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1. Introduction and preliminaries which can also be shown as X(t,w) for w € 2, is

The convexity for stochastic processes is of gre&Pnsidered to be state or position of the process at
importance in optimization, especially in optimaltimet. For any fixed outcome  of sample spacef?, the
designs, and also useful for numerical approximatio deterministic -~ mapping ¢ — X(t,w) denotes a
when there exist probabilistic quantities in the&ealization, trajectory or sample path of the process.
literature. For any particular t € Ithe mapping depends w

In 1980 Nikodem defined convex stochastic process@Pné i-€., then we obtain a random variable. It can
and gave some properties which are also known f8F S&id that, X(t, ) changes in time in a random
classical convex functions. Some types of conve@nner. We restrict our attention to continuous time
stochastic processes were introduced by Skowronskpchastic processes, i.e,, index setis/: [0, o0).

in 1992. In 2012 Kotrys obtained the classical

Hermite-Hadamard inequality to convex stochasti®€finition 2 ([5]). The process X:/ c Rx Q - R is
processes. There are many studies in recent years Gglled convex stochastic process if

the above mentioned processes. A lot of definitioins X (Au + (1 — D)v,") < AX(w,") + (1 - DX(v,") (a.e)
various convexity and some new inequalities were fqo, 41 4 1, € 1.2 € [0,1].
these stochastic processes in the literature [7-13]

The author’s findings led to our motivation to lolil

our work.The main goal is to introduce p-convex _ . o

stochastic processes. Moreover, we prove Hermitt€!l US give some basic definitions:

Hadamard type inequalities for p-convex stochastiDefinition 3 ([5]). The processX: I x 2 — Riscalled
processes and obtain some important results faethej) continuous in probability in I if for all ¢, € I if
processes. o _ P — limX(t) = X(to)

Let us show the definition of a stochhastic process t=to

Definition 1 ([5]). The process {X(t):t €I} is a

parameterized collection of random variables defined  where P — lim denotes limit in probability,
on a common probability space(2,3J,P). Its

parameter t is considered to be time. Then X(t),

If the above inequality is
reversed, then X(t,) is called concave.

*Corresponding author
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(if) mean-square continuousin [ if for all t, € I if
UmEX () = X (t0,)]* = 0

where E[X(t,)] denotes expectation value of the
random variable X (t,-),
(iii) increasing (decreasing) if for all u,v €I such
thatu < v if

X)) <XWw) X(w)=Xw)) (ae),
(iv) mean-sguare differentiable at a point t € I if there
israndomvariable X'(t,-): I x 2 — R such that
X(t) — X(to)

t—t,
The stochastic process X:1 X 2 — R is continuous

(differentiable) if it is continuous (differentiable) at
every point of interval I.

X'(t)=P—lim

t-to

The concept “mean-square convergence” is used
the statement “almost everywhere” in this paper.

Definition 4 ([5]). Let X:I X 2 -» R be Theprocess
with E[X(t)?] <o and u=t, <t; < <t,=v
be a partition of [u,v]c I, Oy € [ty_1, tx], k=
1, ...,n. Arandom variable Y: 2 - R is called mean-
sguare integral of the process X(t,-) on [u,v] if the
following identity holds:

2

g@E[(Z X(©0) - (i tir) Y) 1=o0.
k=1

Then we can write [ X (¢,)dt = Y(-)(ae.).

For the existence of the mean-square integral it is
enough to assume the mean-sgquare continuity of the
stochastic process X.

Now, we give the well-known Hermite-Hadamard

integral inequality for convex stochastic processes

Theorem 1 ([9]). If X:1 X 2 - R is a Jensen-convex
stochastic process and mean sgquare continuous in the
interval I, then we have almost everywhere

() = L [rae < 02 X0)

u

foranyu,v el,u <wv.
Definition 5 ([7]). Let I ¢ R\{0} be a real interval.
The process X:1 X 2 — R is called a harmonically
convex stochastic process, if the following inequality
holds almost everywhere:

X (ﬁ) < AX(w,) + (1 - DX
for all u,v € and A € [0,1]. If the above inequality
is reversed, then X is called a harmonically concave
stochastic process.
Definition 6 ([13]). Let I be a p-convex set. A function
f:1 - R is called a p-convex function or belongs to
the class PC (1), if the following inequality holds:

f(le + = 0y7P) < tf G0 + (1 = OF )
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forall x,y e Tandt € [0,1].

Theorem 2 ([12]). Let f:1 c (0,0) - R be a p-
convex function. Iff € L[a,b], a,b €1, a < b, then

we have
1

aP + bPp p Pf(x) f(a) +f(b)

f([ 2 ])pr—al’axl‘pd = 2 '

Remark 1 ([9]). Let us define the following functions:
(1) The Beta function:

reory)

Bx,y) = m

(2) The hypergeometric functionc > b > 0; |z| < 1:

1
= f AL = )Y tdA,
0

oFi(a, b;c; z)

- flab—la — DI - zA)%dA
as B(b,c=b)J, '

2. Main results

The main subject of this paper is to adapt somé- wel
known related results p-convex functions on p-canve
stochastic processes. Also, we purpose to obtain
Hermite-Hadamard type inequalities for p-convex
stochastic processes.

Definition 7. Let I be a p-convex set. The process
X:1x 02 - Riscalled a p-convex stochastic process,
if the following inequality holds almost everywhere:

X ([Auv (1 )l)vp]%,-) < AX(w) + (1= DX ()

for all u,v e I and A € [0,1].

Remark 2. The interval I is called a p-convex set, if
[AuP + (1 — A)vp]% elforaluvelandle][0,1],
Wherep=2k+10r,p=%n=2r+1,m=2t+1
and k,r,t € N.

Remark 3. If I c(0,0) and p € R\{0}, then

1
[Au? + (1 —A)vPle € I forallu,v € I and A € [0,1].

Thus, we can also define p-convex stochastic
processes as follows:

Definition 8. The process X: I X 2 » R is called a p-

convex stochastic process, if the following inequality
holds almost everywhere:

X ([Au” +(1- A)vv]%,-) < X@w) + (1= DXw,) (1)

for all u,v el c (0,),4€[01],p € R\{0}. If the
inequality in Eq. (1) is reversed, then the process X is
called p-concave.

According to Definition 8, it can be easily seemtth
for p =1 or p = —1, a p-convex stochastic process
reduces to convex and harmonically convex stoahasti
process ori c (0, ), respectively.

Example 1. Let X: (0,0) X 2 - R, X(u,”) = uP,p #+
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OandY:(0,0)xN >R, Y(u,)=c, cER, then X
and Y are both p-convex and p-concave stochastic
processes.

Lemma 1. Let X:1 < (0,0) X 2 - R be a p-convex
stochastic process and mean-square integrable on I°.
Then the following equality holds almost everywhere:

p X(t)
v —yb tlp
1
1 v —-u v— >
= f X([y vP + yu”]p,-> dy
v—ul, v—u —-u

forallquIpEJR\{O}

Proof. Changing oft? = vp +2 - up in
p 1iX(t D)
vP—yP fu t1-p dt

then the proof of Lemma 1 is completed.

Theorem 3. Let X: 1 c (0,0) X 2 - R be a p-convex
stochastic process. If Xis mean-sguare integrable on
[u, v], then we have almost everywhere

1
P Py v . . .
X [u +v ]p’. <P f X(t')dtsX(u')+X(v')
2 vP—uP |, t1P 2

foralu,vel,u<w.

Proof. Changing ofl = == in Eq. (1), we get
1
v — —Uu )
X <[ yup + Y v”]p ;)
v—Uu v—u

s(v y)X(u)+( )X(v)

v —
Integrating ofu, v]and using Lemma 1, we have

1
1 v —-u v— >
f X([y vP + yup]p,-> dy
v—ul, v—u v—u
_ p fVX(tﬁ) < X(ul) +X(vﬁ)
_vp—up u ’

ti-p T 2
Changing 0fy=%(u+v)+t in Lemma 1, we

obtain
X(t, )
b — uPL ti-p
1 %(v—u) E (up + v”)
M | S IR
v—u —%(v—u) v u t
v—u
2 (2w (1 »
> J- X||=@WP +vP)| , |dt
v—ul, |2 ]

1
=X (E WP + up)]p ) (a.e).
Corollary 1. If Xis mean-square integrable on [u, v],
then we have almost everywhere

2uv uv X(t, ) X(u,-) +X(,)
X<u+v")<v—uf t2 2 '
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Proof. In Theorem 3, ifp = —1, then the proof of
Corollary 1 is completed.

Lemma 2. Let X:I c (0,0) X2 > R be a mean-
square differentiable stochastic process on I°. If X' is
mean-square integrable on [u, v], then we have almost
everywhere

X(u,2) +X(,) % vX(t,) 4
2 _vp—upJ; o
1-21
p _ P 1 _=
_Y ”_f [AuP + (1 - A)vr]' P da
2p 0

% x ([lup (1 A)vp]%,-)J
for all u,v € I,p € R\{0}.

Proof. It suffices to show that
[ 1-24

I[/lup + (1 -] di

1
|
([Aup +(1- /1)17?’]13 J

1
X))+ X(,) 2p ! AuP P
A T ) x [+(1 - /1)17”] - aa
X(u)+X(,) 2p? f”X(t,')
= — dt.
vP — P (vP —uP)?J, tip

Multiplying by % both sides of above equality

then the proof of Lemmai2 completed.
Coroallary 2. If X'is mean-square integrable on [u, v],
then the following equality holds almost everywhere:

X(u,)+X(v,) 1 v
3 —v_uJ;X(t,-)dt

Dv),)dA.

Proof. In Lemma 2, if we take = 1, then the proof
of Corollary 2 is completed.

Coroallary 3. If X'is mean-square integrable on [u, v],
then almost everywhere

X(u,2)+Xw,) uv  (YX(t,) i
2 - uJ; t2
uw(v—u) (1! 1-22 , uv
- fo v + (1= Dul? (,w F(1- A)u") da

Proof. In Lemma 2, if we tak@ = —1, then the proof
of Corollary 3 is completed.

Theorem 4. Let X:Ic (0,0)xN2—>R be a
differentiable stochastic process on I° and X' be
mean-square integrable on [u,v]. If |X'|7 is a p-
convex stochastic process on [u, v] for g = 1, then the
following ineguality holds almost everywhere:
K@) +X@) _ p -FX@J

| 2 vP —upP J, ti7P

dt

1

P — P 1_% , q ) as
= ¢ [C2|X (u,-)l + C3|X (V")| ]q

="
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forall u,v € I°, u < v, p € R\{0} and where

1
1 /uP + vP\p !
Clzcl(u'V;p)=_< 2 )

[sbes
+,F (1-2 22,3, )

1
1 uP +vP\p *
o= o = (V)

F(1-324 )

x uP+vP
+2F1(1—— 240)|

? uP4yP

Cs = CG(w,v;p) = C — Gy

Proof. Using the power mean integral inequality and

Lemma 2, then we have

X(u") + X(V,') _ p va(t")

— 1-
2 vP—uP J), ti7P

a

1-221 |
1_1|
[AuP + (1 — D)vp]' P da

vP —yP 1
<]
2p 0

1]
x |X’([/1up +(1- A)vp]p,-) |
vP—uP [ 1 |1 — 24|
= 2p f 1-1 da
O [AuP + (1 —AvP] P

1
—_ A_ -

[ =2 1 a

X [ (up+-2ywe)' P |

"I« X’([Auz’ + (- A)vp]%,-)rJ

Hence, using p-convexity of the stochastic process

|X'|?0n [u, v], we havealmost everywhere
Xw)+Xw) »p f”X(t,-)

| 2 vP —uP J, tiP dt

1

vP—uP [ (1 [1—22]
sy i
P\ pwp + (1 - pvr]' e

Q=

flll_Z/WX @)+ A= DX @Il
0 [lup +(1- A)vp] P

wP—yP

1 1
<2 Al K [+ Gl |

= G
1 |1 —22]
wheref

TdA = C, (u,v;p),
[Au? + (1 — /1)171’] P

1 11— 242
f TdA = C(u,v;p),
O [uP +(1—vr]' P

1 Al(1-2
2D 92 = ¢ (w3 p) — Co(u, v p).

0 1
[AuP+(1-A)vP] P

Coroallary 4. If |X'|? is a p-convex stochastic process
on [u, v], then almost everywhere

X@w)+Xw)  p [UX(E)
| 2 vP —uP fu ti-p dt
s”‘”‘“ [C]X @) + Co)x @],

where C, and C3 are defined asin Theorem 4.
Proof. If g =1 in Theorem 4, then the proof of
Corollary 4 is completed.

Theorem 5 Let X:I°cRxN2->R be a
differentiable stochastic process on I. If [X'| is a
convex stochastic process on [u, v], then the following
inequality holds almost everywhere:

IX(u") I

- w—-w (X' @w)| +|X' @)
- 8

forallu,vel’, u<wv.

Proof. If p = 1 in Corollary 4, then then the proof of
Theorem 5 is completed.

Corollary 5. If |X'|?7 is harmonically convex
stochastic process on [u,v] for g = 1, then almost
everywhere
|X(u,-)+X(v,-) uv f”X(t,-)
- dt
| 2 t2

v—ul,

<20 20 T Xl + A AT
2 (u+v)?
Where)q:——(v_u)zln( oy ),
-1 3u+tv (u+v)?
:v(v—u)+(v—u)3ln< 4uv )'
1= 1 _317+uln((u+v)2>=/1 3
2T uw-u) (w—u)d 4uv T

Proof. If p =—1 in Theorem 4, then the proof of
Corollary 5 is completed.

Theorem 6. Let X:Ic (0,0)xN2—>R be a
differentiable stochastic process on [° and mean-
square integrable on [u,v]. If |[X'|? is a p-convex
stochastic process on [u, v] for g > 1,% + i =1, then
almost everywhere

Xw)+X@w)  p f”X(t.-)

| 2 vP —yp ti-p dt

wP—yP

= (m) [Ca|X )| + Cs|x' @) ]q @)
for all u,v € I°, u < v, p € R\{0} and where
Cy=Co(u,v;059)

ZuP—1 2F1(q—%,1;3;1—(5)p), p <0,
204P—1 ZFl(q_§'25351_(%)p), p> 0,

Cs =Cs(u,v;p;q) =
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1
2udpP—1 2F1 (

1
Joar—q 2f1 (q

a-1231-(2)). p<,

_%,1;3;1—(%)p), p>0

Proof. Holder's inequality, using p-convexity of the

stochastic procedX’|9on [u, v] from Lemma 2

X(u") + X(V,') _ p va(t")

— 1-
2 vP—uP ), ti7P

P —uP [ 1 %
< (f [1— 2/1|le>
2p 0

o)

[Aw? + (1 — A)vp]q_%

dt

QR

1
vP—uP /s 1 \7
o)
2p r+1
1

PENT P N q
o (f01/1|x )| +a-n|x (1;,)| d/l) ,

AuP+1-Apwp] TP

1 A
where f da
o1

-2
AuP + (1= )vP]" »

[ n g @f)co

soara 21 (CI - 2331 (%)p) p>0

1 1-2
| d
0

[AuP + (1 — DHvr]?”
”ﬁza(q—— 2:3: 1—()) p <0, w
(

szl( 11:3;1— ))p>0

Substituting Eqg. (3) and (4) in Eq. (2), then theqgh
is completed.

Corollary 6. If |X'|? is a convex stohastic process on
[w, v] then the following ineguality holds:

’BI-Q

<

NS

X(u,)+X(,) 1 v
3 o ufu X(t,)dt
(v—u) |X (u, )| + |X (v, )|q q (ae)
2(p+ 1)17 2

whereX+1=1.
p q

Proof. In Theorem 6, if we takp = 1, then the proof

of Corollary 6 is completed.
Corollary 7. If |X'|?7 is a harmonically convex
stochastic processon [u, v] for g > 1,% + % =1, then

X(u,-)+X(v,-)_ uv f”X(t,-)dt

2 v—u t2
1

< B () X @] + palx @) g

2
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u?724 4 p1=2[(y —u)(1 — 2q) — u]
2w-w?1 -1 -2q9) '
_vP = 2 (v —u)(1 - 2q) + V]
2T T Wi - - 29)
Proof. In Theorem 6, if we take = —1, then the
proof of Corollary 7 is completed.

Theorem 7. Let X:Ic (0,0)xN2—>R be a
differentiable stochastic process on /° and X'be mean-
square integrable on [u,v]. If [X'|? is a p-convex
stochastic process on [u, v] for g > 1,% + 5 =1, then

vX(t,)

where pu; =

Xw)+X@w)  p
— dt
| 2 P —yP J- tl‘p
< vP—uP Cl [|X (u, )| +X (v, )| 5)
2p q+1 2

for all u,v € I°, u < v,p € R\{0}and where
Co = Cs(u,v;p;7)
r v\P
m= oA (r- 5 u21=()) p<o
1 r u\P .
= oA (r-5121-(5)) p >0
Proof. Using Holder's inequality, p-convexity of the
stochastic procedX’|?on [u, v] and Lemma 2
X@w)+Xxw)  p f”X(t,-)

| 2 vP—upP J, t17P

vP—uP [ t 1
<— f _dA
p 0 [Aur + (1—A)ve] P

a

x (fln — 244 |X’([/1up (- A)vp]%,-)r d/l)é

2 1 \g (X @) X @0 i
. . q )" )"
s (Wvip;T) (q+1) X ( ) '

2

! —dA

whereCq(u, v;p; 1) = fl—
[AuP+(1-)vP] P

(- (), p<o
- 1 r u\P ! (6)
—= zFl(r——,l;Z;l—(—) ) p>0
11— 22192d2 = f|1—2/1|q(1—/1)d/1—2(q+1)

(7)
Substituting Eq. (6) and (7) in Eqg. (5), then tlmegh
of Theorem 7 is completed.

3. Conclusion

In this paper, we considered an important extensfon
convexity for stochastic processes which is cafled
convex stochastic processes and obtained new
Hermite-Hadamard inequalities for these procedses.
the future, new inequalities for the other convex
stochastic processes can be obtained using similar
methods in this study.
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