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1. Introduction

In recent years, studies on findings numerical solu-
tions of differential equations have took attention
of researchers throughout over the world [1–6]. In
nature, several physical phenomena can easily be
defined by NLS equation such as propagation of
optical pulses, waves in water, waves in plasmas,
and self focusing in laser pulses. Because of this,
among others, several authors have tried hard to
present analytical solutions of NLS [7–9] and nu-
merical solutions have been studied [10–18]. NLS
equation has a nature of attracting the attention
of a lot of researchers for illustrate the efficiency
of the numerical methods. Therefore, recently,
many studies of different methods such as qua-
dratic FEM [19], radial based collocation method
[20], Taylor collocation method based on cubic B-
spline [21], quintic B-spline based FEM [22] for
the NLS equation may be encountered.

Firstly, we will handle the NLS equation given in
the following form

izt + zxx + γ |z|2 z = 0 a ≤ x ≤ b, t ∈ [0, T ]
(1)

together having the boundary conditions

z(a, t) = z(b, t) = 0

where i =
√
−1, γ is a real parameter. Meanwhile

the subscripts t and x describe partial derivatives
with respect to time and space, respectively.

For being capable of computing the complex func-
tion z, we have to separate it into the two real
value functions by rewriting

z(x, t) = u(x, t) + iv(x, t), (2)

in which both u(x, t) and v(x, t) are real functions.
Upon substituting (2) into the Eq.(1) it results
in coupled real value partial differential equation
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system

ut + vxx + γ
[
u2v + v3

]
= 0,

vt − uxx − γ
[
v2u+ u3

]
= 0. (3)

After applying the boundary conditions to (2)
newly obtained boundary conditions may be
stated in the following form

u(a, t) = u(b, t) = 0,

v(a, t) = v(b, t) = 0. (4)

DQM, first introduced by Bellman et al. [24] in
1972, has had wide application areas due to its
considerably less number of mesh points usage.
When one search the literature, it can be seen that
many scientists have improved different types of
DQM using various base functions [24–35]. In this
study, fourth order quartic B-spline based FDM-
DQM will be used to obtain numerical solutions
of the NLS equation.

2. Fourth order quartic B-spline based

DQM

Let us take the grid distribution a = x1 < x2 <

· · · < xN = b of a finite interval [a, b] into con-
sideration. Under the condition that a function
U (x) is enough smooth over the solution domain,
its derivatives with respect to x at a grid point xi
can be approximated by a linear combination of
all the functional values over the solution domain
of the problem, that is,

d
(r)
U

dx(r)
| xi

=
N∑

j=1

w
(r)
ij U (xj) , (5)

i = 1, 2, ..., N, r = 1, 2, ..., N − 1

where r represents the order of the derivative, w
(r)
ij

denote the weighting coefficients of the rth order
derivative approximation andN denotes the num-
ber of mesh points in the solution domain. Here,

the index j emphasizes the fact that w
(r)
ij is the

corresponding weighting coefficient of the func-
tional value U (xj).

In this study, we need the first order and the sec-
ond order derivative of the function U(x). So,
firstly we will find value of the equation (5) for
the r = 1.

Let Qs(x), be the quartic B-splines having nodes
at the points xi where the uniformly distributed
N nodal points are taken into consideration as
a = x1 < x2 < · · · < xN = b on the ordinary real
axis. Then, the B-splines {Q−1, Q0, . . . , QN+1}
constitute a basis for functions defined over [a, b].
The quartic B-splines Qs(x) are described by the

relationships:

Qs (x) =
1

h4





q1, x ∈ [xs−2, xs−1],
q1 − 5q2, x ∈ [xs−1, xs],
q1 − 5q2 + 10q3, x ∈ [xs, xs+1],
q4 − 5q5, x ∈ [xs+1, xs+2],
q4, x ∈ [xs+2, xs+3],
0, otherwise.

where q1 = (x − xs−2)
4, q2 = (x − xs−1)

4, q3 =
(x−xs)

4, q4 = (xs+3−x)4 q5 = (xs+2−x)4, h =
xs − xs−1 for all s.

Table 1. Quartic B-splines and
their corresponding derivatives at the
nodal points.

x xs−2 xs−1 xs xs+1 xs+2 xs+3

Q 0 1 11 11 1 0

hQ
′

0 4 12 −12 −4 0

h2Q
′′

0 12 −12 −12 12 0

h3Q
′′′

0 24 −72 72 −24 0

Using the quartic B-splines as trial functions in
the fundamental DQM equation (5) results in to
the equation

d(r)Qs (xi)

dx(r)
=

s+2∑

j=s−1

w
(r)
i,j Qs (xj) , (6)

s = −1, 0, . . . , N + 1, i = 1, 2, ..., N.

2.1. The 1 st order weighting coefficients

When DQM methodology is applied, the funda-
mental equality for determining the correspond-
ing weighting coefficients of the first order de-
rivative approximation is obtained as Korkmaz
used [29]:

dQs (xi)

dx
=

s+2∑

j=s−1

w
(1)
i,j Qs (xj) , (7)

s = −1, 0, . . . , N + 1, i = 1, 2, ..., N.

In the process, the initial step for finding out the

corresponding weighting coefficients w
(1)
i,j , j =

−2,−1, . . . , N + 3 of the first grid point x1 is to
apply the test functionsQs, s = −1, 0, . . . , N+1
at the grid point x1. After all the Qs trial func-
tions are applied, we obtain the following alge-
braic equation system:
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A1.




w
(1)
1,−2

w
(1)
1,−1

w
(1)
1,0

w
(1)
1,1

w
(1)
1,2
...

w
(1)
1,N+2

w
(1)
1,N+3




=




− 4
h

−12
h

12
h
4
h

0
...
0
0




(8)

where

A1 =




1 11 11 1
1 11 11 1

. . .
. . .

. . .
. . .

1 11 11 1
1 11 11 1




.

The weighting coefficients w
(1)
1,j related to the first

grid point are determined by solving equation sys-
tem (8). The equation system (8) composed of
N +6 unknowns and N +3 equations. To have a
distinct solution, it is required to add three addi-
tional equations to the system. By the derivations
of the equations

d2Q−1 (x1)

dx2
=

1∑

j=−2

w
(1)
1,jQ

′

−1 (xj) (9)

d2QN (x1)

dx2
=

N+2∑

j=N−1

w
(1)
1,jQ

′

N (xj) (10)

d2QN+1 (x1)

dx2
=

N+3∑

j=N

w
(1)
1,jQ

′

N+1 (xj) (11)

is obtained. By using the equations (9), (10) and
(11) which we obtained by derivations, three un-
known terms will be eliminate from equation sys-
tem.

A2.




w
(1)
1,−1

w
(1)
1,0

w
(1)
1,1

w
(1)
1,2

w
(1)
1,3
...

w
(1)
1,N

w
(1)
1,N+1




=




− 7
h

−12
h

12
h
4
h

0
...
0
0




(12)

where

A2 =




8 14 2
1 11 11 1

. . .
. . .

. . .
. . .

1 11 11 1
2 14 8

30 42




So, the number of algebraic equations and the un-
knowns will be equal and the equation system will
be solved with Thomas algorithm. The new ma-
trix system(12) containsN+3 equations andN+3
unknowns. By the same idea, for the determine

weighting coefficients w
(1)
k,j , j = −1, 0, . . . , N+1 at

grid points xk, 2 ≤ k ≤ N−1 we got the algebraic
equation system:

A2.




w
(1)
k,−1
...

w
(1)
k,k−3

w
(1)
k,k−2

w
(1)
k,k−1

w
(1)
k,k

w
(1)
k,k+1

w
(1)
k,k+2
...

w
(1)
k,N+1




=




0
...
0
−4
h

−12
h
12
h
4
h

0
...
0




(13)

For the last grid point of the domain xN
with same idea, determine weighting coefficients

w
(1)
N,j , j = −1, 0, . . . , N + 1 we got the algebraic

equation system:

A2.




w
(1)
N,−1

w
(1)
N,0
...

w
(1)
N,N−3

w
(1)
N,N−2

w
(1)
N,N−1

w
(1)
N,N

w
(1)
N,N+1




=




0
0
...
0
−4
h

−12
h
9
h
53
h




(14)

2.2. The 2nd order weighting coefficients

If we use matrix multiplication approach,
then all the corresponding weighting coefficients
can be found out. The present method is based on
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the first order weighting coefficients to obtain the
weighting coefficients of the second order deriva-
tives. When one uses matrix multiplication pro-
cedure, the second order weighting coefficients are
determined as below [23]:

[
A(2)

]
=
[
A(1)

] [
A(1)

]
, (15)

where
[
A(1)

]
,
[
A(2)

]
are the weighting coefficients

matrices of the first- and the second-order deriva-
tives, respectively [23].

3. Discretization of the mixed method

The Eq. system (3) is given of the form

ut + vxx + γ
[
u2v + v3

]
= 0, (16)

vt − uxx − γ
[
v2u+ u3

]
= 0. (17)

One can implement Crank-Nicolson scheme to Eq.
(16) and easily obtain

un+1 − un

∆t
+

vn+1
xx + vnxx

2
+

γ

[(
v3
)n+1

+
(
v3
)n

2

]
+

γ

[(
u2v
)n+1

+
(
u2v
)n

2

]

= 0. (18)

After that, the rearrangement of Eq. (18) yields
the following form

2un+1 +∆t
[
vn+1
xx + γ

((
v3
)n+1

+
(
u2v
)n+1

)]

= 2un −∆t
[
vnxx + γ

((
v3
)n

+
(
u2v
)n)]

. (19)

If we use the Rubin and Graves linearization tech-
niques [36] in Eq. (19) to vanish the nonlinear
terms, thus one obtains the linear equation

2un+1 +∆t

[
vn+1
xx + 3γ

(
v2
)n

vn+1+
γ
(
u2
)n

vn+1 + 2γunvnun+1

]

= 2un +∆t
[
−vnxx + γ

(
v3
)n

+ γ
(
u2v
)n]

. (20)

Some simple organizations for Eq. (20) and defi-
nitions as stated below are made

An
i =

N∑

j=1

w
(2)
i,j U

n
j = Un

xxi
,

Bn
i =

N∑

j=1

w
(2)
i,j V

n
j = V n

xxi
,

Un+1
xxi

=
N∑

j=1

w
(2)
i,j U

n+1
j , V n+1

xxi
=

N∑

j=1

w
(2)
i,j V

n+1
j

Φn
i = 2Un

i + (21)

∆t
[
−Bn

i + γ
(
V n

i

)3
+ γ

(
Un

i

)2
V n

i

]

Ψn
i = 2V n

i +

∆t
[
An

i − γ
(
Un

i

)3 − γ
(
V n

i

)2
Un

i

]

for i = 1 (1)N. When substituted Eq. (21) into
Eq. (20) one can obtain

2Un+1
i +

∆t




∑N
j=1w

(2)
i,j V

n+1
j +

γ

(
3
(
V n

i

)2
V n+1

i +(
Un

i

)2
V n+1

i + 2Un
i V

n
i Un+1

i

)



= Φn
i . (22)

When we make some arrangements in Eq. (22),
we obtain the following equation

[2 + 2γ∆tUn
i V

n
i ]Un+1

i +[
∆t
(
w

(2)
i,i + γ

(
3
(
V n

i

)2
+
(
Un

i

)2))]
V n+1

i

+
N∑

j=1,i 6=j

(
∆tw

(2)
i,j

)
V n+1
j

= Φn
i . (23)

Using the same procedure the same process now
for Eq. (17), the following equation is obtained

[
−∆t

(
w

(2)
i,i + γ

(
3
(
Un

i

)2
+
(
V n

i

)2))]
Un+1

i

+

N∑

j=1,i 6=j

(
−∆tw

(2)
i,j

)
Un+1
j +

[2− 2γ∆tUn
i V

n
i ]V n+1

i

= Ψn
i . (24)

When the boundary conditions in Eq. (4), are
used the algebraic equation system in the form of
(2N − 4)×(2N − 4) matrix is obtained and solved
by Gauss elimination.
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4. Numerical studies

In this part, four famous problems namely single
soliton, double solitons, standing soliton and mo-
bile soliton have been searched. The efficiency of
the proposed newly scheme is checked using the
two error norms L2 and L∞, respectively:

L2 = ‖u− U‖2 ≃

√√√√h

N∑

j=1

∣∣∣uexactj − (UN )j

∣∣∣
2
,

L∞ = ‖u− U‖∞ ≃ max
j

∣∣∣uexactj − (UN )j

∣∣∣ ,

j = 1 (1)N.

Besides error norms L2 and L∞, the lowest two
invariants, of which formulae are presented below,
are computed

I1 =
∫ b

a
|u|2dx

≈ h
N∑
j=0

∣∣∣Un
j

∣∣∣
2
,

I2 =
∫ b

a

[
|ux|2−γ

2 |u|4
]
dx

≈ h
N∑
j=0

[
| (Ux)

n
j |2 − γ

2 |Un
j |4
]
.

Relative changes of invariants described by Îj =
I
final
j −Iinitial

j

Iinitial
j

, j = 1, 2 have been checked.

4.1. Single Soliton

The first example has been taken into considera-
tion as the motion of single soliton of which exact
solution is presented of the form

z(x, t) = α

√
2

γ
.

exp i

{
2σx−

(
σ2 − α2

)
t

4

}
.

sech α (x− σt) (25)

where σ represents the velocity of the single soli-
ton of which amplitude depends on α. We have
selected the values of γ = 2, σ = 4, α = 1 and
α = 2 at the solution domain −20 ≤ x ≤ 20 just
capable of comparing with earlier studies. When
α = 1 is taken the envelop soliton

|z| = sech (x− 4t)

moves toward the right with unchanged charac-
teristics such as speed σ = 4, shape, and ampli-
tude α = 1. For visual representation, the simu-
lations of single soliton for values of ∆t = 0.005,
N = 291at various times from t = 0 to t = 4 are
plotted in Figure 1. As it is seen obviously from

Figure 1, the real and imaginary parts of the z

separately and the module |z| is given.
To compare the results, the values of the error
norms L2 and L∞, and the two lowest invari-
ants I1 and I2, and relative changes of invariants
are illustrated in comparison with quadratic B-
spline based finite element method [19] for values
of ∆t = 0.005 and N = 291 at several times in
Table 2. As one can see clearly from Table 2, by
using the same parameters and less number of the
nodal points than earlier work [19] the new results
are better than quadratic B-spline based finite el-
ement method [19] solutions.

A deeper comparison of numerical results, for am-
plitude α = 1, at time t = 1 is given in Table 3.
It can be obviously seen from Table 3 that by de-
creasing the time increments, the error norm L∞

of FDM-DQM get decreased to the 1.5 × 10−4.
Those are the best results in the presented results.

One can see the comparison of numerical re-
sults with another studies that Gaussian, Mul-
tiquadric, Inverse Multiquadric and Inverse
Quadric radial based collocation method [20] ,
for amplitude α = 1, at time t = 2.5 in Table
4. The error norms L2 and L∞ of FDM-DQM are
the best results among all given results except the
Gaussian radial based collocation method.

Similar to the solutions of amplitude α = 1, for
the bigger amplitude α = 2, results have been
illustrated with comparison of earlier studies at
time t = 1 at Table 5. One more time, by decreas-
ing the time steps the error norm L∞ of FDM-
DQM decrease to the 2.5×10−4 which is the best
result for NLS equation in the all given studies.

4.2. Double solitons

In our second trial example, the initial condi-
tion of collision of double solitons is taken as fol-
lows [10]:

z(x, 0) =
2∑

k=1

zk(x, 0) (26)

where

zk(x, 0) = αk

√
2

γ
.

exp i
{σk

2
(x− xk)

}
.

sech αk (x− xk) , (27)

k = 1, 2.

We have chosen the values of γ = 2, α1 = α2 = 1,
σ1 = −4, σ2 = 4, x1 = 10, and x2 = −10 over the
region −20 ≤ x ≤ 20. These simulations show the
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Figure 1. Simulation of single soliton ∆t = 0.005, N = 291.

Table 2. Error norms, invariants and relative changes of invariants: ∆t = 0.005.

Present (FDM-DQM) N=291 Quad. FEM [19] N=800

t I1 I2 Î1 Î2 L2 L∞ I1 I2 L2 L∞

0.0 2.00000 7.33370 - - 0.00000 0.00000 2.0 7.3537736 0.0000 0.0000
0.5 2.00000 7.33371 1.0×10−6 8.2×10−7 0.00012 0.00008 2.0 7.3537756 0.0002 0.0002
1.0 2.00001 7.33373 4.0×10−6 3.7×10−6 0.00023 0.00015 2.0 7.3537778 0.0004 0.0003
1.5 2.00001 7.33374 5.5×10−6 4.4×10−6 0.00032 0.00021 2.0 7.3537793 0.0007 0.0004
2.0 2.00001 7.33375 6.0×10−6 6.1×10−6 0.00040 0.00026 2.0 7.3537802 0.0008 0.0005
2.5 2.00001 7.33377 6.5×10−6 9.4×10−6 0.00047 0.00029 2.0 7.3537803 0.0009 0.0006

collision of two solitons at the different positions
which are x1 = 10, and x2 = −10 in the opposite
ways with same amplitudes, α1 = α2 = 1, and
same speeds, σ1 = σ2 = 4. Due to characteris-
tics of solitons, after the collision finished double
solitons conserve their properties such as shape,
speed and amplitudes, which can be seen at the
simulations of double solitons shown in Figure 2.
The simulations are run up to the time t = 5.5.
As time increases, collision begins close to t = 2
and height of the amplitudes nearly α = 2 ob-
served at time t = 2.5. At the time interaction
ends at time t = 5.5, two solitons preserve their
originally properties like the initial position.

Two lowest invariants of the this method is pre-
sented with comparison of earlier works, in Table
6. Particularly at interaction typical observed at
time t = 2.5 changes of two invariants I1 and I2
have more importance for efficiency of the imple-
mented methods. As it is seen in Table 6 that
relative changes of the invariants I1 and I2 at colli-
sion time t = 2.5 are −1.0×10−6 and −3.4×10−6,

respectively and in the end of the simulations this
changes are 2.5 × 10−7 and −6.8 × 10−7, respec-
tively.

The obtained new results are presented and com-
pared with earlier studies in Table 6. Numerical
results are clearly shows that more particularly at
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Table 3. L∞ error norm and relative changes of invariants of single soliton: amp. = 1, t = 1.

Method N h ∆t L∞ Î1 Î2
FDM-DQM 152 0.26 0.02 0.00254 1.9×10−4 2.2×10−4

(Present) 291 0.14 0.005 0.00015 4.0×10−6 3.7×10−6

Quad.Gal. [19] 0.3125 0.02 0.002 0.0000066 -0.0003417
0.05 0.005 0.0003 0.0000000 0.0000006

Quin. Coll. [22] 0.3125 0.02 0.002 0.0000000 0.0000063
0.05 0.005 0.0003 0.0000000 0.0000000

Tay.Coll. [21] 0.3125 0.02 0.00176 0.0000019 0.000016
0.05 0.005 0.00026 -0.00000002 -0.00000003

Cub. Coll. [15] 0.05 0.005 0.008 0.00000 0.00000
0.03 0.005 0.002 0.00000 0.00000

Explicit [11] 0.05 0.000625 0.00564 0.00000 -0.00556
Implicit/Explicit [11] 0.05 0.001 0.00577 -0.00393 -0.01205
Implicit Cr-Ni. [11] 0.05 0.005 0.00585 -0.00001 -0.00557
Hopscotch [11] 0.08 0.002 0.00538 0.00003 -0.01407
Split step Four. [11] 0.3125 0.02 0.00466 0.00000 0.00005
A-L Local [11] 0.06 0.0165 0.00580 0.00004 -0.00797
A-L Global [11] 0.05 0.04 0.00561 0.00003 0.00550
Pseudospectral [11] 0.3125 0.0026 0.00513 0.00001 -0.00003

Table 4. L2 and L∞ error norms and invariants of single soliton: amp. = 1, t = 2.5.

Method N h ∆t L2 L∞ I1 I2
FDM-DQM 291 0.14 0.005 0.000226 0.000153 2.000008 7.333730
G [20] 0.3125 0.001 0.000046 0.000028 1.999908 7.333177
MQ [20] 0.3125 0.001 0.004434 0.002165 1.999472 7.331960
IMQ [20] 0.3125 0.001 0.000668 0.000486 1.999137 7.329795
IQ [20] 0.3125 0.001 0.005652 0.002037 1.999812 7.329801

Table 5. L∞ error norm and relative changes of invariants of single soliton, amp. = 2, t = 1.

Method N h ∆t L∞ Î1 Î2
FDM-DQM 386 0.1 0.005 0.00031 0.0×10−13 4.5×10−5

(Present) 391 0.1 0.0048 0.00028 -5.0×10−7 3.8×10−5

491 0.08 0.0025 0.00025 -2.5×10−6 1.4×10−5

Quad.Gal. [19] 0.1 0.005 0.0004 0.00000001 -0.000008
0.1563 0.0048 0.004 0.0000095 -0.000276

Quin. Coll. [22] 0.015 0.005 0.001 0.0000000 0.0000001
0.1 0.005 0.0007 0.0000000 0.0000000
0.1563 0.0048 0.002 0.0000000 0.0000026
0.02 0.0025 0.0003 0.0000000 0.0000000

Tay.Coll. [21] 0.05 0.005 0.00104 0.00000002 -0.00000017
0.1 0.005 0.00076 0.00000006 0.00000003
0.1563 0.0048 0.00207 0.00000034 0.00000358

Cub. Coll. [15] 0.015 0.005 0.008 0.00000 0.00025
0.02 0.0025 0.011 0.00000 0.00004

Explicit [11] 0.02 0.0001 0.00931 -0.00437 -0.00284
Implicit/Explicit [11] 0.03 0.00022 0.00759 0.00003 -0.02243
Implicit Cr-Ni. [11] 0.02 0.011 0.00971 0.00000 -0.00273
Hopscotch [11] 0.02 0.0004 0.00963 0.00002 -0.00284
Split step Four. [11] 0.1563 0.0048 0.00464 0.00000 0.00034
A-L Local [11] 0.06 0.03 0.00695 -0.00001 -0.02526
A-L Global [11] 0.07 0.012 0.00937 -0.00004 -0.03324
Pseudospectral [11] 0.1563 0.0011 0.00840 0.00000 0.00005
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Figure 2. Double solitons α1 = α2 = 1.

Table 6. Invariants and relative changes of invariants of double solitons:α1 = α2 = 1

Present (FDM-DQM) Cub. Coll. [15] Quad.Gal. [19]

t I1 I2 Î1 Î2 I1 I2 I1 I2
0.0 3.999998 14.66677 - - 3.99998 14.66596 3.99999 14.83143
0.5 3.999996 14.66668 -5.0×10−7 -6.1×10−6 3.99998 14.66644 3.99999 14.83150
1.0 3.999999 14.66668 2.5×10−7 -6.1×10−6 3.99998 14.66706 3.99999 14.83157
1.5 4.000000 14.66667 5.0×10−7 -6.8×10−6 3.99999 14.66753 3.99999 14.83161
2.0 3.999998 14.66668 0.0×10−13 -6.1×10−6 3.99999 14.66693 3.99999 14.83261
2.5 3.999994 14.66672 -1.0×10−6 -3.4×10−6 3.99998 14.61440 3.99999 14.95380
3.0 3.999998 14.66667 0.0×10−13 -6.8×10−6 3.99998 14.66789 3.99999 -
3.5 3.999999 14.66668 2.5×10−7 -6.1×10−6 3.99999 14.66781 3.99999 14.83161
4.0 3.999996 14.66668 -5.0×10−7 -6.1×10−6 3.99998 14.66746 3.99999 14.83158
4.5 3.999997 14.66669 0.0×10−13 -5.5×10−6 3.99999 14.66613 3.99999 14.83156
5.0 3.999997 14.66667 -2.5×10−7 -6.8×10−6 3.99999 14.66684 3.99999 14.83153
5.5 3.999999 14.66676 2.5×10−7 -6.8×10−7 3.99999 14.66669 4.00000 14.83153

the critical time of collision t = 2.5 FDM-DQM
solutions are better than cubic B-spline based
FEM [15] and quadratic B-spline based FEM [19].

4.3. The standing soliton

Our next problem, having an initial condition
z(x, 0), a soliton is taken. The theory says that if

I =

∞∫

−∞

z(x, 0)dx ≥ π

then a soliton will appear with time, otherwise
the soliton declines away [14]. To compare the
newly results with earlier studies, we have selected
Maxwellian initial condition

z(x, 0) = A exp
(
−x2

)
(28)

along the region −45 ≤ x ≤ 45. By using
Maxwellian initial condition I = A

√
π obtained

so that if A >
√
π = 1.7725 use a soliton will

appear.

The characteristics of solutions for value of A = 1
and A = 1.78 time running up from t = 0 to t = 6
are given in Figure 3. As it is seen from Figure
3, the approximate solution of |z| decay as time
increases for value of A = 1 unless for the value
of A = 1.78 soliton’s amplitude, shape and speed
are preserved. At the same time the position of
soliton do not change for both values of A = 1
and A = 1.78. Numerical results for A = 1 with
values of ∆t = 0.01 and N = 611 are calculated,
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Figure 3. The standing soliton: A = 1, A = 1.78.

Table 7. Invariants and relative change of invariants of formation of standing soliton: A=1.

FDM-DQM

t I1 I2 Î1 Î2
0.0 1.25331 0.36711 - -
0.5 1.25331 0.36712 -8.0×10−7 9.5×10−6

1.0 1.25331 0.36712 -3.9×10−6 1.9×10−5

1.5 1.25331 0.36712 -4.8×10−6 2.6×10−5

2.0 1.25331 0.36712 -6.4×10−6 3.1×10−5

2.5 1.25331 0.36712 -4.8×10−6 2.9×10−5

3.0 1.25330 0.36712 -8.8×10−6 1.4×10−5

3.5 1.25330 0.36711 -1.0×10−5 -3.8×10−6

4.0 1.25330 0.36713 -7.9×10−6 4.0×10−5

4.5 1.25330 0.36714 -1.2×10−5 6.6×10−5

5.0 1.25330 0.36714 -1.4×10−5 7.7×10−5

5.5 1.25330 0.36715 -1.4×10−5 8.7×10−5

6.0 1.25329 0.36713 -1.9×10−5 5.8×10−5

Table 8. Two lowest invariants of the standing soliton: A=1.78

FDM-DQM Tay.Coll. [21] Cub. Coll. [15] Quad.Gal. [19] Quin. Coll. [22]
t I1 I2 I1 I2 I1 I2 I1 I2 I1 I2
0.0 3.97100 -4.92558 3.971000 -4.925617 3.97100 -4.9387 3.97100 -4.90562 3.97100 -4.92562
0.5 3.97105 -4.92610 3.965336 -4.911705
1.0 3.97098 -4.92566 3.967435 -4.925296 3.97099 -4.88626 3.97100 -4.93240
1.5 3.97096 -4.92554 3.967038 -4.910169
2.0 3.97093 -4.92539 3.966703 -4.908872 3.97099 -4.88421 3.97100 -4.93377
2.5 3.97088 -4.92514 3.967008 -4.910052
3.0 3.97085 -4.92496 3.967031 -4.910143 3.97095 -4.9387 3.97099 -4.88477 3.97100 -4.93326
3.5 3.97084 -4.92469 3.966839 -4.909396 3.97095 -4.9389
4.0 3.97080 -4.92446 3.966927 -4.909737 3.97095 -4.9387 3.97099 -4.88472 3.97100 -4.93335
4.5 3.97076 -4.92420 3.967020 -4.910098 3.97095 -4.9386
5.0 3.97074 -4.92385 3.966900 -4.909633 3.97093 -4.9390 3.97099 -4.88456 3.97100 -4.93346
5.5 3.97072 -4.92335 3.966890 -4.909550 3.97093 -4.9400
6.0 3.97070 -4.92271 3.966994 -4.909682 3.97094 -4.9416 3.97099 -4.88157 3.97100 -4.93298

and reported in Table 7. As it is seen undoubtedly
from Table 7 that FDM-DQM results in two in-
variants I1 and I2 which are nearly constant and

acceptable good. Numerical results for A = 1.78
with values of ∆t = 0.005 and N = 721 are com-
puted and illustrated in Table 8. One can easily
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see from Table 8 that FDM-DQM produces two
invariants I1 and I2 which are nearly constant and
acceptable good.

4.4. The mobile soliton

As the fourth and the last test problem, the mo-
bile soliton is used with the following initial con-
dition

z(x, 0) = A exp
(
−x2 + 2ix

)
(29)

along the domain −45 ≤ x ≤ 45.

The characteristics of solutions for values of A = 1
and A = 1.78 from time t = 0 to t = 6 are illus-
trated in Figure 4. As one can see from Figure
4, the approximate solution of |z| decay as time
increases for value of A = 1 unless the value of
A = 1.78 soliton’s amplitude, shape and speed
are preserved. Numerical results for A = 1 with
values of ∆t = 0.01 and N = 581 are computed
and illustrated in Table 9. As one can see obvi-
ously from Table 9, FDM-DQM results in two in-
variants I1 and I2 which are almost constant and
acceptable good. Numerical results for A = 1.78
with values of ∆t = 0.005 and N = 691 are com-
puted and tabulated in Table 10. As one can see
obviously from Table 10, FDM-DQM yields the
two invariants I1 and I2 which are nearly constant
and acceptable good.

5. Conclusion

In this manuscript, we have applied quartic B-
spline based FDM-DQM to obtain the numeri-
cal solution of NLS equation. During the solu-
tion procedure, to be able to calculate the com-
plex value of function z, we have converted it into
the coupled real value functions. For obtaining
the second order derivative approximation, differ-
ential quadrature method based on fourth order
quartic B-spline is used. After that, four famous
trial problems have been solved. Simulation of
the all of the test problems namely single soliton,
double solitons, the standing soliton and mobile
soliton given in the Figure 1−Figure 4. As it seen
at the Figure 1−Figure 4 that properties of the
solitons observed clearly. The efficiency of the
method has been tested by calculating the error
norms L2 and L∞, and two lowest invariants I1
and I2 and their relative changes given in the Ta-
ble 2−Table 10. As one can see from the compar-
ison of the the error norms of the newly method
and earlier studies, FDM-DQM results are obvi-
ously the best one except for the single soliton
at time t = 2.5 obtained by Gaussian radial ba-
sis collocation method [20]. The already found
results clearly indicate that FDM-DQM can also

be utilized to obtain numerical results of the NLS
equation with high efficiency.
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