu search (TS) algorithm and mixed integer linear programming (MILP) 

model.  
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1. Introduction 

Assignment problems (AP) are an important topic 

which is frequently studied in the literature. AP is 

generally considered in three classes. The simplest 

form of the AP, in which each agent can be assigned a 

job at most, is the classic AP. There are m number of 

agents and n number of jobs in this problem. Each job 

must be assigned to an agent so that the total cost is 

minimal. Each agent should also be assigned a job (one-

to-one). Another class of the AP is generalized 

assignment problem (GAP). In GAP, more than one job 

can be assigned to an agent. Some subclasses of GAP 

are multi-resource generalized assignment problem 

(MRGAP), bottleneck generalized assignment problem 

(BGAP). Another class of AP is multidimensional AP. 

In multidimensional AP, jobs are assigned to at least 

two different resources. Detailed information can be 

reached from the literature review by Pentico [1]. 

In the GAP, each agent has a certain capacity. Jobs use 

this capacity and the capacity of the agent cannot be 

exceeded. In MRGAP, multiple resources are used for 

the completion of the jobs. Therefore, the capacity of 

agents depends on these resources. The capacity 

parameter of the agents has at least two indices due to 

parameter dependent on the agent and the resource. 

There are many applications of the MRGAP in real life.  

 

For example, in vehicle routing problems, as vehicles 

are agents, and jobs are considered to be the places 

where vehicles should be visited, and the capacity of 

the vehicles depends on both the weight and the volume 

of the vehicle, the problem can be considered as the 

MRGAP [2]. 

In bottleneck assignment problems (BAP), the 

objective function is the minimization of the maximum 

assignment cost or maximum load over all agents. 

Completion time of the jobs also can be taken into 

account. In other words, completion time of the last job 

is minimized in the BAP [3]. 

GAP is an important problem frequently studied in 

literature. Studies in the literature can be categorized as 

studies that proposes exact algorithms and heuristic 

algorithms. In the studies that propose exact 

algorithms, the branch-bound algorithm ([4] and [5]), 

the cutting plane algorithm [6], the branch and price 

algorithm [7, 8], branch- and- cut algorithm for GAP 

with additional pair constraints [9] and with min- max 

regret criterion [10] were used. When the exact solution 

approaches are used, the solution time of the problem 

is quite prolonged. Since the GAP problem is an NP-

hard problem, it is quite common to use heuristic 

algorithms that gives the near optimal solution in a 

short time [11]. In the studies using heuristic  
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algorithms, tabu search algorithm [12-14], genetic 

algorithm [15], bees algorithm [16], a heuristic based 

on Lagrangian relaxation [17, 18], LP- based heuristic 

[19], a hybrid heuristic based on scatter search [20], 

improved differential evolution algorithm [21], a 

parallel genetic algorithm [22] and simulated annealing 

algorithm [14] were used. Degroote et al. [23], poposed 

a methodology for selection the most suitable algorithm 

for GAP. Chakravarthy et al. [24], proposed a heuristic 

algorithm for bottleneck generalized assignment 

problem. For a strategic variant of GAP, approximation 

algorithm is proposed by Fadaei and Bichler [25]. 

Detailed information for GAP can be found in the 

literature review by Öncan [11]. 

Although there are many studies related to GAP, the 

number of studies dealing with the MRGAP is less. 

MRGAP is the generalization of the GAP. GAP has 

been shown to be NP- hard and MRGAP is also NP- 

hard [26]. Karsu and Azizoğlu [3], proposed a branch-

bound algorithm for the multi-resource bottleneck 

GAP. Mazzola and Wilcox [2], proposed a three stage 

heuristic algorithm for the MRGAP. In the first stage, a 

suitable solution is obtained and at the other stages, this 

solution is improved. Yagiura et al. [27], proposed a 

new algorithm for multi-resource generalized quadratic 

assignment problem. In the algorithm, the path 

relinking approach was used in the neighborhood 

generation. Gavish and Pirkul [28], proposed a 

heuristic algorithm and branch-bound algorithm for the 

MRGAP. They also proposed some rules for the 

reduction of the problem dimensions. Yagiura et al. 

[29], proposed a TS-based heuristic algorithm for the 

MRGAP. Mitrovic-Minic and Punnen [30], proposed a 

heuristic algorithm based on a variable neighborhood 

search for the MRGAP.  

The MRGAP problem is the generalized version of 

GAP and is a more difficult problem to solve. However, 

many studies in the literature propose an heuristic 

algorithm for GAP. Wu et al. [10], Souza et al. [20], 

Sethanan and Pitakaso [21], and Moussavi et al. [31] 

proposed an heuristic algorithm for the generalized 

assignment problem. Difference from the literature, in 

this study an heuristic algorithm is proposed for the 

multi-resource agent bottleneck generalized 

assignment problem with agent qualifications. The 

differences of the study from literature are agent 

qualifications are taken into account, a different 

heuristic algorithm is proposed for the larger size test 

problems than the problem sizes in the literature and the 

success of the proposed heuristic is shown through test 

problems by comparing with Tabu Search in the 

literature.  The TS algorithm has been proposed by 

Karsu and Azizoğlu [3] in the literature for the problem 

of MRGAP. The proposed iterated local search 

algorithm is compared with the TS algorithm. Test 

problems are generated in two different ways as that 

takes into account agent qualification and not takes into 

account agent qualification. In addition, larger size test 

problems are solved and the success of the algorithm 

has been shown through test problems. In addition, 

iterative local search algorithm was proposed for the 

first time for the MRGAP.  

The remainder of this paper is organized as follows. 

The first section of the study is the introduction, in the 

second section the problem is defined and MILP model 

is given. In the third section, the proposed solution 

method is explained. In the fourth section, experimental 

results are given and conclusions are given in the final 

section. 

2. Problem description 

In this study, multi-resource bottleneck generalized 

assignment problem (MRBGAP) with agent 

qualifications was addressed. The problem addressed in 

this study is defined by the problem of assigning 

employees to jobs in a firm. Employees are considered 

as agents. Each jobs must be assigned to an employee. 

More than one job can be assigned to an employee. 

Employee capacities depend on employee and shift. 

The shifts are defined as morning, noon, afternoon, 

evening and night. Employees' capacities (working 

hours) vary according to shifts. For example, an 

employee can work more in the morning shift than in 

the evening shift. For this reason, the employees' 

capacity parameter has two indices due to the parameter 

depending on the employee and the shift. The objective 

function is the minimization of the completion time of 

the last job, and this objective function is the bottleneck 

objective function. 

The sets, indices, parameters, decision variables, 

constraints and objective function of the MILP model 

are given below; 

Sets and indices 

N:Set of jobs, N= {1, 2, …, n}  

M: Set of agents, M= {1, 2,…, m} 

R: Set of resource, R= {1, 2,…,r}   

 j: job indices where j⋲ N . 

i: agent indices where i⋲ M . 

k: resource indices where k⋲ R . 

Parameters 

pijk: processing time for job j on agent i and resource k 

bik: capacity for agent i on resource k 

hij= {
1; 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑗𝑜𝑏 𝑗
0;                                                                   𝑜. 𝑤.

 

M: very large positive number 

Decision variables 

 xij =  {
1; 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑔𝑒𝑛𝑡 𝑖
0;                                                   𝑜. 𝑤.
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Lmax: maximum completion time 

Model  

Min Z= Lmax           (1) 

s.t. 

∑ 𝑝𝑖𝑗𝑘𝑥𝑖𝑗𝑗 ≤ bik  ∀ i, k          (2) 

∑ 𝑥𝑖𝑗𝑖 =1  ∀ j          (3) 

∑ ∑ 𝑝𝑖𝑗𝑘𝑥𝑖𝑗𝑗𝑘 ≤ Lmax  ∀ i        (4) 

𝑥𝑖𝑗≤  hij   ∀ i, j         (5)     

xij⋲ {0,1} ve Lmax ≥ 0          (6) 

Constraint (1) shows the objective function, 

minimization of the maximum completion time. 

Constraint (2) ensures agent capacities are not 

exceeded. With constraint (3), each job is assigned to 

an agent. The constraint (4) calculates the completion 

of the last job. The constraint (5) ensures agent 

qualifications are satisfied. Constraints (6) are the sign 

constraints.  

Table 1: Parameters of pijk 

  pij1 pij2 pij3 

i 1 2 3 4 1 2 3 4 1 2 3 4 

1 18 25 6 5 10 23 37 42 36 31 25 14 

2 45 41 17 7 9 10 40 15 19 46 15 8 

3 44 13 18 10 10 36 9 17 46 9 11 32 

4 37 28 45 5 6 28 25 14 10 25 41 15 

5 6 31 45 29 24 29 49 35 42 37 9 17 

6 37 41 4 11 17 4 30 47 37 38 11 34 

7 6 44 30 36 23 40 14 10 45 21 33 12 

8 20 25 28 46 42 44 23 11 9 45 26 29 

9 21 14 39 14 28 5 27 32 41 44 31 32 

10 34 47 48 41 28 8 21 33 48 12 15 32 

11 32 44 45 17 4 45 21 45 23 11 16 17 

12 32 11 20 44 21 43 25 6 39 26 5 47 

13 37 45 8 32 46 17 47 24 20 25 15 11 

14 12 27 22 38 5 29 12 40 14 10 5 33 

15 34 29 13 24 33 11 16 35 13 36 4 42 

 

The problem is also explained by an example. In the 

example, there are 15 jobs, 4 employees (agents) and 3 

shifts (resources). Table 1 shows pijk values. hij and bjk 

parameters are given in Table 2 and Table 

3,respectively.  

Example: 15 jobs, 4 employee (agent) and 3 shifts 

(resource) 

 

Table 2: Parameters of hij  

i  hij 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 

2 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 

3 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 

4 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 

 

Table 3: Parameters of bjk  

i 
      bik 

1 2 3 

1 138 102 147 

2 120 100 110 

3 130 132 95 

4 90 105 100 

 

In the best solution, jobs 2, 7 and 10 are assigned to 

agent 1; jobs 11, 13 and 15 are assigned to agent 2; jobs 

3, 6, 9, 12 and 14 are assigned to agent 3; jobs 1, 4, 5, 

and 8 are assigned to agent 4. Loads of the agents are 

254, 263, 269 and 262, respectively. The objective 

function value is 269. 

3. Multi-start iterated tabu search algorithm  

Since the problem is NP-Hard, a multi-start iterated 

tabu search algorithm has been proposed to solve large 

problem instances. 

The iterated local search algorithm is a heuristic 

algorithm that has three basic stages. The first stage is 

the generation of the initial solution. At the second 

stage the solution is improved by a local search method. 

The third stage is the perturbation stage. The steps of 

the iterated local search algorithm are given in Figure 

1. Once the initial solution is obtained, the algorithm 

repeats the local search and perturbation steps until the 

stopping criterion is achieved. If the solution obtained 

from the local search is better than the current solution, 

the solution is considered to be the current solution. The 

perturbation mechanism is intended to escape from 

local optimal. In the perturbation phase, the solution is 

changed slightly. 

Iterated local search algorithm is applied to many 

combinatorial optimization problem successfully. 

Iterated local search algorithm is proposed for the 

scheduling problem [32], vehicle routing problem [33-

36], quadratic assignment problem [37], quadratic 

knapsack problem [38], hub location problem [39] and 

shift scheduling [40]. 

Firstly, abbreviations used in algorithm are given: 

S0(c)(n): Initial (current) (neighbor) solution;  

Sp: Perturbated solution;  

E0(c)(n): Obj. func. value of the initial (current) 

(neighbor) solution; 
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CL: Set of jobs; 

TLL: Tabu list length;  

v: maximum iteration number of TS; 

MTLS: Maximum tabu list size;  

Ebest: Objective function value of the best solution; 

maxStart: Multi- start number of the algorithm 

In this study, multi- start iterated tabu search algorithm 

is proposed for the multi resource bottleneck 

generalized assignment problem. Different features 

have been used to increase the success of the proposed 

algorithm. 

 

Procedure ILS 

Generate initial solution S0; 

Apply local search procedure to S0 and obtain S*;  

While termination condition not meet 

 Apply perturbation to S* and obtain Sp; 

 Apply local search procedure to Sp and obtain 𝑆′′; 

 If f(𝑆′′)<f(S*) 

  S*←𝑆′′; 

 End 

End 

Figure 1. Algorithm of the iterated local search 

 

One of the important features of the proposed algorithm 

is to start the search process multiple times. This feature 

provides diversification. Initial solution of the 

algorithm is generated by  randomly or by a greedy 

algorithm. Throughout our preliminary experiments, it 

was observed that the algorithm reached better 

solutions faster by using greedy algorithm as an initial 

solution finding mechanism. However, only the use of 

the greedy algorithm caused starting with very similar 

solutions. Thus, random solutions also taken as an 

initial solution for the investigation of the unexplored 

regions in the search space. For this, a random number 

is derived. If this random number is greater then q (a 

predetermined parameter) the algorithm uses the 

greedy algorithm. Otherwise random initial solution is 

generated. TS algorithm is used as a local search 

algorithm. The TS algorithm and perturbation 

mechanisms are applied respectively until the stopping 

criterion is achieved. Once the stopping criterion has 

been achieved, an initial solution is generated again and 

the steps are repeated until the number of multiple 

starting is reached.  

In the next section, initial solution finding mechanisms, 

TS algorithm used in local search, perturbation 

mechanism and all steps of algorithm will be described. 

 

3.1. Initial solution finding mechanism  

3.1.1. A greedy construction heuristic 

When generating the initial solution, a job is assigned 

to the agent with the smallest completion time as 

possible. For this, pij values are calculated using 

Equation 7. pij denotes the total completion time of the 

job according to agent on the basis of resource. 

pij=∑ 𝑝𝑖𝑗𝑘𝑘          ∀i,j                                           (7)                                                                                        

The pij values are sorted in ascending order and the spij 

matrix is obtained. The aim is to assign the job to the 

first agent in the spij matrix. However, since each agent 

has a capacity and agent qualifications are taken into 

account, the agent cannot be assigned to first agent in 

the spij matrix. If the job is not assigned to the first 

agent, the job is assigned to second order of the agent 

in the spij matrix. Algorithm is repeated until each job 

is assigned to an agent and a solution is obtained. The 

algorithm is given on Figure 2. 

3.1.2. Random initial solution 

In the random solution finding algorithm, the randomly 

selected job j* is assigned to the randomly selected 

agent i*. If job j* is not assignable to i*, another agent 

is randomly generated. The algorithm is working until 

a solution is obtained. 

3.2. Local search algorithm 

The TS algorithm was used as the local search 

algorithm in the proposed heuristic method.  

Two methods are used to generate the neighboring 

solutions from current solution. The first method is to 

assign each job in the agent with the largest completion 

time to the other agents. The other method is the 

reciprocal displacement of jobs in the agent with the 

largest completion time with the jobs in other agents. 

All solutions are derived from the current solution by 

using neighboring solution generation methods.  

The best of these solutions is taken, and if the 

movement in the generation of the neighbor solution is 

not in the tabu list, the solution is taken directly as the 

current solution. If a movement is made in the tabu list 

and the solution is not a better solution than the best 

solution, the neighbor solution with the second smallest 

objective function is chosen and the same test is also 

applied to this solution. This step is repeated until a 

solution is accepted.  

The length of the tabu list is considered as fixed, and 

when the tabu list is full, the movement that has been in 

the list for the longest period is deleted. It is forbidden 

to carry out the movements in the tabu list. If a better 

solution is obtained than the best solution, the tabu is 

eliminated and the relevant solution is taken as the 

current solution.  

If the solution is obtained as a result of the use of the 

first neighboring method, the job and the relevant agent 

are added to the tabu list. The movement of this job to 

the relevant agent during the tabu is prohibited. If the 

solution is obtained as a result of the use of the second 

neighboring method, replacement of these jobs is 

prohibited. The algorithm works until it reaches the 

predetermined number of iterations. The steps of the 

tabu search algorithm are given in Figure 3. 
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Procedure a greedy construction heuristic 

Input: pijk, hij, bik, spij 

Output: Initial solution (S0), Objective funct. value of 

S0 (E0) 

exit1←0, 𝑛′←0; CL←{1,…,n} 

While exit1==0 

 exit2←0; x←1; flag←0; 

 While exit2==0 

Select the job j* randomly from the CL and assign    

the j* to the x th order of the agent in the spij* 

matrix; 

    For k=1 to r 

       If bi*k<pi*j*k or hi*j*==0 

       flag←1; 

       End 

    End 

    If flag==1 

     x←x+1; 

    Else 

  exit2←1; 𝑛′←𝑛′+1; 

  bi*k←bi*k-pi*j*k;CL←CL\{j*}; 

    End 

    If x==m 

      exit2←1; 𝑛′←0; Initialize CL and bik; 

    End 

 End 

   If 𝑛′==n 

  exit1←1; 

    End 

End 

Figure 2. Greedy Construction Heuristic 

 

 

Procedure TS algorithm  

Input: pijk, bik, hij, m, n, r, v, MTLS, S0, E0 

Output: Near optimal solution (S*) 

S*←S0; E*←E0; Sc←S0; Ec←E0; TLL←1; 

While iter<v 

Generate neighbor solutions and sort ascending 

order according to obj. func.value (Sn 
t); t←1; 

check←0; 

 While check==0 

       If the movement of Sn 
t not tabu or En

t<Ebest 

           Sc←Sn
t; Ec←En

t;  

                Insert the movement of Sc at the tabu list; 

                TLL←TLL+1; check←1; 

        Else 

          t←t+1; 

       End 

 End 

      If TLL==MTLS+1 

         Delete the first element in the tabu list; 

         TLL←1; 

 End 

 If Ec<E* 

  S*←Sc; E*←Ec; 

 End 

 iter←iter+1; 

End 

Figure 3. Tabu search algorithm 

 

3.3. Perturbation mechanism 

The iterative local search algorithm uses the 

perturbation mechanism to escape the local optimal. If 

the perturbation is too strong, the algorithm can move 

away from promising regions. If perturbation is too 

small, the algorithm may loop in previously searched 

regions. Therefore, it is very important to determine the 

appropriate perturbation length. With perturbation, a 

new solution (𝑆′′) is derived from one of the methods 

of the neighboring solution from the current solution 

(𝑆′). If objective function value of 𝑆′′ is less than 

objective function value 𝑆′, then the perturbated 

solution will be 𝑆′′.  

If 𝑆′′ is accepted, the value Ɣ is increased by λ. 

Otherwise, a new 𝑆′′ solution is derived. λ is taken as a 

value between 0 and 1. If the number of consecutive 

rejected solutions reaches a predetermined value 

(maxTry), the value of Ɣ is increased by λ. The 

algorithm works until the number of applied moves 

equal to pertLength. The perturbation mechanism is 

given in Figure 4. 

 

Procedure Perturbation 

Input: 𝑆′, pertLength, λ, maxtry 

Output: Sp 

p←1; Ɣ←1+ λ; Sp←𝑆′; try←0; 

While p≤pertLength 

 Generate a random solution 𝑆′′, from 𝑆′ by     

applying a randomly selected neighborhood structure; 

 If f(𝑆′′)≤ Ɣ* f(𝑆′) 

  Sp←𝑆′′; Ɣ← Ɣ + λ; p←p+1; try←0; 

 Else 

  try←try+1; 

  If try>maxtry 

       Ɣ← Ɣ +λ; try←0; 

    End 

 End 

End 

Figure 4. Perturbation mechanism 

 



42                                               G. Bektur / IJOCTA, Vol.10, No.1, pp.37-46 (2020) 

3.4. Steps of the algorithm 

The steps of the proposed multistart iterated tabu search 

algorithm are given in Figure 5. 

 

Procedure MS- ITS 

Input: problem data, maxStart, λ, maxTry, pertLength, 

v, MTLS, q, maxiter 

Output: Near optimal solution (S*) 

For s=1:maxStart 

 pertLength←1; 

 Generate a random number rnd; 

 If rnd≤q 

  Construct a random initial solution S0 with the          

objective function E0; 

  (S0,E0)←RandomInitialSolution(problem data) 

 Else 

  Construct an initial solution S0 with the objective  

function E0 using greedy algorithm; 

  (S0,E0)←GreedyInitialSolution(problem 

data,spij) 

 End 

 (S*,E*)←TabuSearchAlgorithm(problem data, 

v, MTLS,S0,E0) 

  𝑆′=S*; 𝐸′=E*; 

 While iteration<maxiter 

 (Sp,Ep)←Perturbation(pertLength,λ,maxtry, 𝑆′,

 𝐸′) 

       (𝑆′′, 𝐸′′)←TabuSearchAlgorithm(problem data, 

v, MTLS,Sp,Ep) 

  If 𝐸′′<E* 

      S*←𝑆′′; E*←𝐸′′; 

        End  

  iteration← iteration+1; 

     End 

End 

Figure 5. Steps of the algorithm 

4. Computational results 

The success of heuristic algorithms strongly depends 

on the selection of the right parameters. The parameters 

of the heuristic are maxStart, λ, maxTry, pertLength, v, 

MTLS, maxiter and q. Taguchi experimental design 

(TED) reduces the number of experiments and it is a 

successful method for determining the parameters of 

heuristic algorithms. If the number of parameters is 

high TED is preferred because it reduces the number of 

experiments [41]. The parameters of the algorithm were 

determined with TED due to proposed algorithm has 

many parameters. Factor levels are given in Table 4. 

There has been 8 factors and 3 levels. L27 orthogonal 

array is selected. Since the objective function of the 

problem is minimization, smaller-the-better type 

function is selected for the Taguchi design. S/N ratio is 

given below (Eq- 8). n is the number of observations in 

each experiment and Yi is the objective function value. 

S/N ratio= −10 ∗ 𝑙𝑜𝑔 (
1

𝑛
∑ 𝑌𝑖

2𝑛
𝑖=1 )                      (8) 

 

Table 4: Factor levels 

Factors Levels 

maxStart (A) 10; 15 and 20 

λ (B) 0.02; 0.03 and 0.04 

maxTry (C) 25, 50 and 75  

pertLength (D) 10; 20 and 30 

v (E) 500; 750 and 1000 

MTLS (F) 40; 60 and 80 

maxiter (G) 50; 75 and 100 

q (H) 0.3; 0.4 and 0.5 

 

In this study, instead of applying TED to each test 

problem, the following test problems were selected and 

TED was applied. In Table 5 selected test problems and 

determined parameters are given. In the selected 

problems, U [15,25], number of agent is 10 and number 

of jobs is 200. The largest problem size was preferred. 

Test problems are generated as described in the study 

by Karsu and Azizoğlu [3].  

 

Table 5. Selected test problems and determined 

parameters 

c hij A B C D E F G H 

1.4 1 10 0.04 25 10 500 80 50 0.4 

0.7 10 0.02 25 20 500 40 50 0.4 

1.6 1 10 0.03 50 20 500 60 50 0.5 

0.7 10 0.02 50 10 500 40 50 0.3 

 

Response table of S/N ratios for the test problem with 

c=1.4 and h=1 in Table 6.  

 

Table 6. Response table of S/N ratios 

Factors S/N Ratio 

1 2 3 

A -63,30 -63,32 -63,33 

B -63,31 -63,30 -63,27 

C -63,14 -63,17 -63,16 

D -63,26 -63,31 -63,34 

E -63,08 -63,21 -63,10 

F -63,32 -63,30 -63,26 

G -63,13 -63,30 -63,25 

H -63,31 -63,26 -63,32 

 

According to the highest S/N values, the levels of the 

factors are determined and given in Table 5. Taguchi 

experimental design is analyzed using Minitab 16 for 
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Windows (Minitab Inc.). 

The MILP model was coded in GAMS 24.1.3 program 

and the Cplex solver was used. Heuristic algorithms 

were coded in the MATLAB  R2012b and implemented 

on an Intel (R) Core ™ i7- 5500 U CPU at 2.40 GHz 

with 12 GB of RAM memory and the Windows 10 

operating system. The proposed algorithm is compared 

with the Tabu Search algorithm. The tabu search 

algorithm and the proposed algorithm were run in equal 

iterations. For this reason, the tabu search algorithm has 

been run with a (maxStart * v * maxiter) number of 

iterations. The neighbor generation of the TS algorithm 

is same with proposed heuristic approach. The results 

of the proposed algorithm, the tabu search algorithm, 

and the MILP (mixed integer linear programming) 

model are given in Table A1-A2. In Table A1 agent 

number is 5 and job numbers are 75 and 100. In Table 

A2 agent number is 10 and job numbers are 150 and 

200. The problem specifications including the number 

of jobs, distribution of the processing times, the value 

of the c, probability of the parameter hij are given in the 

first, second, third and fourth columns, respectively. 

The MILP solution and CPU time, iterated local search 

solution and CPU time of the algorithm, TS solution 

and CPU time are given in Table A1-A2. The results of 

the ILS and TS algorithms are compared by the MILP 

solution. The heuristic error was calculated as follows: 

%𝐸𝑟𝑟𝑜𝑟 =
𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑀𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑀𝐼𝐿𝑃 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×100 

In the study, 48 test problems were solved by MILP 

model, ILP algorithm and TS algorithm. The success of 

the proposed algorithm is shown by comparing the 

results of the MILP model and TS algorithm. The 

proposed heuristic algorithm gave better results than 

TS algorithm in all test problems except 2 test 

problems. ILS algorithm gave the same result with TS 

for 5 test problems. The average error rates in heuristic 

algorithms according to the number of jobs are given in 

the Table 7.  

 

Table 7. Average error according to job number 

Job number 
Average Error 

ILS TS 

75 0 0,31 

100 0,005 0,28 

150 0,005 0,87 

200 0,13 1,23 

Average 0,035 0,6725 

 

The proposed heuristic algorithm found the optimal 

results for test problems with 75 jobs. When the number 

of jobs is taken as 100, ILS found the optimal results in 

all test problems except 1 test problem. MILP model 

cannot find the best results for test problems with 150 

jobs at 3600 sec. The proposed heuristic algorithm 

found a better solution in a shorter time than the MILP 

model for 5 test problems out of 12 test problems. 

When the number of jobs was 200, the ILS algorithm 

gave better solutions for 6 test problems out of 12 test 

problems in a shorter time than the MILP model. If the 

tables are interpreted considering the number of agents, 

the MILP model found optimal solution for all test 

problems with 5 agents. The proposed heuristic 

algorithm found optimal solution for test problems with 

5 agents except 1 test problem. MILP model could not 

find the best solution in 3600 seconds for test problems 

with 10 agents. The proposed heuristic algorithm 

provided better solution in 11 test problems out of 24 

test problems in a shorter time than the MILP model. 

When the number of agents was 10, the TS algorithm 

provided a better solution for only 2 test problems than 

the ILS algorithm. The proposed heuristic algorithms 

were run in equal iteration number and ILS algorithm 

provided solutions in a shorter time than TS algorithm 

for all test problems. As a result, ILS algorithm 

displayed better performance than TS algorithm for 

MRBGAP. 

5. Conclusion 

In this article, multi-resource agent bottleneck 

generalized assignment problem (MRBGAP) is 

considered. The MRBGAP problem is the generalized 

version of GAP and is a more difficult problem to solve. 

However, many studies in the literature propose 

heuristic algorithms for GAP. Agent qualifications are 

examined firstly with this study for the MRBGAP. Due 

to the NP hardness of the problem, a multi- start iterated 

tabu search algorithm is proposed for the solution of the 

problem. In addition, proposed heuristic algorithm is 

compared with TS algorithm. According to 

experimental comparisons, ILS algorithm yielded 

better results than TS algorithm. ILS algorithm found 

better results than the MILP model in a shorter time for 

10 agents. With this study, large problem instances are 

generated for MRBGAP. This study is the first to use 

ILS algorithm for the MRBGAP. Future studies will 

focus on matheuristic algorithm, other meta heuristic 

algorithms and stochastic version of the problem.   
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Appendices 

Table A1. Five agent and 75 or 100 jobs (* denotes optimal solutions) 

    MILP  ILS   TS 

n pij1 c hij Solution   CPU  Solution CPU %Error  Solution CPU %Error 

75 U[5,25] 1,4 1 697,35 * 0,49   697,35 45,22 0   699,77 85,79 0,35 

75 U[5,25] 1,4 0,7 728,3 * 1,08   728,3 27,41 0   729,64 40,42 0,19 

75 U[5,25] 1,6 1 574,27 * 1,31   574,27 48,98 0   575,07 82,75 0,14 

75 U[5,25] 1,6 0,7 814,46 * 1,2   814,46 20,13 0   814,46 42,42 0 

75 U[15,25] 1,4 1 1153,9 * 0,81   1153,9 35,26 0   1153,9 82,19 0 

75 U[15,25] 1,4 0,7 1219,56 * 1,7   1219,56 22,19 0   1220,53 45,42 0,08 

75 U[15,25] 1,6 1 1157,64 * 1,42   1157,64 39,84 0   1169,14 88,46 1 

75 U[15,25] 1,6 0,7 978,86 * 1,03   978,86 20,46 0   978,86 42,46 0 

75 U[25,35] 1,4 1 1806,47 * 3,56   1806,47 41,21 0   1812,16 85,64 0,32 

75 U[25,35] 1,4 0,7 1915,14 * 2,57   1915,14 25,12 0   1915,14 41,53 0 

75 U[25,35] 1,6 1 1770,45 * 2,7   1770,45 41,54 0   1775,76 86,79 0,3 

75 U[25,35] 1,6 0,7 1921,74 * 1,25   1921,74 21,89 0   1948,96 48,86 1,42 

100 U[5,25] 1,4 1 814,47 * 2,8   814,96 81,69 0,06   818,29 102,85 0,47 

100 U[5,25] 1,4 0,7 917,57 * 1,76   917,57 67,88 0   917,57 85,69 0 

100 U[5,25] 1,6 1 860,59 * 5,53   860,59 82,87 0   861,32 105,18 0,09 

100 U[5,25] 1,6 0,7 1008,28 * 0,89   1008,28 61,95 0   1008,28 80,25 0 

100 U[15,25] 1,4 1 1522,29 * 5,44   1522,29 89,22 0   1522,49 109,18 0,02 

100 U[15,25] 1,4 0,7 1616,18 * 1,43   1616,18 69,28 0   1628,33 81,43 0,76 

100 U[15,25] 1,6 1 1537,62 * 2,18   1537,62 87,87 0   1545,82 106,17 0,54 

100 U[15,25] 1,6 0,7 1645,26 * 2,06   1645,26 68,51 0   1649,96 88,88 0,29 

100 U[25,35] 1,4 1 2451,96 * 5,5   2451,96 86,54 0   2463,93 101,6 0,49 

100 U[25,35] 1,4 0,7 2514,61 * 42,54   2514,61 64 0   2514,61 87,67 0 

100 U[25,35] 1,6 1 2435,7 * 4,41   2435,7 83,75 0   2451,57 107,62 0,66 

100 U[25,35] 1,6 0,7 2645,9 * 3,59   2645,9 55,88 0   2647,86 80,86 0,08 
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Table A2. Ten agent and 150 or 200 jobs 

    MILP  ILS   TS 

n pij1 c hij Solution   CPU  Solution CPU %Error  Solution CPU %Error 

150 U[5,25] 1,4 1 500,19   3600   501,18 1656,85 0,2   501,68 2258,5 0,3 

150 U[5,25] 1,4 0,7 568,62   3600   562,13 1258,45 -1,14   570,8 1874,6 0,38 

150 U[5,25] 1,6 1 487,87   3600   489,23 1845,74 0,28   499,49 2156,8 2,38 

150 U[5,25] 1,6 0,7 585,68   3600   588,74 1152,41 0,52   587,16 1745,7 0,25 

150 U[15,25] 1,4 1 1068,17   3600   1069,5 1985,12 0,12   1071,63 2275,3 0,32 

150 U[15,25] 1,4 0,7 1115,84   3600   1114,14 1158,46 -0,15   1120,07 1856,4 0,38 

150 U[15,25] 1,6 1 1062,19   3600   1064,89 1585,45 0,25   1074,3 2041,9 1,14 

150 U[15,25] 1,6 0,7 1111,28   3600   1114,23 985,12 0,27   1119,24 1765,2 0,72 

150 U[25,35] 1,4 1 1683,83   3600   1683,55 1289,13 -0,02   1684,24 2256,5 0,02 

150 U[25,35] 1,4 0,7 1766,41   3600   1762,5 1258,45 -0,22   1784,49 1946,4 1,02 

150 U[25,35] 1,6 1 1685,86   3600   1684,28 1365,75 -0,09   1720,34 2178,7 2,04 

150 U[25,35] 1,6 0,7 1770,04   3600   1770,95 1058,43 0,05   1798,02 1845,5 1,58 

200 U[5,25] 1,4 1 655,5   3600   660,76 2156,52 0,8   658,02 2985,4 0,38 

200 U[5,25] 1,4 0,7 748,35   3600   752,63 1985,63 0,57   762,46 2441,1 1,89 

200 U[5,25] 1,6 1 666,2   3600   670,19 2045,12 0,6   669,13 2874,3 0,44 

200 U[5,25] 1,6 0,7 769,65   3600   766,38 1756,42 -0,42   789,1 2045,5 2,53 

200 U[15,25] 1,4 1 1425,66   3600   1425,28 2378,41 -0,03   1425,37 2796,1 -0,02 

200 U[15,25] 1,4 0,7 1494,56   3600   1494,46 1974,23 -0,01   1499,15 2248,6 0,31 

200 U[15,25] 1,6 1 1432,5   3600   1431,54 2685,42 -0,07   1498,45 2213,9 4,6 

200 U[15,25] 1,6 0,7 1465,53   3600   1468,01 1545,78 0,17   1496,42 2016,2 2,11 

200 U[25,35] 1,4 1 2251,16   3600   2250,43 1985,45 -0,03   2289,15 2845,3 1,69 

200 U[25,35] 1,4 0,7 2338,99   3600   2339,41 1845,12 0,02   2339,95 2156,2 0,04 

200 U[25,35] 1,6 1 2234,67   3600   2232,55 2156,45 -0,1   2256,78 2845,3 0,99 

200 U[25,35] 1,6 0,7 2330,87   3600   2333,75 1585,12 0,12   2328,86 2045,9 -0,09 
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