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1. Introduction

Kinetic theory emerged with Maxwell and Boltz-
mann, Hilbert, Enskog, Chapman, Vlasov, and
Grad. Investigating for a form of matter which
could clarify Saturn’s rings, Maxwell considered
that they were performed of rocks colliding and
gravitating around the planet. The density of
matter is then parameterized by the space po-
sition x and the velocity v of the rocks. Boltz-
mann modeled the operation, endowed a com-
mon representation of a dilute gas as particles
undergoing collisions and with free motion be-
tween collisions, and he found the famous equa-
tion which is now named after him [1]. Vlasov
obtained another kinetic equation (KE) for plas-
mas of charged particles. Kinetic equations (KEs)
rise in a variety of sciences and implementations
such as astrophysics, aerospace engineering, nu-
clear engineering, particle fluid interactions and
semi-conductor technology recently. The general
property of these models is that the underlying
Partial Differential Equation is posed in the phase
space (x, v) ∈ Rn n ≥ 1, [2].

We consider the problem of obtaining (f, σ) in Ω
from the following equation [1]:

Mv(x, v)fx(x, v) − Mx(x, v)fv(x, v) (1)

− σ(x, v)f = 0.

with the boundary conditions:

f(a, v) = g(v), f(b, v) = h(v) (2)

f(x, c) = m(x), f(x, d) = n(x). (3)

In this work, the reproducing kernel functions for
solving a coefficient inverse problem (IP) for the
KE are given. Reproducing kernels were used
for the first time at the beginning of the twen-
tieth century by Zaremba in his work on bound-
ary value problems for harmonic and biharmonic
functions [3, 4]. The general theory of reproduc-
ing kernel Hilbert spaces was established simulta-
neously and independently by Aronszajn [5] and
Bergman [6] in 1950. Mokhtari et al. have inves-
tigated an inverse problem for a parabolic equa-
tion with a nonlocal boundary condition in the
reproducing kernel space [7]. Cui et al. have used
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reproducing kernel method of solving the coeffi-
cient inverse problem [8]. Xu et al. used simpli-
fied reproducing kernel method for fractional dif-
ferential equations with delay [9]. Tang et al. ap-
plied fitted reproducing kernel method for singu-
larly perturbed delay initial value problems [10].
Fardi et al. implemented the reproducing kernel
method for some variational problems depending
on indefinite integrals [11]. Wahba used regres-
sion design for some equivalence classes of ker-
nels [12]. Nashed et al. found regularization and
approximation of linear operator equations in re-
producing kernel spaces [13]. Al e’damat applied
analytical-numerical method for solving a class
of two-point boundary value problems [14]. For
more details see [15-21].

2. Reproducing kernel functions

In this section, we give some important reproduc-
ing kernel functions.

Definition 1. Hilbert function space H is a re-
producing kernel space if and only if for any fixed
x ∈ X, the linear functional I(f) = f(x) is
bounded [22].

Definition 2. We describe the space T 2
2 [1, 2] as:

T 2
2 [1, 2] = {f ∈ AC[1, 2] : f ′ ∈ AC[1, 2],

f ′′ ∈ L2[1, 2], f(1) = 0 = f(2)}.

The inner product and the norm in T 1
2 [1, 2] are

obtained as follow:

〈f, g〉T 2
2

=
1∑

i=0

f (i)(1)g(i)(1)

+

∫ 2

1
f ′′(s)g′′(s)ds,

f, g ∈ T 2
2 [1, 2]

and

‖f‖T 2
2
=
√
〈f, f〉T 2

2
, f ∈ T 2

2 [1, 2].

Theorem 1. Reproducing kernel function Ak of
reproducing kernel space T 2

2 [1, 2] is found as fol-
low:

Ak(s) =





∑3
i=0 ci(k)s

i, s ≤ k,

∑3
i=0 di(k)s

i, s > k,

(4)

where

c0(k) =
7

12
−

5

8
k −

1

24
k3 +

1

4
k2,

c1(k) = −
5

8
−

3

16
k −

1

16
k3 +

3

8
k2,

c2(k) =
1

4
+

7

8
k +

1

8
k3 −

3

4
k2,

c3(k) = −
5

24
−

1

16
k −

1

48
k3 +

1

8
k2,

d0(k) =
7

12
−

5

8
k −

5

24
k3 +

1

4
k2,

d1(k) = −
5

8
−

3

16
k −

1

16
k3 +

7

8
k2,

d2(k) =
1

4
+

3

8
k +

1

8
k3 −

3

4
k2,

d3(k) = −
1

24
−

1

16
k −

1

48
k3 +

1

8
k2.

Proof. Let f ∈ T 2
2 [1, 2] and 1 ≤ k ≤ 2. We have

〈f,Ak〉T 2
2

=
1∑

i=0

f (i)(1)A
(i)
k (1) +

∫ 2

1
f ′′(x)A′′

k(x)dx

= f(1)Ak(1) + f ′(1)A′

k(1)

+f ′(2)A′′

k(2)− f ′(1)A′′

k(1)

−f(2)A
(3)
k (2) + f(1)A

(3)
k (1)

+

∫ 2

1
f(x)A

(4)
k (x)dx.

by integration by parts. Then, we get

〈f,Ak〉T 2
2

= f(k).

This completes the proof. �

Definition 3. We describe the space M2
2 [−1, 1]

by:

M2
2 [−1, 1] = {g ∈ AC[−1, 1] : g′ ∈ AC[−1, 1],

g′′ ∈ L2[−1, 1], g(−1) = 0 = g(1)}.

The inner product and the norm in M1
2 [−1, 1] are

found as:

〈g, h〉M2
2

=
1∑

i=0

g(i)(−1)h(i)(−1)

+

∫ 2

1
g′′(z)h′′(z)dz,

g, h ∈ M2
2 [−1, 1]

and

‖g‖M2
2

=
√
〈g, g〉M2

2
,

g ∈ M2
2 [−1, 1].
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Theorem 2. Reproducing kernel function Bp of
reproducing kernel space M2

2 [−1, 1] is acquired as:

Bp(z) =





∑3
i=0 ci(p)z

i, z ≤ p,

∑3
i=0 di(p)z

i, z > p,

(5)

where

c0(p) =
31

240
+

1

80
p−

17

80
p2 +

17

240
p3,

c1(p) =
1

80
+

13

80
p−

21

80
p2 +

7

80
p3,

c2(p) = −
17

80
+

19

80
p−

3

80
p2 +

1

80
p3,

c3(p) = −
23

240
+

7

80
p+

1

80
p3 −

1

20
p3,

d0(p) =
31

240
+

1

80
p−

17

80
p2 −

23

240
p3,

d1(p) =
1

80
+

13

80
p+

19

80
p2 +

7

80
p3,

d2(p) = −
17

800
−

21

80
p−

3

80
p2 +

1

80
p3,

d3(p) =
17

240
+

7

80
p+

1

80
p2 −

1

240
p3.

Proof. Let g ∈ M2
2 [−1, 1] and −1 ≤ p ≤ 1. We

obtain

〈g,Bp〉M2
2

=
1∑

i=0

g(i)(−1)B(i)
p (−1)

+

∫ 1

−1
g′′(x)B′′

p (x)dx

= g(−1)Bp(−1) + g′(−1)B′

p(−1)

+g′(1)B′′

p (1)− g′(−1)B′′

p (−1)

−g(1)B(3)
p (1) + g(−1)B(3)

p (−1)

+

∫ 1

−1
g(x)B(4)

p (x)dx.

by integration by parts. Then, we get

〈g,Bp〉M2
2

= g(p).

This completes the proof. �

Definition 4. We describe the space M1
2 [−1, 1]

as:

M1
2 [−1, 1] = {h ∈ AC[−1, 1] : h′ ∈ L2[−1, 1]}.

The inner product and the norm in M1
2 [−1, 1] are

given as:

〈h, p〉V 1
2

= h(−1)p(−1)

+

∫ 1

−1
h′(t)p′(t)dt,

h, p ∈ M1
2 [−1, 1]

and

‖h‖T 1
2

=
√
〈h, h〉T 1

2
,

h ∈ M1
2 [−1, 1].

Lemma 1. The space M1
2 [−1, 1] is a reproducing

kernel space, and its reproducing kernel function
Ek is given as [15]:

Ek(s) = 2 + s, s ≤ k,

2 + k, s > k.

Definition 5. We define the space T 1
2 [1, 2] by

T 1
2 [1, 2] = {h ∈ AC[1, 2] : h′ ∈ L2[1, 2]}.

The inner product and the norm in T 1
2 [1, 2] are

given as:

〈h, p〉V 1
2
= h(1)p(1) +

∫ 2

1
h′(t)p′(t)dt, h, p ∈ T 1

2 [1, 2]

and

‖h‖T 1
2
=
√
〈h, h〉T 1

2
, h ∈ T 1

2 [1, 2].

Lemma 2. The space T 1
2 [1, 2] is a reproducing

kernel space, and its reproducing kernel function
Fp is given as [15]:

Fp(z) = z, z ≤ p,

p, z > p.

3. Main results

Definition 6. If m + n > 2, define the binary
space [22]

W
(m,n)
2 (Ω) = {u : Ω → R |

Lu ∈ W
(1,1)
2 (Ω) if signature(L) � (m− 1, n− 1)}.

Equip W
(m,n)
2 (Ω) with the inner product

〈u, v〉
W

(m,n)
2 (Ω)

=

m−1∑

i=0

∫ d

c

∂n

∂tn
∂iu

∂xi
(a, t)

∂n

∂tn
∂iv

∂xi
(a, t)dt

+
n−1∑

j=0

〈
∂ju

∂tj
(·, c),

∂jv

∂tj
(·, c)

〉

Wm
2 [a,b]

+

∫ ∫

Ω

∂2

∂x∂t

(
∂m+n−2u

∂xm−1∂tn−1

)
∂2

∂x∂t

(
∂m+n−2v

∂xm−1∂tn−1

)
dxdt.

We found the main reproducing kernel function
for the problem in this section. We takeH(x, v) =
x− ln(v), a = −1, b = 1, c = 1, d = 2, and

g(v) = exp

(
−v +

p

8(4 + v2)
+

arctan(v/2)

16

)
,

h(v) = exp

(
v +

v

8(4 + v2)
+

arctan(v/2)

16

)
,
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m(x) = exp

(
x3 +

1

40
+

arctan(1/2)

16

)
,

n(x) = exp

(
2x3 +

1

32
+

arctan(1)

16

)
.

In our problem m = 2, n = 2. We obtain the
main reproducing kernel function as: Jk,p(s, z) =
Ak(s)Bp(z).

where,

Ak(s) =
7

12
−

5

8
k −

1

24
k3 +

1

4
k2 −

5

8
s

−
3

16
sk −

1

16
sk3

+
1

4
s2 +

7

8
s2k +

1

8
s2k3 −

3

4
s2k2

−
5

24
s3 −

1

16
s3k

+
3

8
sk2 −

1

48
s3k3 +

1

8
s3k2, s ≤ k,

Ak(s) =
7

12
−

5

8
s−

1

24
s3 +

1

4
s2 −

5

8
k

−
3

16
ks−

1

16
ks3

+
1

4
k2 +

7

8
k2s+

1

8
k2s3 −

3

4
k2s2

−
5

24
k3 −

1

16
k3s

+
3

8
ks2 −

1

48
k3s3 +

1

8
k3s2, s > k,

Bp(z) =
7

12
−

5

8
p−

5

24
p3 +

1

4
p2 −

5

8
z

−
3

16
zp−

1

16
zp3

+
7

8
zp2 +

1

4
z2 +

3

8
z2p+

1

8
z2p3

−
3

4
z2p2 −

1

24
z3

−
1

16
z3p−

1

48
z3p3 +

1

8
z3p2, p ≤ z,

Bp(z) =
7

12
−

5

8
z −

5

24
z3 +

1

4
z2 −

5

8
p

−
3

16
pz −

1

16
pz3

+
7

8
pz2 +

1

4
p2 +

3

8
p2z +

1

8
p2z3

−
3

4
p2z2 −

1

24
p3

−
1

16
p3z −

1

48
p3z3 +

1

8
p3z2, z > p.

The reproducing kernel function J(k,p)(s, z) is in

W
(2,2)
2 (Ω).

Definition 7. We say that a function u : Ω → R

belongs to the binary space W
(1,1)
2 (Ω) and write

u ∈ W
(1,1)
2 (Ω) provided u ∈ AC(Ω) and the

following three square integrability conditions are
satisfied [22]:

(1) ux(·, c) ∈ L2[a, b];
(2) ut(a, ·) ∈ L2[c, d];
(3) uxt ∈ L2(Ω).

Equip W
(1,1)
2 (Ω) with the inner product

〈u, v〉
W

(1,1)
2

= u(a, c)v(a, c) +

∫ b

a

ux(x, c)vx(x, c)dx

+

∫ d

c

ut(a, t)vt(a, t)dt

+

∫ d

c

∫ b

a

uxt(x, t)vxt(x, t)dxdt.

The binary space W
(1,1)
2 (Ω) is a RKHS with re-

producing kernel G(k,p)(s, z) = Ek(s)Fp(z).

4. Applications

The solution of (1)–(3) is given in the reproducing

kernel spaceW
(2,2)
2 (Ω) in this section. On defining

the linear operator N : W
(2,2)
2 (Ω) → W

(1,1)
2 (Ω) by

Nf = Mv(x, v)fx(x, v)−Mx(x, v)fv(x, v)

− σ(x, v)f, f ∈ W
(2,2)
2 (Ω),

after homogenizing the boundary conditions,
model problem (1)–(3) changes to the problem

Nf = H(x, v, f(x, v)),

(x, v) ∈ [−1, 1]× [1, 2],

f(a, v) = f(b, v) = f(x, c) = f(x, d) = 0.

Lemma 3. N is a bounded linear operator.

Proof. Let f ∈ W
(2,2)
2 (Ω) and (x, v) ∈ Ω. We

have

f(k, p) =
〈
f, J(k,p)

〉
W

(2,2)
2

,

and

Nf(k, p) =
〈
f,NJ(k,p)

〉
W

(2,2)
2

,

∂

∂k
Nf(k, p) =

〈
f,

∂

∂k
NJ(k,p)

〉

W
(2,2)
2

,

∂

∂p
Nf(k, p) =

〈
f,

∂

∂p
NJ(k,p)

〉

W
(2,2)
2

,

∂

∂p

∂

∂k
Nf(k, p) =

〈
f,

∂

∂p

∂

∂k
NJ(k,p)

〉

W
(2,2)
2

.
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Therefore, we have a0, b0, a1, b1 > 0 such that

|Nf(k, p)| ≤ a0 ‖f‖W (2,2)
2

,
∣∣∣∣
∂

∂p
Nf(k, p)

∣∣∣∣ ≤ b0 ‖f‖W (2,2)
2

,
∣∣∣∣
∂

∂k
Nf(k, p)

∣∣∣∣ ≤ a1 ‖f‖W (2,2)
2

,
∣∣∣∣
∂

∂p

∂

∂k
Nf(k, p)

∣∣∣∣ ≤ b1 ‖f‖W (2,2)
2

.

Thus, we get

‖Nf‖2
W

(1,1)
2

=

∫ 2

1

[
∂

∂p
Nf(−1, p)

]2
dp

+ 〈Nf(k, 1), Nf(k, 1)〉M1
2

+

∫ 1

−1

∫ 2

1

[
∂

∂k

∂

∂p
Nf(k, p)

]2
dkdp

=

∫ 2

1

[
∂

∂p
Nf(−1, p)

]2
dp

+ [Nf(−1,−1)]2

+

∫ 1

−1

[
∂

∂k
Nf(k, 1)

]2
dk

+

∫ 1

−1

∫ 2

1

[
∂

∂k

∂

∂p
Nf(k, p)

]2
dkdp

≤
(
a20 + a21 + T (b20 + b21)

)
‖f‖

W
(2,2)
2

.

This completes the proof. �

Now, choose a countable dense subset
{(x1, v1), (x2, v2), . . .} in Ω and define

ϕi = G(xi,vi), Ψi = L∗ϕi,

where N∗ is the adjoint operator of N . The or-

thonormal system {Ψ̂i}
∞

i=1 of W
(2,2)
2 can be de-

rived from the process of Gram–Schmidt orthog-
onalization of {Ψi}

∞

i=1 as

Ψ̂i =
i∑

k=1

βikΨk.

Theorem 3. Let us assume {(xi, vi)}
∞

i=1 is dense
in Ω. Then {Ψi(x, v)}

∞

i=1 is a complete system in

W
(2,2)
2 , and

Ψi = NJ(xi,vi)(x, v).

Proof. We acquire

Ψi = N∗ϕi =
〈
N∗ϕi, J(x,v)

〉
W

(2,2)
2

=
〈
ϕi, NJ(x,v)

〉
W

(1,1)
2

=
〈
NJ(x,v), G(xi,vi)

〉
W

(1,1)
2

= NJ(x,v)(xi, vi)

= NJ(xi,vi)(x, v).

It is obvious that Ψi ∈ W
(2,2)
2 . For each fixed

f ∈ W
(2,2)
2 , if

〈f,Ψi〉W (2,2)
2

= 0, i = 1, 2, . . . ,

then

0 = 〈f,Ψi〉W (1,1)
2

= 〈f,N∗ϕi)〉W (2,2)
2

= 〈Nf, ϕi〉W (1,1)
2

= Nf(xi, vi), i = 1, 2, . . . .

Note that {(xi, vi)}
∞

i=1 is dense in Ω. Therefore,
we obtain Nf = 0. From the existence of N−1, it
follows that f = 0. The proof is completed. �

Theorem 4. If {(xi, vi)}
∞

i=1 is dense in Ω, then
the solution of the problem is obtained as:

f(x, v) =
∞∑

i=1

i∑

k=1

βikH(xk, vk, f(xk, vk))Ψ̂i(x, v).

(6)

Proof. {Ψi(x, v)}
∞

i=1 is a complete system in

W
(2,2)
2 . Therefore, we get

f =
∞∑

i=1

〈
f, Ψ̂i

〉
W

(2,2)
2

Ψ̂i

=
∞∑

i=1

i∑

k=1

βik 〈f,Ψk〉W (2,2)
2

Ψ̂i

=
∞∑

i=1

i∑

k=1

βik 〈f,N
∗ϕk〉W (2,2)

2

Ψ̂i

=
∞∑

i=1

i∑

k=1

βik 〈Nf, ϕk〉W (1,1)
2

Ψ̂i

=
∞∑

i=1

i∑

k=1

βik
〈
Nf,G(xk,vk)

〉
W

(1,1)
2

Ψ̂i

=
∞∑

i=1

i∑

k=1

βikNf(xk, vk)Ψ̂i

=
∞∑

i=1

i∑

k=1

βikH(xk, vk, f(xk, vk))Ψ̂i(x, t).

This completes the proof. �

Now the approximate solution fn can be obtained
from the n-term intercept of the exact solution f
and

fn =
n∑

i=1

i∑

k=1

βikH(xk, vk, f(xk, vk))Ψ̂i. (7)

Obviously

‖fn(x, v)− f(x, v)‖
W

(2,2)
2

→ 0, n → ∞.
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Theorem 5. If f ∈ W
(2,2)
2 then, we have

‖fn(x, v)− f(x, v)‖
W

(2,2)
2

→ 0, n → ∞.

Moreover a sequence ‖fn(x, v)− f(x, v)‖
W

(2,2)
2

is

monotonically decreasing in n.

Proof. We have

‖fn(x, v)− f(x, v)‖
W

(2,2)
2

=
∥∥∥∥∥

∞∑

i=n+1

i∑

k=1

βikH(xk, vk, f(xk, vk))Ψ̂i(x, v)

∥∥∥∥∥
W

(2,2)
2

.

Therefore, we obtain

‖fn(x, v)− f(x, v)‖
W

(2,2)
2

→ 0, n → ∞.

Furthermore, we have

‖fn(x, v)− f(x, v)‖2
W

(2,2)
2

=

∥∥∥∥∥

∞∑

i=n+1

i∑

k=1

βikH(xk, vk, f(xk, vk))Ψ̂i(x, v)

∥∥∥∥∥

2

W
(2,2)
2

=

∞∑

i=n+1

(
i∑

k=1

βikH(xk, vk, f(xk, vk))Ψ̂i(x, v)

)2

.

It is obvious that ‖fn(x, v)− f(x, v)‖
W

(2,2)
2

is

monotonically decreasing in n. �

To test the accuracy of the reproducing kernel
Hilbert space mehod, an example has been given.
The results are compared with the exact solu-
tions. Let us take into consideration the problem
of obtaining (f(x, v), σ(x, v)) in Ω = (−1, 1) ×
(1, 2). The exact solution of the problem is given
as [1]:

f(x, v) = exp

(
x3v

v

8(4 + v2)
+

arctan(v/2)

16

)
,

σ(x, v) = −3x2 − x3 −
1

(4 + v2)2
.

Using our technique, we choose 25, 64 and 100
points in the region Ω = [−1, 1]× [1, 2] and obtain
f25, f64 and f100. Numerical results are in good
agreement with the exact solution. In order to
prove the convergence of the exact solution we
found absolute errors for different values of dense
points n. We give the maximum absolute errors
for different number of dense points in Table 1.
The results demonstrate that the errors become
smaller as n increases.

5. Conclusion

In this work, the reproducing kernel Hilbert space
method was implemented for solving an inverse
problem for the kinetic equation. Given technique

is demonstrated to be of good convergence. It
seems that this technique can also be applied to
higher dimensional inverse problems. We found
the reproducing kernel functions for solutions of
a coefficient inverse problem for the kinetic equa-
tion. We concluded that these reproducing kernel
functions can be used in much more complicated
problems. We demonstrated our results by a ta-
ble. These results proved the power of the repro-
ducing kernel Hilbert space method.
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