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1. Introduction Kirmaci et al. [I0] presented some results con-

nected with inequality ()
It is well known that convexity plays an important

and central role in many areas, such as economic,
finance, optimization, and game theory. Due to
its diverse applications this concept has been ex-
tended and generalized in several directions.

b
bia/f(x)dx —£ (%50 <5 (If @]+ | @) -

One of the most well-known inequalities in math-  Recently, Sarikaya et al [I1], gave the fractional
ematics for convex functions is the so called analogue of (I
Hermite-Hadamard integral inequality

F(52) < S (1) (0) + (J- 1) (@)
<

b
F ey < L / f(a)de < @O () H@HI®), 2)

where f is' a real continuous convex funct‘ion O Zhu et al [I2] established the following result con-
the finite interval [a,b]. If the function f is con- |+ 4 with inequality ().

cave, then (1) holds in the reverse direction (see
).

I(o+1) o a _ f(atdb
The above double inequality has attracted many ‘2(6—11)CY (Ja+f) (0) + (J=f) (@)] = £ ( 2 )‘
researchers, various generalizations, refinements, bea , , 1
extensions and variants have appeared in the lit- = i(I+a) (‘f (a)‘ + }f (b)‘) at3— ga—1 )~
erature, see [2H9] and references cited therein.
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Motivated by the above results, in this paper, we
introduce the class of extended s-(c, m)-preinvex
functions. We establish a new fractional integral
identity and derive some new fractional Hermite-
Hadamard type inequalities for functions whose
derivatives are in this novel class of functions.

2. Preliminaries

In this section we recall some definitions and lem-
mas

Definition 1. [73] A function f: 1 — R is said
to be convez, if

flz+ 1 =t)y) <tf(z)+1—1)f(y)

holds for all z,y € I and all t € [0,1].

Definition 2. [T} A nonnegative function f :
I — R is said to be P-convex, if

fltz+ (1 =t)y) < f(2)+ fy)

holds for all z,y € I and all t € [0,1].

Definition 3. [15] A nonnegative function f :
I — R is said to be Godunova-Levin function, if

f@) | f)
o1t

fllz+(1—=1t)y) <

holds for all x,y € I and all t € (0,1).

Definition 4. [16] A nonnegative function f :
I — R is said to be s-Godunova-Levin function,
where s € [0,1], if

fltx+(1—=2t)y

f (@)
)<L

holds for all z,y € I and all t € (0,1).

Definition 5. [I7] A nonnegative function f :
I — R is said to be a-Godunova-Levin function,
where o € (0,1], if

fr+(1-t)y) <

holds for all z,y € I and all t € (0,1).

Definition 6. [I8] A nonnegative function f :
I C [0,00) — R is said to be a-convex in the first
sense for some fized o € (0,1], if

fle+ (1 —t)y) <t*f(z)+ (1 —tY)f(y)

holds for all x,y € I and t € [0,1].

Definition 7. [19] A nonnegative function f :
I C [0,00) — R is said to be s-convex in the sec-
ond sense for some fixed s € (0,1], if

fltz+ (1 =t)y) <tf(z)+ (1 -1)f(y)

holds for all x,y € I and t € [0,1].

Definition 8. [20] A nonnegative function f :
I C [0,00) — R is said to be extended s-convex
for some fized s € [—1,1], if

flz+ (1 =1t)y) <t°f(x)+ (1 —-1)"f(y)

holds for all x,y € I and t € (0,1).

Definition 9. [21] A function f : [0,b] — R is
said to be m-convex, where m € (0, 1],if

flz+mQ—t)y) <tf(x)+m(l—1t)f(y)

holds for all x,y € I, and t € [0, 1].

Definition 10. [22] A function f:[0,b] — R is
said to be (o, m)-convex, where a,m € (0,1],if

flz+m(1=t)y) <t°f (z) +m (1 —1%) f(y)

holds for all x,y € I, and t € [0, 1].

Definition 11. [23] A function f:[0,b] — R is
said to be (s, m)-convex, where a,m € (0, 1],if

fllz+m (@ =t)y) <t°f () +m (1 —-1)° f(y)

holds for all x,y € I, and t € [0, 1].

Definition 12. [2]] A function f : I — R
is said to be (o, m)-Godunova-Levin functions of
first kind, where a,m € (0,1], if

fz+m(1l—1t)y) < ft(f) + mlf_(yt)a
holds for all x,y € I and all t € (0,1).
Definition 13. [2]] A function f : I — R

is said to be (s, m)-Godunova-Levin functions of

first kind, where s € [0,1] and m € (0,1], if

f@

f(tx+m(1_t)y)§ 15 (1—t)8

holds for all x,y € I and all t € (0,1).
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Definition 14. [25] A nonnegative function

f:I C[0,00) — [0,00) is said to be s-(a,m)-

convez in the second sense where o, m € [0, 1] and
€ (0,1], if the following inequality

flte+(1=ty) < Q=7 F@)+m () F(L)

holds for all x,y € I and t € [0, 1].

Definition 15. [26] A set K C R" is said an in-
vex with respect to the bifunctionn : K x K — R",
if for all x,y € K, we have

x+1tn(y,z) € K.

In what follows we assume that X C R be an in-
vex set with respect to the bifunctionn : K x K —
R.

Definition 16. [26] A function f : K — R is
said to be preinvexr with respect to n, if

fle+tn(y,z) <1 —=1) f(x)+1f(y)

holds for all x,y € K and all t € [0,1].

Definition 17. [27] A nonnegative function f :
K — R is said to be P-preinver function with
respect to n, if

fla+tn(y,x)) < f(z)+ fy)

holds for all x,y € K and all t € [0,1].

Definition 18. [27] A nonnegative function f :
K — R s said to be Godunova-Levin preinver
function with respect to n, if

f@+tn(y,z)) <

holds for all x,y € K and all t € (0,1).

Definition 19. [28] A nonnegative function f :
K — R is said to be s-Godunova-Levin preinvex
function with respect to n, where s € [0, 1], if

fx+tn(y,z)) < +

holds for all z,y € K and all t € (0,1).

Definition 20. [29] A nonnegative function f :
K C [0,00) — R is said to be a-preivex in the first
sense with respect to n for some fixred o € (0, 1],

if

fla+in(y,z)) <1 —1%)f(z)+1°f(y)

holds for all x,y € K and t € [0, 1].

Definition 21. [30] A nonnegative function f :
K C [0,00) — R is said to be s-preinvex in
the second sense with respect to n for some fized

€ (0,1], if
fle+tn(y,z) <A —-1)°f(z)+°f(y)

holds for all x,y € K and t € [0,1].

Definition 22. [31] A function f : K C
[0,0*] — R is said to be m-preinvex with respect
to n where b* > 0 and m € (0, 1], if

@+tme) <Q-0f(@)+mtf()

holds for all x,y € K, and t € [0, 1].

Definition 23. [31] A function f : K — R
is said to be (o, m)-preinvezr with respect to n for
some fized o € (0,1], and m € (0,1], if

J @t tny.2)) < (1= 1) f (&) + mi®f(2)

holds for all x,y € K, and t € [0, 1].

Definition 24. [32] A function f K C
[0,0"] — R is said to be (s, m)-preinvexr with re-
spect to n for some fixred o € (0, 1]where b* > 0
and m € (0,1], if

fle+tn(ya) <(1-6)°f(@)+mt'f()

holds for all x,y € K, and t € [0, 1].
Lemma 1. [33] For t,n € [0,1], we have

(1—t)" <2l=m ¢,

Lemma 2. [3]] For any 0 < a < b and fized
p > 1, we have

(b—a)’ <P —aP.

We also recall that the incomplete beta function
is defined as follows:

T

Bu(a, ) = /t“_l(l )P lda

0
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for x € [0,1] and «,8 > 0, where Bj(
B(a, ) is the beta function.

a,f) =

3. Main results

In what follows we assume that [a,a + 7 (b,a)] C
K C [0,b*] where b* > 0 such that K is an invex
set with respect to the bifunction n: K x K — R.

Definition 25. A nonnegative function f : K —
[0,00) is said to be extended s-(c, m)-preinver in
the second sense where a,m € (0,1] and s €
[—1, 1], if the following inequality

fle+tn(y.a) < (1=t f(0)+m () f(2)

holds for all x,y € I and t € [0, 1].

Remark 1. Definition[23 includes all the defini-
tions cited above, except for Definition [T

Lemma 3. Let f [a,a+n(ba)] — R
be a differentiable mapping on (a,a+n(b,a))
with n(b,a) > 0, and assume that f' €
L(ja,a+mn(b,a)]), then the following equality
holds

s [(726) @)

# (Tonom1) @] =7 (22322) @
1
= 77(l;’a)(/kf’(a+tn(b,a))dt

0
1

_/ (té_(l_t)é) f(a+tn(b,a))dt |,

0
where
[ 1ifo<t<g,
k‘{—1¢f§§t<1. )
Proof. Let
1
I =

/kf’ (a+tn(b,a))dt
0
1

- / (# — (1= ) £ (a+ tn (b)) b
0

= Il _IQa (5)

where
1
= [6f @rmGayd, @
0
and
1
/ (1 -0°) F (attm(a)d, ()
0
k is defined by (3)).
Clearly,
[ [ f (2a+77(b,a)>
' 1 (b, a) ?
—(f(a)+ fla+n(ba))]. (8
Now, by integration by parts, Is gives
L = gaflatn(bae)+ Gaf(a)
1
) ( / 071 f (a+ tn (b,a)) dt
1 0
+/ (1= )1 f (a+ tn (b, a)) dt
0
= n(blﬂ)f (a+mn(ba))+ mf (a)
a+n(a,b)
~ G (u=a)"f (u)du
a+n(a,b)
s [ -0 wda
= n(bl,a)f (a+n(ba)+ mf (a)
— il ((184) (atn (b,a)
(L 1) @) ©)

Combining (8), (@) and (Bl), we obtain the desired
equality in (3]). O

Theorem 1. Let f : [a,a+n(b,a)] - R be a
positive differentiable mapping on (a,a + n (b, a))
with n (b,a) > 0 and f' € L(la,a+n(b,a)]). If
|f'| is extended s-(a, m)-preinvex function where
a,m € (0,1] and s € (—1,1], then the following
fractional inequality holds for as + 9 # —1
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e (6w (o) el
(s ) @] = 1 (2422 0
< 77(1;,a) (21_8 - as+1 + %115 ( (3) ) Fmi fl(:l)D dt
aSJgMBQ(;s(—i—l,dj—él )}1;‘ a ‘ +} (t‘s—(l—t)‘s) ((1_ta)s‘f/(a)|
+m a5+1+ %ozs+, + 1
—B(as+1,6+1) as | g1 b
bt (1 52)) 17 (2], el rcof) ) "

Now, applying Lemma [ for (II]), we get
where B (.,.) and Bi (.,.) are the beta and the in-
2

complete beta functions respectively. ro+1) s
2775 (b ) [(Ja+f> (a’ +n (b7 CL))

5 2a+n(b a)
(J(a+77(b o) @] =5 ( )
Proof. From Lemma [3] and properties of modu- ( ( 1

lus we have

< / (21 — %) g
0
‘F(‘?(—gii [(J2:7) @+ n6,) / (5 (-1 - )
F (Focavay7) @) = £ (=522) 0
as+6 tas 6 dt
< W(/}f’(f(ﬁ(lt)b)}dt 1( >>
/ 21 8 1—t5) pas+d

+ 1—t \f (ta+ (1 —1t)b)|dt

{ —t‘“( —t) )dt) | f'(a))|
1
_|_/ 1—t ‘f (ta+ (1 —1) )‘dt . +m / to‘s to‘s+6)dt

(10) 1
+/ tas+6 tas t)é) dt

Since |f'| is extended s-(«, m)-preinvex function,

(I0) gives 1 ) )
+ ftsdt ||| ()]
/

s (1) 0.0 a0 (e ()
#(mant) 0] - (242) e B8 0) 0]
ettb” 2 s~ Blas+1,6+1)) |f(0)
< 77(2@)(/(17504)5 +m(a81+1+23%(as+1,5+1)
0 —B(as+1,6+1)

b

1@+ m ey < atsrr (1= i) ) 17 (R)]),
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which is the desired result. O

Remark 2. Theorem [ will be reduces to Theo-
rem 2.3 from [12], if we choose s = a =m =1
and n(b,a) =b— a.

Theorem 2. Let f : [a,a+n(b,a)] - R be a
positive differentiable mapping on (a,a + n(b,a))
with n(bya) > 0 and f' € L([a,a+n(b,a)]).
If |f'1* ¢ > 1 with %0 —f—% = 1, is extended s-
(o, m)-preinvex function, where cc, m € (0,1] and

€ [-1,1], and q > 1, then the following frac-
tional inequality holds for sa # —1

e [(72-£) (a0 (0,a)

+ (Tarnan-1) @] = 7 (25502)]
G (e - S @l
|7 (8
(e (- (5)‘*’))3’

(G-
i [ (o
< ((% -

1
+ mEte |f W)q)).

IN

1
q

sa—f—l (sa41)2sa+T )

)
2satl_q
(sa+1 23a+1) ‘

Proof. From Lemma [3 properties of modulus,
Holder inequality, and Lemma Bl we have

Uéfé% [<J3+f) (a+1(ba))
(J?‘H-?? ba)) ) (a)] (%@‘1))‘

1 1-
< 1 (/dt)
0

1
X (/|f’ (a+tn(b,a))th)
0

P

((1 — )0 — t5>p dt

Q=

=

_l’_

O S — i

Q=

/|f’ (a+tn(b,a))|" dt
0

! ’
+ /((1—t)5—t5)pdt
1 1
/\f’(a+tn(b,a))\th
1 ‘
< " (a+1tn (b,a))|"dt
/
+ ((1—t)5p—t5p> dt
/
J17 @+ o) at
0
! »
+ / GRS
. ‘
(/f (a+tn(b,a))|"dt
= (( ‘f’ a+tn(b,a)) ‘th

1
0
(

‘f a+tn(ba) ‘th

(i
{

Using the fact that |f’|? is extended s-preinvex
function, and Lemma [l (B]) gives
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1) (a+n(b.a))

} (2a+n(b a)) ’

/(21—5 . tsa) ‘f’(a)‘q
0
() | (2

¢ N
dt)
1
1
+ <6p+1 (1— (2

+< (a+n(b,a))

\5“)K

IN

Z)
"))

x j@kﬂ—ﬁ%Uﬁ@V
o "

x ]uls—f%U%@P

“)))

=

b ()| 7()

2

b

() | 1()

1 1
+ (1 (5
1
(&~ ) 70
1
410 ()
1 sa+1__
X(<2‘<§+1>21+> £ (a)|*

23a+1_1
—H’I’L <(Sa+1)25a+1 )

F(

which is the desired result.
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