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In this paper, we first establish weighted versions of Hermite-Hadamard
type inequalities for Riemann-Liouville fractional integral operators utilizing
weighted function.
The results obtained in this study would provide generalization of inequalities
proved in earlier works.

Then we obtain some refinements of these inequalities.

1. Introduction

The Hermite-Hadamard inequality, which is the
first fundamental result for convex mappings with
a natural geometrical interpretation and many ap-
plications, has drawn attention much interest in
elementary mathematics.

The inequalities discovered by C. Hermite and J.
Hadamard for convex functions are considerable
significant in the literature (see, e.g., [17, p.137],
[2]). These inequalities state that if f: I — Risa
convex function on the interval I of real numbers
and a,b € I with a < b, then

()

a+b
2

<

Both inequalities hold in the reversed direction if
f is concave.

In [6], Fejér obtained the following inequality
which is the weighted generalization of Hermite-
Hadamard inequality ([I):

41

Let f : [a,b] = R be convex function. Then the
inequality

() /b ola) < /b F(@)gla)is
S f(a);rf(b)/bg(x)dx

holds, where ¢ : [a,b] — R is nonnegative, inte-
grable and symmetric to (a + b)/2.

A number of mathematicians have devoted their
efforts to generalise, refine, counterpart and ex-
tend these two inequalities for different classes
of functions, (see, for example, [I]- [5], [§]- [11],
[13], [14], [16], [19]- [26]) and the references cited
therein.

The remainder of this work is organized
as follows: we first give the definitions
of Riemann-Liouville fractional integrals and
present some Hermite-Hadamard type inequali-
ties for Riemann-Liouville fractional integral op-
erators in Section 2. In the main section, we
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first establish a new weighted version of Hermite-
Hadamard inequality for Riemann-Liouville frac-
tional integrals. Moreover, we obtain some refine-
ments of this result using the symmetric weighted
function. We give also some special cases of these
inequalities. In the last section, we give some con-
clusions and future directions of research.

2. Preliminaries

In the following we will give some necessary def-
initions and mathematical preliminaries of frac-
tional calculus theory which are used further in
this paper.

Definition 1. Let f € Li[a,b]. The Riemann-
Liouville integrals J3', f and J;* f of order o > 0
with a > 0 are defined by

T f@) = g [ =0 S0 @ >
and
b
R 3@ = gy [ = poan, @<
respectively. Here I'(«) is the Gamma function
and JJ, f(z) = J)_f(z) = f().

It is remarkable that Sarikaya et al. [20] first
give the following interesting integral inequalities
of Hermite-Hadamard type involving Riemann-
Liouville fractional integrals.

Theorem 1. Let f : [a,b] — R be a positive func-
tion with 0 < a < b and f € Li[a,b]. If f is a
convez function on [a,b], then the following in-
equalities for fractional integrals hold:

()

< F((: +a1)) [Je )+ T f@)]  (2)
< f@+rf)
- 2

with a > 0.

Hermite-Hadamard-Fejér inequality for Riemann-
Liouville fractional integral operators was given
by Iscan in [11], as follows:

Let f : [a,b] — R be convex function with with
a<band f € La,b]. If g : [a,b] - R is non-
negative, integrable and symmetric with respect
to %2 ie. g(a+b— ) = g(z), then the following
inequahtles hold

(57 bzom + 5 @)
< [ (o)) + J(fg)(a)]

fla) + f(b)

< 5 (T2 (9)(0) + J§(9)(a)] -

For more information for fractional calculus,
please refer to ( [7], [12], [15], [1§]).

Now we give the following lemma;:

Lemma 1. [22[25] Let f : [a,b] — R be a convex
function and h be defined by

- (5295

Then h is convez, increasing on [0,b — a] and for

allt € 0,b—a],

(4 ch < L0100

In [22], Xiang obtained following important in-
equalities for the Riemann-Liouville fractional in-
tegrals utilizing the Lemma [Tk

Theorem 2. Let f : [a,b] — R be a positive func-
tion with a < b and f € Ly [a,b]. If f is a convex
function on [a,b], then WH is convex and mono-
tonically increasing on [0, 1] and

f (“ ; b) —WH(0) < WH(t) <WH(1) (3)

'l+a)

=20 —a)” [(Jo+ f) (b) +

(Jp= f) (a)]
with o > 0 where
b

Q(bi@a/f(mﬂl—t)“;b>

a

X ((b —2)* g (- a)o‘_1> da.

WH(t) =

Theorem 3. Let f : [a,b] — R be a positive func-
tion with a < b and f € Ly [a,b]. If f is a convex
function on [a,b], then W P is convex and mono-
tonically increasing on [0, 1] and
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I'l+ «) o N
20b—a) [(Jg+ f) (0) + (Jy- f) (a)] (4)
= WP(0) < WP(t) < WP(1) = f(a);rf(b)

with o > 0 where

W P(t)

b
Q@ 1-+1¢ 1—t
- atar [ ((5) =+ (5))
o 2b—a—=x a_1+ z—a\*!
2 2
1+1¢ 1—1¢
(%) (5))
y b—x O‘*l_i_ z4+b—2a\*? I
2 2 '
In this study, we establish some refinements

of Hermite-Hadamard type inequalities utilizing
fractional integrals which generalize the inequali-

ties (@), (B) and ().

3. Refinements of Hermite Hadamard
Type Inequalities

In this section, we will present refinements
of Hermite-Hadamard type inequalities via
Riemann-Liouville fractional integral operators .

The following Lemma will be frequently used to
prove our results.

Lemma 2. [9] Let f : |a,

vex function with a < b and
A,B,C,D € [a,b] with A+
|C — D| < |A— B|. Then,

m\g

F(C)+ f(D) < f(A) + f(B).

Theorem 4. Let f [a,b] — R be convex
function with a < b and f € La,b]. Let the
weight function w : [a,b] — R be continuous
and symmetric about the point (‘”‘b (a‘H’)),
ie. 3[w(s)+w(a+b—ys)=w (GQb) Then, we
have the following inequality

(32
< 5((;_*0)‘) (@)

[Jar [ (w (D)) + S f (w

and if the function w is monotonic on |a,b], then
we have

F(l —l—Oé) a Q
= [T f (w (b)) + 5= f (w (a))]
. f(w(a)) —2+ f(w (b)) (6)
with o > 0.

Proof. By the hypothesis of symmetricity of the
function w, we have

2w <a;b> =w(s) +w(a+b—s)

and we also have

(33923 -

for s € [a,b]. Applying Lemma [2] we obtain

A3 o

< flw(s) + f(w(a+b—s)).

Multiplying by (5}237 '

both sides of (7)) and in-
tegrating with respect to s on [a,b], we deduce

that
e (- (42)

< Jif(w () + S f(w(a))

which completes the proof of the inequality ().
By the monotonicity w, we have

w(s) —wla+b—s)| <|w(a)—w(b)|

for s € [a,b] and by symmetricity of the function
w, we have

w(s)+wla+b—s)=w(a)+ w(b)

for s € [a,b]. Applying Lemma [2] we get

fw(s)) + f(w(a+b—s)) (8)
< flw(a)+ f(w ().
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Multiplying both sides of (&) by %

tegrating with respect to s on [a,b] and dividing

both sides by 2155’; f{l(;, we obtain the desired in-

equality (6]). O

and in-

Remark 1. If we choose w(t) =t in Theorem [},
then the inequalities [{3) and (@) reduce to left and
right hand sides of the inequality (2), respectively.

Remark 2. If we choose a« = 1 in Theorem
[4, then Theorem [{] reduces to Theorem 1 proved
m [9/.

Theorem 5. Let the weight function w : [a,b] —
R be continuous and symmetric about the point
(42w (4F2)), de. L[w(s)+wla+b—1s)] =
w(“TH’). If f : [a,b] — R is a convex function
on [a,b], then W H,, is convex and monotonically
increasing on [0, 1] and we have the following in-
equalities

(7)) 0

= WH(0) < WHy(t) < WHy(1)

o P(l +Oé) a for
= So—a [T% f (w (D) + Jo- f (w(a))]

with o > 0 where

k= HCERERC )

Proof. Firstly, for t1, ta, 5 € [0,1], we have

W-Hw((l - 6) tl + /8t2)

b
= wocar (0 (57))

a

x [(1 =Bty + Bta] +w <&—2|—b>>

X [(b — ) (z - a)a_l} dx

Since f is convex, we have

X

X

WH((1 - B)t1 + Bta)

a(l—p)
2(b—a)”

[ (o (*5%)) o (557))
x [(b— 2)* 4 (2 — a)aﬂ dz

o
2(b—a)”

[ ((r=w (557)) e (557))

X [(b —2)* 4 (z - a)a_l} dx

(1 — B) WHy(t1) + BW Hy(t2).

Hence, we get W H,, is convex on [0,1]. On the
other hand, we have
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- 2(b—a)”

a+b
2

X / f (tw(x)+(1 —t)w (a;b»

X ((b — ) (- a)O‘*l) dx
3 (b i a)®

a+b
2

x / f(tw(a+b—x)+(1_t)w <a—2|rb>>

a

X ((b — o) (- a)o‘_1> dx.
(10)

Let t1 < to,t1, ta, € [0,1]. By the symmetricity of
the function w, we have

[tlw(:c) +(1-t)w (a ; b)]

+[nww+b—w%+“‘¢”w<a;by

- [tgw(fv)+(1—t2w a+b]

2

+ |:t2w(a+b— ) + (1 — ta)w <a+b>}

and
[+ - (250)]
- [tlw(a—i-b—x)—i—(l—tl)w (a;bﬂ‘
= t1|w(z) —w(a+b—2)|
< tylw(@) —wla+b— 1)

- [fmrv-uae(:52)

_ [tgw(a+b—$)+(1_t2)w <a+b>H

2

for x € [a,b] . Hence, applying Lemma [2] we have

f(aw@ra-we (*50)

+f <t1w(a+bx) (1 - t)w (“;b»
< f (o) + 0 - (50))

+f <t2w(a+b—x)+(1—t2)w (a;b» .

Multiplying both sides of (III) by

SG—aF - nE [(b ) (- a)afl}

and integrating with respect to s on [a, “T*'b] , then
by considering the equality (I0), we deduce that
W Hy(t1) < WHy(te). Thus, WH,, is monotoni-
cally increasing on [0, 1]. Using the facts that

vnio=1(+(%5%)

'l+a)
2(b—a)”

then we obtain the desired result. Thus, the proof
is completed. O

and

WHy(1) = [Ja+ f (w (8)) + Jg f (w(a))]

Remark 3. If we choose w(t) = t in Theorem
[3, then the inequality [4) reduces to the inequality

(3)-

Remark 4. If we choose a = 1 in Theorem
[3, then Theorem [A reduces to Theorem 2 proved
in [9].

Theorem 6. Let the weight function w : [a,b] —
R be continuous and monotonic on [a,b] and let w
be symmetric about the point (“+b,w (“T‘H’)) , 1.e.
lw(s) +w(a+b—s)] =w (). If f: [a,b] —
R is a convex function on |a,b], then W P, is con-
vex and monotonically increasing on [0,1] and we
have the following inequalities

'l+a) ., .
20—y ard (W O) + T (w(a))
= WP,(0) < WP,(t) < WP,(1) (12)
_ fw(@) + f(w(d)
2

with o« > 0 where
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(5 () e

Proof. By the way similar to in Theorem, it can
be easily proved by convexity of f that WP, is
convex on [0, 1]. Using change of variable, we have

(13)

x/f((l—t)w(a+b—s)+tw(b))
X ((b—s)o‘_l—i—(s—a)a_l) ds.

Let t1 < tg,tq, o9, €

+b
to %57,

0,1].

Since w is symmetric

w(s) +w(a+b—s)=2w (a;—b) (14)
and w is monotonic, we have
jw(s) —w(a+b—s)| <|w(a) —w(®)]  (15)

for s € [a,b]. By the equality (I4) and the in-
equality (I5]), we have

[(T—t)w(s
+[(1 —tl)w
= [(1—t2)w(
+[(1 —tg)w

+ tiw (a)]
+b—3s)+ tiw (b)]

+ tow (a)]
+b—s)+ taw (b)]

S

/-\\_/,-\\_/

W
=
)
&
Q
@\Jc‘
\
—
[um—
|
~
S~—
g
7 N
8
v +
o>
N———
+
o~
g
=
N————
INA

and

[(1 = t1)w(s) + trw (a)]
—[I—=t))w(a+b—s)+tiw (b)]

= |1—t)[w(s)—w(a+b—s)]
+ t1 [w(a) —w (b)]]

(1 —t1)[w(s)
+t|w (a) -

—w(a+b—s)|

IA

(I —t2) |w(s) —
+to |w (a) —

= [T —t2) w(s) + taw (a)]
—[1—=t)w(a+b—s)+ tow (b)]|

for s € [a, ‘%‘b]

we have

. Therefore, applying Lemma [2]

F(A=t)w(s) +tiw(a))
+((A-t)w(a+b—s)+tw(b)

(16)

< (A =t)w(s)+taw(a))
FF((1—ty)w(a+b—s)+ taw (D).

Multiplying both sides of (I6]) by

«

sGap |09 =]

. . . 4b
and integrating with respect to s on [a, “T},

then by considering the equality (I3]), we deduce
that WP, (t1) < WP,(t2). Hence, W P,, is mono-
tonically increasing on [0, 1]. This completes the
proof. O

Remark 5. If we choose w(t) =t in Theorem[d,
then the inequality [{I2) reduces to the inequality
).

Remark 6. If we choose a« = 1 in Theorem

[@, then Theorem [@ reduces to Theorem 3 proved
in [9].

4. Conclusion

In this paper, we present some new weighted re-
finements of Hermite-Hadamard inequalities for
Riemann-Liouville fractional integrals. For fur-
ther studies we propose to consider the Hermite-
Hadamard type inequalities for other fractional
integral operators



On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral... 47

References

[1] Azpeitia, A.G. (1994). Convex functions and
the Hadamard inequality. Rev. Colombiana
Math., 28 , 7-12.

[2] Dragomir, S.S. and Pearce, C.E.M. (2000).
Selected topics on Hermite-Hadamard in-
equalities and applications. RGMIA Mono-
graphs, Victoria University.

[3] Dragomir, S.S. (1992). Two mappings in con-
nection to Hadamard’s inequalities. J. Math.
Anal. Appl., 167, 49-56.

[4] Ertugral, F., Sarikaya, M. Z. and Bu-
dak, H. (2018). On refinements of Hermite-
Hadamard-Fejer type inequalities for frac-
tional integral operators. Applications and
Applied Mathematics, 13(1), 426-442.

[5] Farissi, A.E. (2010). Simple proof and re
nement of Hermite-Hadamard inequality. J.
Math. Inequal., 4, 365-369.

[6] Fejér, L. (1906). Uberdie Fourierreihen, II,
Math., Naturwise. Anz Ungar. Akad. Wiss,
24, 369-390.

[7] Gorenflo, R., Mainardi, F. (1997). Fractional
calculus: integral and differential equations of
fractional order, Springer Verlag, Wien, 223-
276.

[8] Hwang, S.R., Yeh S.Y. and Tseng, K.L.
(2014). Refinements and similar extensions
of Hermite-Hadamard inequality for frac-
tional integrals and their applications. Ap-
plied Mathematics and Computation, 24, 103-
113.

[9] Hwang, S.R., Tseng, K.L., Hsu, K.C. (2013).
Hermite-Hadamard type and Fejer type in-
equalities for general weights (I). J. Inequal.
Appl. 170.

[10] Igbal, M., Qaisar S. and Muddassar, M.
(2016). A short note on integral inequality
of type Hermite-Hadamard through convex-
ity. J. Computational analaysis and applica-
tions, 21(5), 946-953.

[11] Iscan, I. (2015). Hermite-Hadamard-Fejér
type inequalities for convex functions via
fractional integrals. Stud. Univ. Babeg-Bolyai
Math. 60(3), 355-366.

[12] Kilbas, A.A., Srivastava H.M. and Trujillo,
J.J. (2006). Theory and applications of frac-
tional differential equations. North-Holland
Mathematics Studies, 204, Elsevier Sci. B.V.,
Amsterdam.

[13] Ahmad, B., Alsaedi, A., Kirane, M. and
Torebek, B.T. (2019). Hermite-Hadamard,
Hermite-Hadamard-Fejer, Dragomir-Agarwal
and Pachpatte type inequalities for convex
functions via new fractional integrals. Journal
of Computational and Applied Mathematics,
353, 120-1209.

[14] Latif, M.A. (2012). On some refinements
of companions of Fejér’s inequality via

superquadratic functions. Proyecciones J.
Math., 31(4), 309-332.

[15] Miller S. and Ross, B. (1993). An introduc-
tion to the fractional calculus and fractional
differential equations. John Wiley and Sons,
USA.

[16] Noor, M.A., Noor K.I. and Awan, M.U.
(2016). New fractional estimates of Hermite-
Hadamard inequalities and applications to
means, Stud. Univ. Babeg-Bolyai Math.
61(1), 3-15.

[17] Pecari¢, J.E., Proschan F. and Tong, Y.L.
(1992). Convex functions, partial orderings
and statistical applications. Academic Press,
Boston.

[18] Podlubny, I. (1999). Fractional differential
equations. Academic Press, San Diego.

[19] Sarikaya, M.Z. and Yildirim, H. (2016).
On Hermite-Hadamard type inequalities
for Riemann-Liouville fractional integrals.
Miskole Mathematical Notes, 17(2), 1049-
1059.

[20] Sarikaya, M.Z., Set, E., Yaldiz H. and Basak,
N. (2013). Hermite-Hadamard’s inequalities
for fractional integrals and related frac-
tional inequalities. Mathematical and Com-
puter Modelling, 57, 2403-2407.

[21] Sarikaya, M.Z. and Budak, H. (2016). Gen-
eralized Hermite-Hadamard type integral in-
equalities for fractional integral, Filomat,
30(5), 1315-1326 (2016).

[22] Xiang, R. (2015). Refinements of Hermite-
Hadamard type inequalities for convex func-
tions via fractional integrals. J. Appl. Math.
and Informatics, 33, No. 1-2, 119-125.

[23] Tseng, K.L., Hwang, S.R. and Dragomir, S.S.
(2012). Refinements of Fejér’s inequality for
convex functions. Period. Math. Hung., 65,
17-28.

[24] Yaldiz, H. and Sarikaya, M.Z. On Hermite-
Hadamard type inequalities for fractional in-
tegral operators, ResearchGate Article, Avail-
able online at: https://www.researchgate.
net/publication/309824275.

[25] Yang, G.S. and Tseng, K.L. (1999). On cer-
tain integral inequalities related to Hermite-
Hadamard inequalities. J. Math. Anal. Appl.,
239, 180-187.

[26] Yang, G.S. and Hong, M.C. (1997). A note
on Hadamard’s inequality, Tamkang J. Math.,
28, 33-37.

Hiiseyin Budak graduated from Kocaeli University,
Kocaeli, Turkey in 2010. He received his M.Sc. from
Kocaeli University in 2013 and PhD from Dizce Uni-
versity in 2017, Since 2018 he is working as a Assis-
tant Professor in the Department of Mathematics at
Duzce University. His research interests focus on func-
tions of bounded variation, theory of fractional calculus
and theory of inequalities.


https://www.researchgate.net/publication/309824275
https://www.researchgate.net/publication/309824275

48 H. Budak / IJOCTA, Vol.9, No.1, pp.41-48 (2019)

An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr)

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of
the copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles
in IJOCTA, so long as the original authors and source are credited. To see the complete license contents, please visit
http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Preliminaries
	3. Refinements of Hermite Hadamard Type Inequalities
	4. Conclusion
	References

