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 In this work, Bagley-Torvik equation is considered with conformable derivatives. 

The analytical solutions will be obtained via Sine-Gordon expansion method and 

Bernouli equation method for the two cases of Bagley-Torvik equation. We will 

illustrate and discuss about the methodology and solutions therefore the proposed 

equation has meaning in different areas of science and engineering.  
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1. Introduction 

For engineering and science, fractional calculus has 

become the important theory including both 

conservative and nonconservative phenomena [1] and 

to model realistic processes such as diffusion wave, 

electromagnetic waves, heat conduction, electro-

electrolyte polarization [2, 3].  

In this paper, the Bagley-Torvik equation, the specific 

type of fractional hyperbolic partial differential 

equation, is considered 

2
( , )

t xx t
u u u f x t


− + =                                       (1) 

where ( , )f x t  is continuous for 0, 1t x   and 

1m m−    is the order fractional derivative.  

Generally, the 1/2-order derivative and 3/2-order 

derivative is common to determine the frequency-

dependent damping materials [4,5]. Therefore, Eq. (1) 

with 1/2-order derivative or 3/2-order derivative is 

used to model the motion of real physical systems. 

The most known examples for each derivative are an 

immersed plate in a Newtonian fluid and a gas in a 

fluid, respectively [6, 7]. When   is between 0 and 2, 

it describes damping force. We will consider Eq. (1) 

for 1/ 2 = . 

The papers on the modelling physical phenomena via 

fractional Bagley-Torvik equation, the numeric [8-12] 

or analytical solutions [6, 13, 14] of Eq. (1) are seen in 

the literature commonly. A fractional mathematical 

model for a micro-electro-mechanical system 

(MEMS) device has been developed to measure the 

viscosity of fluids during oil well exploration by Fitt 

et al. [15]. There are many numerical methods based 

on Bernoulli polynomials [11],   generalized form of 

the Bessel functions of the first kind [9], wavelet [10], 

the generalized Taylor series [8], spline methods [17, 

18],  finite difference scheme [12, 16] etc. to solve the 

fractional Bagley–Torvik equation. In addition, the 

approximations and analytical methods are proposed 

to solve the fractional Bagley-Torvik equation such as 

quadratic polynomial spline function [18], 

homogenous balanced principle [13],  Adomian 

decomposition method [20, 21], first integral method 

[22], homotopy analysis method [19, 23], Lie group 

theory method [24, 25], invariant subspace method 

[14, 26, 27, 36], Fractional variational method [28- 30, 

56], 'G G -expansion method [31], sub-equation 

method [32-35], transformed rational function method 

[37], multiple exp-function method [38]. 

Besides different approaches to solve fractional partial 

differential equation, the other most important tool is 

defination of the fractional derivative. So there are 

many approaches/definitions for fractional derivative 

such as Riemann–Liouville definition, Grünwald–

Letnikov definition, Caputo definition, Riez–Feller 

definition, Miller-Ross sequential definition, Weyl 

definition, Jumarie’s modified Riemann–Liouville 

definition [3, 39, 40]. Among them, the most knowns 

are Riemann–Liouville definition  and Caputo 
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definition whereas in the recent times, the most 

popular ones are conformable derivative [41, 42]. The 

most known definitions of fractional derivatives, 

Riemann–Liouville definition and Caputo definition,  

depend on Gamma function. Therefore, Gamma 

function can be defined as a definite integral and also 

it is seen as   in the definitions whose behavior is 

asymptotic. Because of this reason, we consider the 

conformable derivative. 

In the work, the fractional Bagley-Torvik equation 

with the one of the popular derivative definitions, 

conformable derivative is considered. The analytical 

solutions will be obtained via Sine-Gordon expansion 

method and Bernoulli approximation method. The 

obtained solutions will be compared with the exact 

solutions. 

2. Definitions and methodologies 

2.1. Basic definitions 

As we mentioned in the introduction, various 

definitions for fractional derivative are seen  and the 

most known and used ones  are the Riemann–

Liouville and the Caputo fractional derivative, there is 

a relation between the two. Generally, Caputo 

fractional derivative is preferred so it is not depended 

on initial conditions to give the physical meaning, but 

generally it can be said that it has advantages for 

fractional differential equations with initial conditions. 

These definitions are useful for modelling but they 

have lack of main properties for the computation as 

the product rule, quotient rule and the chain rules and 

etc. Because their definitions include the Gamma 

function which is a special function and has an 

asymptotic behavior. The transition between fractional 

derivative and Newton derivative is not exact. To 

overcome these problems, Abdeljawad [43] proposed 

the conformable derivative and its most properties 

correspond to classical derivative and with this 

definition the equations can be solved more easily. 

 

Definition 1. : [0, )f R →  is a function, the 

conformable derivative of order   is given by 

( )1

0

( )
( )( ) lim , 0, (0,1).

f t t f t
T f t t











−

→

+ −
=     

  

Therefore, if f   is   - differentiable in some  

(0, ), 0a a   and  
0

lim ( )
t

f t

+→
exists, then define 

0
(0) lim ( )

t
f f t 

+→
= . 

 

Properties. All properties of the classical derivatives 

are same as the conformable derivative such as 

linearity, sum, product, division, etc. In addition to 

these properties, assume that (0,1)     and  f   is 

differentiable 0t   , the following property of the 

conformable derivative is given: 

 ( ) 1( )
df

T f t t
dt





−= , if  f is differentiable. 

2.2. Methodologies 

There are various analytical methods to obtain the 

analytical/exact solutions of partial differential 

equations and also these methods can be applied to 

fractional partial differential equations with some 

modifications. The popular methods in the last decade 

are to obtain the exact solutions of NPDEs such as 

tanh-method [44, 45], 'G G  -expansion method [46, 

47], simplest equation method [48], auxiliary equation 

method [49, 50], sub-equation method [51],  and so 

on. With the same view, the methods can also be 

applied to the fractional partial differential equations 

with the modification of the transformation [42, 52, 

53, 57]. 

For the general case, the conformable fractional partial 

differential equation is considered  

2 2

2 2
, , , , , ... 0

u u u u
F u

xt t x

 

 

   
=

  

 
 
 

.                        (2) 

To reduce Eq. (2) into nonlinear ODE, instead of  

x t  = +  the classical wave transformation, the 

new transformation  
t

x



 


= +   is used by many 

authors in the literature. 

 

Proposition 1. Using the wave transformation 

x t  = +  and properties of the conformable 

derivative especially ( ) 1
( )

du
T u t t

dt





−
= , if u  is 

differentiable are used to reduce into nonlinear ODE 

respect to   

( , , , , ...) 0F u u u u   = .                                           (3) 

 (3) 

Remark 1. As a result, the obtained nonlinear ODE  is 

generally variable coefficient nonlinear differential 

equation. 

In the view of auxiliary equation method, the solution 

of Eq. (3) is considered as the finite sum of the 

solution of the proposed auxiliary equation 

1

( ) ( )
N

i

i

i

u a z 
=

=                                                   (4) (4) 

where ( )z   is the solution of the proposed auxiliary 

equation, 
i

a   are the parameters will be determined 

via obtained algebraic system, N   is determined by 

the balancing principle [54].  The procedure is the 

same, substituting the proposed auxiliary equation and 

solution (Eq. 4) into the reduced equation (Eq. 3), then 

classify the obtained equation respect to the powers of 

( )z   Each coefficient of the power of ( )z   is equal 
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to zero, so the algebraic system is obtained and the 

solutions of system are parameters in Eq. (4). 

Substituting results and transformation in Eq. (4), the 

analytical solution of Eq. (2) is obtained. 

In this work, two types of auxiliary equations which 

are different from the literature are considered. The 

first one is the case of the Sine-Gordon equation and 

the second one is the variable coefficient Bernoulli 

type differential equation [50, 55]. 

3. Results and discussion 

The Bagley-Torvik equation with the conformable 

derivative of order  1/ 2 =   is considered 

2 1/2
( , )

t xx t
u u u f x t− + =                              (5) 

where ( ) ( )
3/ 2

28
( , ) 2 sin

3

t
f x t t x 


= − +
 
 
 

. Its 

exact solution 
2

( , ) sin( )u x t t x=  is given via 

separation of variables by [12, 16]. 

Now we try to obtain analytical solutions by suggested 

methods with the proposed transformation 

x t  = +  for 1/ 2 = . With the proposed 

transformation, Eq. (5) is reduced into 

( ) ( ) ( )
3 / 2

2 22 1 8
2 sin

3

t
u u t u t x


   



−  − + = − +
 
 
 

. 

Case 1.  The Sine-Gordon equation 
2

sin( )
xx tt

u u m u− =    is considered and its solution is 

obtained via the wave transformation as 
sin( ) sec ( ), cos( ) tanh( )w h w = = .Therefore, the 

ansatz is 

( )1

0

1

( ) tanh ( ) sec ( ) tanh( ) ,

N

i

i i

i

u a b h a x t      
−

=

= + + = +

 

When the given procedure is applied, as a solution of 

algebraic system, the parameters are obtained; 

( )
2 2

2

1 2 2 1 1 2 02 2

I
, , 2 tanh( ), sin

2 2
b a b a b b a t x

 
 

 
= = = − = − − =

 

As a result, substituting the parameters and the 

solution of Sine-Gordon equation into Eq. (4), the 

analytical solution is given by Figure 1 for the special 

parameters  

 

( )( )
( )

1/ 2

1/ 2

144 42 3
, 9 13

10 105760 1680

I I
I

I t
 

− +  
= = − + − − 

 − +

. 

 
i) The solution of Eq. (5) via Sine-Gordon 

Expansion Method 

 
ii)  the comparison between analytical solution 

(surface) with the exact solution(surfacewireframe)  

Figure 1. The solutions obtained via Sine-Gordon 

Expansion Method 

 

In the following figures are obtained for  (0,1)    

and 0.6x = , the comparison of    values , 

comparison of approximate  and   exact solutions (see 

Figure 2). 

Case 2. For the second we will consider the variable 

coefficient Bernoulli equation instead of the classical 

auxiliary equation 

( ) ( ) ( ) ( ) ( ) , 0,1
n

z P z Q z n     = +               (6) 

The solutions of Eq. (6) depends upon the coefficient 

functions ( )P  , ( )Q    and the degree of Eq. (6) n  .  

When the classical procedure is applied to Eq. (5), the 

coefficient functions and parameters are obtained 

( ) ( )

( ) ( )

2

2

1 1

3/2
22 2

2 1 0

8
, ,

1 3 3

5 8
, 2 sin

19 3

g
P Q

c e c e

t
g g g t x

 


 

 

  


− −
= =

+ +

 
= = − + 

  . 
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Figure 2. First one is the comparison of    values for the 

obtained solution; the second one is the comparison of exact 

solution with the analytical solution obtained via SGEM 

 
As a result, the solution of Eq. (6) with the obtained 

functions is 

( )
( )1

2 2 3

2 2 1 2

3

24 48 9

e c
z

g e g c e c



 




 

+
= 

− − + . 
Hence the solution of  Eq. (5) is given by Figure 3 for 

the parameter values 5 4

1 2 11.1, 10 , 0.8, 10c c g− −= − = = = . 

In the following figures are obtained for  (0,1)     

and 0.6x = , the comparison of   values, 

comparison of approximate  and   exact solutions. 

 
i) The solution via Bernoulli approximation method  

 
ii) the comparison between analytical solution (surface) 

with the exact solution(surfacewireframe) 

Figure 3. The solutions obtained via Bernoulli 

approximation Method 

 

4. Conclusion 

In this work the Bagley-Torvik equation with the 

conformable derivative is considered and the solutions 

are obtained expected behavior via the Sine-Gordon 

expansion method and Bernoulli approximation 

method. Also the exact solution comparisons and the 

obtained analytical solutions are given by Figure 1 and 

Figure 3.  These solutions are not have any sense in 

physics but in the future they will be useful for 

developing technology. 
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Figure 4. First one is the comparison of    values for the 

obtained solution; the second one is the comparison of exact 

solution with the analytical solution obtained via Bernoulli 

approximation method. 
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