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1. Preliminaries

Let function ψ : I ⊆ R → R be a convex defined
on an interval I of real numbers and ζ, η ∈ I with
ζ < η. The following

ψ

(

ζ + η

2

)

≤
1

η − ζ

η
∫

ζ

ψ(u)du ≤
ψ(ζ) + ψ(η)

2
.

(1)

holds. This double inequality is known in the lit-
erature as Hermite-Hadamard integral inequality
for convex functions [1]. Both inequalities hold in
the reversed direction if the function ψ is concave.

Let ψ : I ⊆ R → R be a mapping differentiable in
I◦, the interior of I, and let ζ, η ∈ I◦ with ζ < η.

If |ψ′(x)| ≤M for all x ∈ [ζ, η] , then we hold the
following inequality

∣

∣

∣

∣

∣

∣

∣

ψ(x)−
1

η − ζ

η
∫

ζ

ψ(t)dt

∣

∣

∣

∣

∣

∣

∣

≤
M

η − ζ

[

(x− ζ)2 + (η − x)2

2

]

for all x ∈ [ζ, η] . This inequality is known as the
Ostrowski inequality [2].

The following inequality is well known as Simp-
son’s inequality .

Let ψ : [ζ, η]→ R be a four-times continuously

differentiable mapping on (ζ, η) and
∥

∥ψ(4)
∥

∥

∞
=

sup
x∈(ζ,η)

∣

∣ψ(4)(x)
∣

∣ <∞. Then the following inequal-

ity

∣

∣

∣

∣

∣

∣

∣

1

3

[

ψ(ζ) + ψ(η)

2
+ 2ψ

(

ζ + η

2

)]

−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
1

2880

∥

∥

∥ψ(4)
∥

∥

∥

∞

(η − ζ)4 .

holds.

Definition 1. A nonnegative function ψ : I ⊆
R → R is called P -function if

ψ (tζ + (1− t) η) ≤ ψ (ζ) + ψ (η)

holds for all ζ, η ∈ I and t ∈ (0, 1).
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We will denote by P (I) the set of P -function on
the interval I. Note that P (I) contains all non-
negative convex and quasi-convex functions.

In [3], Dragomir et al. proved the following
inequality of Hadamard type for class of P -
functions.

Theorem 1. Let ψ ∈ P (I), ζ, η ∈ I with ζ < η

and ψ ∈ L [ζ, η]. Then

ψ

(

ζ + η

2

)

≤
2

η − ζ

η
∫

ζ

ψ(u)du ≤ 2 [ψ (ζ) + ψ (η)] .

Definition 2 ( [4]). Let I 6= ∅. The func-
tion ψ : I → [0,∞) is called multiplicatively P -
function (or log-P -function), if the inequality

ψ (tζ + (1− t) η) ≤ ψ(ζ)ψ(η)

holds for all ζ, η ∈ I and t ∈ [0, 1] .

We will denote by MP (I) the class of all mul-
tiplicatively P -convex functions on interval I.
Clearly, ψ : I → [0,∞) is multiplicatively P -
function if and only if logψ is P -function. We
state that the range of the multiplicatively P -
functions is greater than or equal to 1. In re-
cent years many authors have studied P -functions
and multiplicatively P -function, see [3, 5–8] and
therein.

In [4], Kadakal proved the following inequalities of
Hermite-Hadamard type integral inequalities for
class of multiplicatively P -functions.

Theorem 2. Let the function ψ : I → [1,∞) be a
multiplicatively P -function. If ψ ∈ L [ζ, η], then
the following inequalities hold:

i) ψ

(

ζ + η

2

)

≤
1

η − ζ

η
∫

ζ

ψ(u)ψ (ζ + η − u) du ≤ [ψ(ζ)ψ(η)]2

ii) ψ

(

ζ + η

2

)

≤ ψ(ζ)ψ(η)
1

η − ζ

η
∫

ζ

ψ(u)du ≤ [ψ(ζ)ψ(η)]2

In [9], Kadakal et al. gave the following definition
in the literature.

Definition 3. Let I 6= ∅ be an interval in
(0,∞) ⊆ R. The function ψ : I ⊆ (0,∞) →

[0,∞) is said to be multiplicatively geometrically
P -function, if the following inequality

ψ
(

ζtη1−t
)

≤ ψ(ζ)ψ(η)

holds for all ζ, η ∈ I and t ∈ [0, 1] .

We will denote by MGP (I) the class of all mul-
tiplicatively geometrically P -convex functions on
interval I. Clearly, ψ : I ⊆ (0,∞) → [0,∞) is
multiplicatively geometrically P -function if and
only if logψ is P -GA-function. The range of
the multiplicatively geometrically P -functions is
greater than or equal to 1.

Lemma 1 ( [10]). Let ψ : I ⊆ R → R be a differ-
entiable mapping on I◦ and ζ, η ∈ I with ζ < η.

If ψ′ ∈ L[ζ, η], then

ψ
(

√

ζη
)

−
1

ln η − ln ζ

η
∫

ζ

ψ(u)

u
du

=
ln η − ln ζ

4

[

ζ

∫ 1

0
t

(

η

ζ

) t
2

f ′
(

ζ1−t (ζη)
t
2

)

dt

−η

∫ 1

0
t

(

ζ

η

) t
2

f ′
(

η1−t (η)
t
2

)

dt

]

and

ψ(ζ) + ψ(η)

2
−

1

ln η − ln ζ

η
∫

ζ

ψ(u)

u
du

=
ln η − ln ζ

2

[

ζ

∫ 1

0
t

(

η

ζ

)t

f ′
(

ζ1−tηt
)

dt

−η

∫ 1

0
t

(

ζ

η

)t

f ′
(

η1−tζt
)

dt

]

= ζ
ln η − ln ζ

2

∫ 1

0
(2t− 1)

(

η

ζ

)t

f ′
(

ζ1−tηt
)

dt.

The aim of this paper is to obtain the general in-
tegral inequalities giving the Hermite-Hadamard,
Ostrowsky and Simpson type inequalities for the
multiplicatively geometrically P -function in the
special case using the above lemma.

2. Main results for the Lemma

Theorem 3. Let the function ψ : I ⊆ [1,∞)→ R

be a differentiable mapping on I◦ such that ψ′ ∈
L[ζ, η], where ζ, η ∈ I◦ with ζ < η and θ, λ ∈
[0, 1]. If |ψ′|q is multiplicatively P -function on
[ζ, η], q ≥ 1, then following holds:
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|(1− θ) (λψ(ζ) + (1− λ)ψ(η))

+θψ((1− λ) ζ + λη)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤ (η − ζ)A1(θ)
∣

∣ψ′ (Aλ)
∣

∣

×
(

λ2
∣

∣ψ′ (ζ)
∣

∣+ (1− λ)2
∣

∣ψ′ (η)
∣

∣

)

(2)

where

A1(θ) = θ2 − θ +
1

2
and Aλ = (1− λ) ζ + λη.

Proof. Let q ≥ 1 and Aλ = (1− λ) ζ+λη. Using
the Lemma 1 and power-mean integral inequality,

|(1− θ) (λψ(ζ) + (1− λ)ψ(η)) + θψ(Aλ)

−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤ (η − ζ)

∣

∣

∣

∣

∣

∣

λ2
1
∫

0

|t− θ|
∣

∣ψ′ (tζ + (1− t)Aλ)
∣

∣ dt

+(1− λ)2
1
∫

0

|t− θ|
∣

∣ψ′ (tη + (1− t)Aλ)
∣

∣ dt

∣

∣

∣

∣

∣

∣

≤ (η − ζ)











λ2





1
∫

0

|t− θ| dt





1− 1

q





1
∫

0

|t− θ|
∣

∣ψ′ (ζ + (1− t)Aλ)
∣

∣

q
dt





1

q

+(1− λ)2





1
∫

0

|t− θ| dt





1− 1

q





1
∫

0

|t− θ|
∣

∣ψ′ (tη + (1− t)Aλ)
∣

∣

q
dt





1

q











.(3)

is obtain. Since |ψ′|q is multiplicatively P -
function on [ζ, η], we know that for t ∈ [0, 1]

∣

∣ψ′ (tζ +Aλ (1− t))
∣

∣

q
≤
∣

∣ψ′ (ζ)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q
(4)

and

∣

∣ψ′ (tη +Aλ (1− t))
∣

∣

q
≤
∣

∣ψ′ (η)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q
.

(5)

By simple computation

1
∫

0

|t− θ|
∣

∣ψ′ (tζ + (1− t)Aλ)
∣

∣

q
dt

≤

1
∫

0

|t− θ|
∣

∣ψ′ (ζ)
∣

∣

q ∣
∣f ′ (Aλ)

∣

∣

q
dt

=
∣

∣ψ′ (ζ)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q

1
∫

0

|t− θ| dt

=
∣

∣ψ′ (ζ)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q

1
∫

0

|t− θ| dt (6)

and similarly

1
∫

0

|t− θ|
∣

∣ψ′ (tη + (1− t)Aλ)
∣

∣

q
dt (7)

≤
∣

∣ψ′ (η)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q

[

θ2 − θ +
1

2

]

and

1
∫

0

|t− θ| dt = θ2 − θ +
1

2
. (8)

Thus, using (6-8) in (3), we get the inequality
(2). �

Corollary 1. Using the conditions of Theorem 3
for θ = 1, then the following generalized midpoint
type inequality is obtained:

∣

∣

∣

∣

∣

∣

∣

ψ((1− λ) ζ + λη)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
η − ζ

2

∣

∣ψ′ (Aλ)
∣

∣

(

λ2
∣

∣ψ′ (ζ)
∣

∣+ (1− λ)2
∣

∣ψ′ (η)
∣

∣

)

.

Corollary 2. Using the conditions of Theorem 3
for θ = 1, if |ψ′(x)| ≤ M, x ∈ [ζ, η] , then the
following Ostrowski type inequality is obtained

∣

∣

∣

∣

∣

∣

∣

ψ(x)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

(9)

≤ M2

[

(x− ζ)2 + (η − x)2

2 (η − ζ)

]

for each x ∈ [ζ, η] .
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Proof. For each x ∈ [ζ, η], there exist λx ∈ [0, 1]
such that x = (1− λx) ζ + λxη. Hence, we have

λx = x−ζ
η−ζ

and 1 − λx = η−x
η−ζ

. Therefore for each

x ∈ [ζ, η] , from the inequality (2), (9) is ob-
tained. �

Corollary 3. Using the conditions of Theorem 3
for θ = 0, then the following generalized trapezoid
type inequality is obtained:

∣

∣

∣

∣

∣

∣

∣

λψ(ζ) + (1− λ)ψ(η)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
η − ζ

2

∣

∣ψ′ (Aλ)
∣

∣

(

λ2
∣

∣ψ′ (ζ)
∣

∣+ (1− λ)2
∣

∣ψ′ (η)
∣

∣

)

.

Corollary 4. Using the conditions of Theorem 3
for λ = 1

2 and θ = 2
3 , then the following Simpson

type inequality is obtained

∣

∣

∣

∣

1

6

[

ψ(ζ) + 4ψ

(

ζ + η

2

)

+ ψ(η)

]

−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
5

36
(η − ζ)

∣

∣

∣

∣

ψ′

(

ζ + η

2

)∣

∣

∣

∣

A
(∣

∣ψ′ (ζ)
∣

∣ ,
∣

∣ψ′ (η)
∣

∣

)

,

where A is arithmetic mean.

Corollary 5. Using the conditions of Theorem 3
for λ = 1

2 and θ = 1, then the following midpoint
type inequality is obtained

∣

∣

∣

∣

∣

∣

∣

ψ

(

ζ + η

2

)

−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
η − ζ

4

∣

∣

∣

∣

ψ′

(

ζ + η

2

)∣

∣

∣

∣

A
(∣

∣ψ′ (ζ)
∣

∣ ,
∣

∣ψ′ (η)
∣

∣

)

,

where A is arithmetic mean.

Corollary 6. Using the conditions of Theorem 3
for λ = 1

2 , and θ = 0, then the following trapezoid
type inequality is obtained

∣

∣

∣

∣

∣

∣

∣

ψ (ζ) + ψ (η)

2
−

1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
η − ζ

4

∣

∣

∣

∣

ψ′

(

ζ + η

2

)∣

∣

∣

∣

A
(∣

∣ψ′ (ζ)
∣

∣ ,
∣

∣ψ′ (η)
∣

∣

)

,

where A is arithmetic mean.

We will give another result for the considered mul-
tiplicatively P -functions as follows using Lemma
1

Theorem 4. Let ψ : I ⊆ [1,∞)→ R be a differen-
tiable mapping on I◦ such that ψ′ ∈ L[ζ, η], where
ζ, η ∈ I◦ with ζ < η and θ, λ ∈ [0, 1]. If |ψ′|q is
multiplicatively P -function on [ζ, η], q > 1, then

|(1− θ) (λψ(ζ) + (1− λ)ψ(η))

+θψ((1− λ) ζ + λη)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤ (η − ζ)

(

θp+1 + (1− θ)p+1

p+ 1

) 1

p
∣

∣ψ′ (Aλ)
∣

∣

[

λ2
∣

∣ψ′ (ζ)
∣

∣+ (1− λ)2
∣

∣ψ′ (η)
∣

∣

]

. (10)

holds, where Aλ = (1− λ) ζ + λη and 1
p
+ 1

q
= 1.

Proof. Let Aλ = (1− λ) ζ + λη. From Lemma 1
and by Hölder’s inequality, we obtain

[(1− θ) (λψ(ζ) + (1− λ)ψ(η))

+θψ(Aλ)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤ (η − ζ)



λ2
1
∫

0

|t− θ|
∣

∣ψ′ (tζ + (1− t)Aλ)
∣

∣ dt

+(1− λ)2
1
∫

0

|t− θ|
∣

∣ψ′ (tη + (1− t)Aλ)
∣

∣ dt





≤ (b− a)











λ2





1
∫

0

|t− θ|p dt





1

p





1
∫

0

∣

∣ψ′ (tζ + (1− t)Aλ)
∣

∣

q
dt





1

q

+(1− λ)2





1
∫

0

|t− θ|p dt





1

p





1
∫

0

∣

∣ψ′ (tη + (1− t)Aλ)
∣

∣

q
dt





1

q











. (11)

Because |ψ′|q is multiplicatively P -function on
[ζ, η], the inequalities (4) and (5) holds. Hence,
by simple computation
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1
∫

0

∣

∣ψ′ (tζ + (1− t)Aλ)
∣

∣

q
dt ≤

∣

∣ψ′ (ζ)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q

(12)

1
∫

0

∣

∣ψ′ (tη + (1− t)Aλ)
∣

∣

q
dt ≤

∣

∣ψ′ (η)
∣

∣

q ∣
∣ψ′ (Aλ)

∣

∣

q

(13)

and
1
∫

0

|t− θ|p dt =
θp+1 + (1− θ)p+1

p+ 1
(14)

thus, using (12)-(14) in (11), (10) is obtained. �

Corollary 7. Using the conditions of Theorem 4
with θ = 1, then the following generalized mid-
point type inequality is obtained

∣

∣

∣

∣

∣

∣

∣

ψ((1− λ) ζ + λη)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤ (η − ζ)

(

1

p+ 1

) 1

p ∣
∣ψ′ (Aλ)

∣

∣

×
[

λ2
∣

∣ψ′ (ζ)
∣

∣+ (1− λ)2
∣

∣ψ′ (η)
∣

∣

]

.

where Aλ = (1− λ) ζ + λη and 1
p
+ 1

q
= 1.

Corollary 8. Using the conditions of Theorem 4
for θ = 0, then the following generalized trapezoid
type inequality is obtained

∣

∣

∣

∣

∣

∣

∣

λψ(ζ) + (1− λ)ψ(η)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
(η − ζ)

(p+ 1)
1

p

∣

∣ψ′ (Aλ)
∣

∣

×
[

λ2
∣

∣ψ′ (ζ)
∣

∣+ (1− λ)2
∣

∣ψ′ (η)
∣

∣

]

,

where Aλ = (1− λ) ζ + λη and 1
p
+ 1

q
= 1.

Corollary 9. Using the conditions of Theorem 4
for θ = 1, if |ψ′(x)| ≤ M, x ∈ [ζ, η] , then the
following Ostrowski type inequality is obtained

∣

∣

∣

∣

∣

∣

∣

ψ(x)−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

(15)

≤
M2

(p+ 1)
1

p

[

(x− ζ)2 + (η − x)2

η − ζ

]

for each x ∈ [ζ, η] .

Proof. For each x ∈ [ζ, η], there exist λx ∈ [0, 1]
such that x = (1− λx) ζ + λxη. Hence we have

λx = x−ζ
η−ζ

and 1 − λx = η−x
η−ζ

. Therefore, for each

x ∈ [ζ, η] , from the inequality (10), the inequality
(15) is obtained. �

Corollary 10. Using the conditions of Theorem
4 for λ = 1

2 and θ = 2
3 , then the following Simp-

son type inequality

∣

∣

∣

∣

1

6

[

ψ(ζ) + 4ψ

(

ζ + η

2

)

+ ψ(b)

]

−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
η − ζ

6

(

1 + 2p+1

3 (p+ 1)

)
1

p

×

∣

∣

∣

∣

ψ′

(

ζ + η

2

)∣

∣

∣

∣

A
(∣

∣ψ′ (ζ)
∣

∣ ,
∣

∣ψ′ (η)
∣

∣

)

,

is obtained, where A is the arithmetic mean.

Corollary 11. Using the conditions of Theorem
4 for λ = 1

2 and θ = 1, then the following midpoint
type inequality

∣

∣

∣

∣

∣

∣

∣

ψ

(

ζ + η

2

)

−
1

η − ζ

η
∫

ζ

ψ(u)du

∣

∣

∣

∣

∣

∣

∣

≤
η − ζ

2

(

1

p+ 1

) 1

p
∣

∣

∣

∣

ψ′

(

ζ + η

2

)∣

∣

∣

∣

×A
(∣

∣ψ′ (ζ)
∣

∣ ,
∣

∣ψ′ (η)
∣

∣

)

,

is obtained, where A is the arithmetic mean.

Corollary 12. Using the conditions of Theorem
4 for λ = 1

2 and θ = 0, then the following trape-
zoid type inequality
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∣

∣

∣
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ψ (ζ) + ψ (η)

2
−

1
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η
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∣
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) 1

p
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∣

∣
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ζ + η
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)∣

∣

∣

∣

×A
(∣

∣ψ′ (ζ)
∣

∣ ,
∣

∣ψ′ (η)
∣

∣

)

,
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is obtained, where A is the arithmetic mean.

3. Some applications for special means

(1) The weighted arithmetic mean

Aα (ζ, η) : = αζ + (1− α)η,

α ∈ [0, 1] , ζ, η ∈ R.

(2) The weighted geometric mean

Gα (ζ, η) := ζαη1−α, ζ, η > 0.

(3) The Logarithmic mean

L (ζ, η) :=
η − ζ

ln η − ln ζ
, ζ 6= η, ζ, η > 0.

Considering the results in Section 2, some inequal-
ities can be obtained for the means given above.

Proposition 1. Let ζ, η ∈ R with 0 < ζ < η and
λ, θ ∈ [0, 1] we have the following inequality:

∣

∣

∣(1− θ)Aλ

(

eζ , eη
)

+ θGλ

(

eζ , eη
)

− L
(

eζ , eη
)∣

∣

∣

≤ (η − ζ)A1(θ)e
Aλ(ζ,η)

(

λ2eζ + (1− λ)2 eη
)

where A1(θ) is defined as in Theorem 3.

Proof. Using the Theorem 3 for the function
ψ(t) = et, t ∈ [0,∞), the assertion is easily
seen. �

Proposition 2. Let ζ, η ∈ R with 0 < ζ <

η, p, q > 1, 1
p
+ 1

q
= 1 and λ, θ ∈ [0, 1], following

inequality

∣

∣

∣(1− θ)Aλ

(

eζ , eη
)

+ θGλ

(

eζ , eη
)

− L
(

eζ , eη
)∣

∣

∣

≤ (b− a)

(

θp+1 + (1− θ)p+1

p+ 1

) 1

p

×eAλ(ζ,η)
(

λ2eζ + (1− λ)2 eη
)

is obtained, where 1
p
+ 1

q
= 1.

Proof. Using the Theorem 4 for the function
ψ(t) = et, t ∈ [0,∞), the assertion is easily
seen. �

References

[1] Dragomir, S.S. and Pearce, C.E.M. (2000).
Selected Topics on Hermite-Hadamard In-
equalities and Applications, RGMIA Mono-
graphs, Victoria University, 2000.

[2] Dragomir, S.S. and Rassias, Th. M. (2002).
Ostrowski type inequalities and applications in
numerical integration. Kluwer Academic Pub-
lishers, Dordrecht, Boston, London.
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