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In this paper, we consider the stability problem of delay differential equations
in the sense of Hyers-Ulam-Rassias. Recently this problem has been solved
for bounded intervals, our result extends and improve the literature by obtain-
ing stability in unbounded intervals. An illustrative example is also given to
compare these results and visualize the improvement.
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1. Introduction

In 1940, Ulam [I] raised the following stability
problem of functional equations: Assume one has
a function f(¢) which is very close to solve an
equation. Is there an exact solution A(t) which
is relatively close to f(¢)? More precisely, Ulam
raised the question: Given a group G; and a
metric group (Ga,p). Given € > 0, does there
exist a 0 > 0 such that if f : G; — Gy sat-
isfies p (f(zy), f(x)f(y)) < ¢ for all z,y € Gy,
then a homomorphism h : G1 — G2 exists with
p(f(x),h(z)) < ke for all z € G; and some
k > 07 If the answer is affirmative, the equa-
tion h(xy) = h(x)h(y) is called stable in the sense
of Ulam. One year later, Hyers [2] gave an answer
to this problem for linear functional equations on
Banach spaces: Let G1, G2 be real Banach spaces
and € > 0. Then, for each mapping f : G1 — Go
satisfying || f(z+y) — f(z) — f(y)|| < e for all
x,y € G1, there exists a unique additive mapping
g : G1 — G9 such that ||f(x) — h(z)|| < € holds
for all € G;. The above result of Hyers [2] was
extended by Aoki [3] and Bourgin [4]. In 1978,
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Rassias [5] provided a remarkable generalization,
which known as Hyers-Ulam-Rassias stability to-
day, by considering the constant € as a variable in
Ulam’s problem (see for example [3,6-8]). After
Hyers’ answer, a new concept of stability for func-
tional equations established, called today Hyers-
Ulam stability, and is one of the central topics in
mathematical analysis (see for example [9-H12]).

The first result on Hyers-Ulam stability of dif-
ferential equations was given by Obloza [13,14].
Thereafter, in 1998, Alsina and Ger [15] inves-
tigated the Hyers-Ulam stability for the linear
differential equation 3’ = y. They proved that if
a differentiable function y : I — R satisfies

() —y@)] <e
for all t € I, then there exists a differentiable

function f : I — R satisfying f/'(t) = f(¢) for
any t € I such that

ly (8) = f (1) < 3¢
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forall t € I. Here, I is an open interval and € > 0.

Furthermore, Miura et al. [16], Miura [I7] and
Takahasi et al. [I8] generalized the above result
of Alsina and Ger [I5]. Indeed, they proved the
Hyers-Ulam stability of the dynamic equation

y = \y.

In 2004, Jung [19] obtained a similar result for the
differential equation ¢ (t)y = y. More later, the
result of the Hyers-Ulam stability for first-order
linear differential equations has been generalized
by Miura et al. [20], Takahasi et al. [2I] and
Jung [22]. They studied the nonhomogeneous lin-
ear differential equation of first-order

Y +pt)y+q(t)=0. (1)

In 2006, Jung [22] proved the Hyers-Ulam-Rassias
stability of Eq. (). Also, Jung [23] studied the
generalized Hyers-Ulam stability of the differen-
tial equation of the form

ty' (t) +ay (t) + Bt"zo = 0.

In 2008, Wang et al. [24] studied the first-order
nonhomogeneous linear differential equation

p®) Y —qt)y—r(t)=0. (2)

Using the method of the integral factor, they
proved the Hyers-Ulam stability of Eq. ([2) and
extend the existing results. In 2008, Jung and
Rassias [25] generalized the Hyers-Ulam stability
of the Riccati equation of the form

v+g®y+ht)y? =k(t)

under the some additional conditions. In 2009
and 2010, Rus [26,27] gave four types of Ulam
stability: Ulam-Hyers stability, generalized Ulam-
Hyers stability, Ulam-Hyers-Rassias stability and
generalized Ulam-Hyers-Rassias stability for the
ordinary differential equations

v =f(ty(?) (3)
and
v () =pt)+f(tyd),
respectively. Also, in 2010, by using the fixed

point method and adopting the idea used in

Cadariu and Radu [9], Jung [28] proved the
Hyers-Ulam sability for Eq. (B]) defined on a fi-
nite and closed interval, and he also investigated
the Hyers-Ulam-Rassias for Eq. (@). In 2013,
Li and Wang [29] obtained Hyers-Ulm-Rassias
and Ulam-Hyers stability results for the following
semilinear differential equations with impulses on
a compact interval:

y () =Xy (t)+ f(ty (1)

In 2014, Qarawani [30] established the stability of
linear and nonlinear differential equations of first-
order in the sense of Hyers-Ulam-Rassia. Also, he
investigated stability and asymptotic stability in
the sense of Hyers-Ulam-Rassias for a Bernoulli’s
differential equation. Same year, Alqifiary [31]
gave a necessary and sufficient condition in order
that the first order linear system of differential
equations

y )+ Ay )+ B(t)=0

has the Hyers-Ulam-Rassias stability and find
Hyers-Ulam stability constant under those condi-
tions. In 2017, Onitsuka and Shoji [32] studied
the Hyers-Ulam stability of the first-order linear
differential equation

y —ay =0, (4)

where a is a nonzero reel number. They find
an explicit solution y (t) of Eq. () satisfying
|p(t) —y(t)] < e/lal for all t € R under the as-
sumption that a differential function ¢ (¢) satisfies
|¢/ (t) —ad (t)] < e forall t € R.

Serious studies on the stability problem of differ-
ential equations have been started since 2000s.
Stability has been investigated for the differ-
ent classes of differential equations with differ-
ent approaches. For example, delay differential
equations are a special type of ordinary differen-
tial equations. To our knowledge, in 2010, the
first mathematicians who investigated the stabil-
ity of delay differential equations are Jung and
J.Brzdek [33]. Motivated by the above mentioned
outcomes on Hyers-Ulam stability, they investi-
gated the Hyers-Ulam stability of y/(t) = Ay(t—7)
for [—7, 00) with an initial condition, where A > 0
and 7 > 0 are real constants. Thereafter, Otrocol
and Ilea [34] investigated Ulam-Hyers stability
and generalized Ulam-Hyers-Rassias for the fol-
lowing functional differential equation

y () =fty(t),yg®).
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In 2015, by using the fixed point method, Tung
and Biger [35] proved two new results on the
Hyers-Ulam-Rassias and the Hyers-Ulam stabil-
ity for the first-order delay differential equation

y'(t) = F(t,y(t),y(t — 7).

Recently, in the last two decades, the theory time
scale and related dynamic equations have been
systematically studied. To our knowledge, only
in 2013, Andrds and Mészaros [36] studied the
Ulam-Hyers stability of some linear and nonlin-
ear dynamic equations and integral equations on
time scales. They used both direct and opera-
tional methods. In 2013, Shen [37] established
the Ulam stability of the first-order linear dy-
namic equation

y>=pt)y+ (1)
and its adjoint equation
2 = —p(t)a” + £ (1)

on a finite interval in the time scale by using the
integrating factor method. Same year, by using
the idea of time scale Zada et al. [38] studied
a relationship between the Hyers-Ulam stability
and dichotomy of the first-order linear dynamic
system

2 =G (t).

In the last decade, there has been a significant
development in the theory of fractional differen-
tial equations. We refer to the papers [39-43] for
qualitative study of fractional equations, includ-
ing stability theory.

2. Preliminaries

As it is outlined in Introduction section, stabil-
ity problem of differential equations in the sense
of Hyers-Ulam was initiated by the papers of
Obloza [13[14]. Later Alsina and Ger [I5] proved
that, with assuming I is an open interval of re-
als, every differentiable mapping y : I — R
satisfying |y/(x) —y(z)| < € for all x € I and
for a given € > 0, there exists a solution gy of
the differential equation y'(x) = y(x) such that
ly(x) —yo(x)| < 3e for all x € I. This result
was later extended by Takahasi, Miura and Miya-
jima [I8] to the equation y/(z) = Ay(x) in Banach
spaces, and [20,/44] to higher order linear differ-
ential equations with constant coefficients.
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Recently Jung [28] proved Hyers-Ulam stability as
well as Hyers-Ulam-Rassias stability of the equa-
tion
y = f(t,y)

which extends the above mentioned results to
nonlinear differential equations. Jung also shoved
that some of his results are valid also on un-
bounded intervals. Jung’s technique has been
modified also for functional equations in the form

()

by Tun and Bier [35]. They obtained the following
significant result for delay differential equations.

Y (t)=F (t,y(t),y(t — 7))

Theorem 1. Let Iy := [to — 7,T] for given real
numbers tg, T and T with T > tg. Suppose that
the continous function F : [g Xx R x R — R satis-
fies the Lipschitz condition

|F'(t,z1,91) F (t,22,92)] <
+ Lalyr — 2|

Ly |z — z2]

for all (t,x1,y1), (t,x2,y2) € Ig X R X R and some
L1, Ly > 0. Suppose also that U : [tg — T,tg] = R
is a continuous function. Let ¢ : Iy — R be a
continuous and nondecreasing function satisfying

/t: ©(s)s

for all t € Iy and some K > 0 satisfying
0 < K(L1+ L) < 1. If a continuous func-
tion y : Iy — R satisfies

{ /() — F (t,y(t), y(t — 7)) < o(t),
ly(t) = V(@) < ¢(t), telto—T,tol,

then there exists a unique continuous function
yo : Iop = R satisfying Fq.

< Ko(t) (6)

tc [to, T]

{ Yo(t) = F (t,yo(t), yo(t — 7)), t€ [to, T},
Yo(t) = W(t), te€ [to— 7 1o
and

() = 3000) < Tz # )

for allt € Iy and any number L with L > L+ Lo.

In this paper, we will extend and improve these
result by proving the stability results for delay dif-
ferential equations for unbounded intervals. To
achive stability results on unbounded intervals,
we will use the inspiring techniques used in the
above mentioned papers [7] and [35].

9
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3. Main result

Before stating our main result, let us define the

Ulam-Hyers-Rassias stability precisely for the dif-

ferential equation (Hl).

For some ¢ > 0, ¥ € C[ty — 7,to] and to,T € R

with T" > t(, assume that for any continous func-

tion f: [to — 7,T] — R satisfying
[f'@) = F (@, f(8), f(t = 7)) <e, t€[to,T],
f(t) =¥(t)] <e, tEto—T,to]

If there exists a continuous function fy :
7,T] — R satisfying

{ fo(t) = F (t, fo(t), fo(t — 7)),
fot)=9(), te€lto—T, 1o

to —
t e [to,T],

and

[f(t) = fo(®)] < K(e), telto—7T],
where K(e) is an expression of € only, we say
that Eq. (B has the Hyers-Ulam stability. If the
above statement is also true when we replace e
and K (¢) by ¢ and ®, where ¢, ® € C[tg — 7,7
are functions not depending f and fy explicitly,
then we say that Eq. (B) has the Hyers-Ulam-
Rassias stability. These definitons may be ap-
plied to different classes of differential equations,
we refer to Jung [28], Tun and Bier [35] and ref-
erences cited therein for more detailed definitions
of Hyers-Ulam stability and Hyers-Ulam-Rassias
stability.

Our main result concerning the Ulam-Hyers-
Rassias stability of delay differential equations on
unbounded intervals reads as follows.

Theorem 2. For a given real number ty, let
I := [ty — T1,00). Let K, L1 and Lo be positive
constants with 0 < K (L1 + Lg) < 1. Assume
that F': I x R x R = R is a continuous function
which satisfies the Lipschitz condition (6) for all
(t,x1,y1), (t,x2,y2) € I xR xR. If a continuously
differentiable function y: I — R satisfies,

{ |y'(t) = F (,y(t), y(t — 7)) < (t),
ly(t) = V()] < (t), t€lto—T,tol, .
7

where ¢ : I — (0,00) is a continuous function sat-
isfying the condition (@) for allt € I, then there
exists a unique continuous function yo : I — R
which satisfies

{ yo(t) = F (t,yo(t), yo(t — 7)),
Yo(t) = ¥(t), telfto—T,to

te [to, OO),

(8)

te [to, OO),

and

K
K(Li + Lo

[y(®) = y0(V) < 7= )so(t) 9)

forallt eI.

Proof. For any n € N, define the sets I, :=
[to,to +n]. Then according to Theorem [I] for
each n, there exists a unique continuous function
Yn : I, — R such that

w®) = yt0) + [ F (5,00 0us = 7)s (10)

to

and

K
t) — 1) < t 11
for all ¢t € I,,. Keep in mind that y(t) = yo(t) =
U(t) for t € [to — T,to]. If t € I, uniqueness of
the functions ¥, implies that

Un(t) = Yng1(t) = ynya(t) =+ . (12)

Now, for any ¢ € R, define the number n(t) € N
as
n(t) :=min{neN : t e l,}.

Moreover, we define the function yo : R — R with

Yo(t) = Yn() (1) (13)
and we claim that gy is continuous. To prove
this, for arbitrary t; € R, we choose the inte-
ger n; := n(t;). Then n; belongs to interior
of I,4+1 and there exists an € > 0 such that
yo(t) = yn+1(t) for all t € (1 —e,t1 +¢€). Since
Yn+1 is continuous at 1, so is yg. That is, yg is
continuous at t; for any t; € R.

Now, for arbitrary ¢t € I, we choose the number
n(t). Then, we have t € I, and it follows from

(I0) and (I3)) that

Yo(t) =

= y(to) + / F (5,50 (), ey (5 — 7)) 8
= y(to) + t F (s,90(s),90(s —7))s.(14)

Yn(t) (t)

Here, the last equality is valid because n(s) < n(t)
for any s € I,,(;) and it follows from (I2)) and (I3)
that

Yn(t)(1)(8) = Yn(s)(5) = yo(s)-
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The equality (I4]) implies that the function yg sat-
isfies the equations (g]).

Now we will show that the function yy satisfies
the inequality (). Since t € I, for all t € I,

from (Il and (3], we have

Y(t) = Yy (1))
g K
= 1-K(L+ L) "

ly(t) —yo(t)| =

(t)

for all t € I,,.

Finally, we will now show that the function yg is
unique. Let ug : I — R be another continuous
function satisfies (8) and (@), with ug in place of
Yo, for all ¢ € I. For arbitrary ¢ € I, the restric-

tions yO’In@) (: yn(t)) and u0|1n(t) both satisfy (g])
and (@) for all ¢ € I,,(;y. Then, it follows from the
uniqueness of Yn(t) = Yol Ly that

Yo(t) = yol1, ) = vol,,, = uo(t),
which completes the proof. O

4. Example

Example 1. For any A;, A2 > 0, consider the
following delay differential equation

Y (8) + My(t) + Aey(t — ) = q(t) (15)

on the interval I := [ty — 7, 00], where ¢y and T
are arbitrary real numbers. Since

F(tyt),yt—7)) =yt) +ylt —7)—q(t),

we have

F (t,z2,y2)]
= |Az1 + w1 — q(2)
—A122 — Aay2 + q(1)]
= | (z1 —22) + X2 (y1 — y2)]
ALz — 22| + A2 [y1 — 2|

|F (t,z1,91)

IN

for all t € I. So all the conditions of Theorem
are satisfied and we obtain stability of the differ-
ential equation (I5) in the sense of Hyers-Ulam.

Now, if we define the function ¢(t) := e

(K > 0), we have
t
- [
0

/t: o(t)s

for all t € I. Then, according to Theorem 2] the
equation () is stable in the sense of Hyers-Ulam-
Rassias.

It should be remarked that Theorem 2l guarantees
the stability of (IH) for any 7" < oo, while the re-
sult of Tun and Bier [35] can guarantee stability
in only a bounded subset of I. In this example,
their result works only for T < oo.
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