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 In this study, by using the finite difference method (FDM for short) and operators, 

the discretized Cahn-Allen equation is obtained.  New initial condition for the 

Cahn-Allen equation is introduced, considering the analytical solution given in 

Application of the modified exponential function method to the Cahn-Allen 

equation, AIP Conference Proceedings 1798, 020033 [1]. It is shown that the 

FDM is stable for the usage of the Fourier-Von Neumann technique. Accuracy of 

the method is analyzed in terms of the errors in 
2L and .L

Furthermore, the FDM 

is treated in order to obtain the numerical results and to construct a table including 

numerical and exact solutions as well as absolute measuring error. A comparison 

between the numerical and the exact solutions is supported with two and three 

dimensional graphics via Wolfram Mathematica 11. 
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1. Introduction 

Russel has firstly studied the solitary wave [2,4] by 

following the water wave travelling through a tube. 

Investigation of the analytical and numerical solutions 

as well as other studies to the various class of nonlinear 

partial differential equations play an important role in 

the field of nonlinear sciences.  

Most recently, some serious methods have been 

developed in order to solve nonlinear differential 

equation. For example, (G'/G)-expansion method [5,6], 

the improved (G'/G)-expansion method [7-9], the 

modified simple equation method [10], the Sumudu 

transform method [11-14], the Bäcklund transform 

method [15], the homotopy analysis method [16,17], 

the exponential function method [18-20], the modified 

exponential function method [21], generalized 

Bernoulli sub-ODE method [22], improved Bernoulli 

sub-ODE method [24-26], weak solutions[27] and 

galerkin method [28].  

In the current work, we consider the Cahn-Allen 

equation given as: 

                        3
t xxu = u - u +u.                         (1) 

By using first integral method, Bulut et al. [23] have 

obtained some soliton to Eq. (1). 

 

 

The discretize equation to the Cahn-Allen equation is 

derived by using the finite difference method (FDM) 

and its operators.  We observe that the numerical 

method is stable with the Eq. (1) is stable when the 

Fourier-Von Neumann technique is utilzed. 

Furthermore, the accuracy in terms of the errors in   and 

is analyzed. We then utilized the FDM in 

approximating exact and numerical solutions to Eq. (1). 

We present the computed exact and numerical 

approximations as well as the absolute error in tables.  

We compare the exact and numerical approximations 

calculated and support the comparison with some 

graphics plots, which are sketched by using the 

Wolfram Mathematica 11.  

2. Fundamental properties of methods 

2.1 Analysis of FDM 

Some important notations are needed in order to 

describe the finite forward difference method, these 

are: 

• x , which is the spatial step  

• t , which is the time step 
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• Nixiaxi ,,2,1,0, =+=  points, which are 

the coordinates of mesh and 

Mjtjt
x

ab
N j ,,2,1,0,, ==



−
= and 

t

T
M


= .  

• The function ),( txu  is the value of the 

solution at  jiji utxu ,),(   (grid points), 

where jiu ,  will is the numerical 

approximations of the exact value of ),( txu  

at the points ),( ji tx .  

The difference operators are given as follows: 

,,1,, jijijit uuuH −= +                               (2) 

.2 ,1,,1, jijijijixx uuuuH −+ +−=                (3) 

Thus, the derivatives involve in Eq. (1) can be given in 

finite difference operators form as 
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The difference operator form to Eq. (1) is given as  

( )
3, ,

, ,2( )

t i j xx i j

i j i j

H u H u
u u

t x
= − +

 
.                       (6) 

 

Inserting Eq. (4) and (5) into Eq. (1), one can be written 

as indexed 

2
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2
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              (7) 

where the initial values )(00, ii xuu = . 

2.2. Consistency analysis 

In this subsection, the consistency of Eq. (1) with 

difference method is discussed. Firstly, the Taylor 

series expansions as taking the following form [11-13], 

2

,1, )( tO
t

u
tuu jiji +



+=+

,                            (8) 

2
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( ) ( ).i j i j
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u u x x O x
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One may define the operator L as 

2

2

xt
L




−




= . 

 

The indexed form of operator L takes the following 

form:   

( )2
,,

,
x

uH

t

uH
L

jixxjit

ji


−


= .                            (10) 

Inserting the indexed form (8) and (9) into the equality 

(10) and making some theoretical calculations, then the 

approach will be the 0 and 0t x →  → . Therefore, 

the equality (10) will be same as left hand side of the 

Eq. (1). Thus, it can be seen that the Eq. (1) is consistent 

with FDM. 

 

2.3 Truncation error and stability analysis 

In this subsection, the stability and error analysis for the 

FDM are studied. For the stability, if there is a 

perturbation in the initial condition and then the small 

change would not cause the large error in the numerical 

solution.  Simply, stability means that the scheme does 

not amplify errors and the error caused by a small 

perturbation in the numerical solution remains bound.  

 

Theorem 1. The truncation error of the finite different 

method to the Eq. (1) is  322 )()()( xOtOx + . 

 

Proof. Inserting Eq. (4) and (5) into Eq. (1) gives 

( )
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Inserting the equalities (2) and (3) into the Eq. (11) and 

do some necessary manipulations, then we obtain the 

following equality 
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Utilizing Eq. (12), one may write numerical solution 

Û as 

2
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and the truncation error E as 

 322 )()()( xOtOxE += .  

Moreover, if t  and x  are considered as small as 

necessary, truncation error will be obviously very 

small. The limit of E can be written as 
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0lim

0
0

=

→
→

E

t
x

.                                                                                                        

We can see that if t  and x are configured for a 

value close to zero 0 , the following inequality is 

gotten  

E , 

which proves the stability of the FDM. 

 

Theorem 2. The FDM in respect to the Cahn-Allen 

equation is unconditionally stable. 

 

Proof. We consider the Von Neumann’s Stability of the 

finite difference method for the Cahn-Allen. Let  

 , ( , ) ( , ) , , ,q I p

i ju u i x j t u p q e    =   = =  −  

(13) 

where tjqxip == ,  and 1−=I . Inserting Eq. 

(2), (3) and (13) into the equality (6), we can obtain 

,0→     

According to the Von Neumann’s Stability analysis 

[29], the FDM is stable if  1 . Hence, the FDM is 

unconditionally stable with the Cahn-Allen equation. 

  

2.4. 2L  and L Error Norms 

To show how close the numerical approximations are 

close to the exact approximations the 2L  and L  error 

norms are utilized [30]. 

The 2L  error norm is defined as [30]. 

2

2 2
0

,
N

exact numeric exact numeric

j j

j

L u u h u u
=

= − = −  

and L  error norm is defined as [30]

numeric

j
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j
j
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


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3. Application 

In this section, we apply Finite Difference Method for 

Eq. (1) and consider numerical experiments. Recall the 

following hyperbolic function solution for Eq. (1) given 

in [1]: 
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If we put 

0 1 1 10.6, 3, 5, 1, 0.1c A B A c= = − = − = − = ,  

10  x  and 10  t  for Eq. (14), the initial 

condition is 
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and under the above assumptions the exact solution of 

the Eq. (1) is as following 

 

 ( )
 ( )

12 1 Tanh 0.416667(0.3 1.8 0.848528 )
( , ) .

24 30 1 Tanh 0.416667(0.3 1.8 0.848528 )

t x
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Eq. (1) can be written as indexed with the help of finite 

difference operators 

( ) .10019999100000001.0 1,,

3

,,,1,1 +−+ +−−−−−= jijijijijiji uuuuuu                   

A comparison of the obtained exact and numerical 

solutions are tabulate in Table 1. 

 
Table 1. Numerical and exact solutions of equation (1) and 

absolute errors when ∆𝑥 = 0.01. 

 xi         tj    Numerical solution  Exact Solution    Absolute  Error…. 

0.00   0.01     0.184247      0.184258      1.06626×10−5 

0.01   0.01     0.183187      0.183197      1.06500×10−5 

0.02   0.01     0.182131  0.182142      1.06370×10−5 

0.03   0.01     0.181080  0.181091      1.06236×10−5 

0.04   0.01     0.180034  0.180044      1.06098×10−5 

0.05   0.01     0.178992  0.170900      1.05956×10−5 

0.06   0.01     0.177955  0.177966      1.05810×10−5 

 

 

Table 2. 
2L  and 

L  error norm when 10  h  and            

10  x  

 x t =                         
2L                                                        

L   0.2            

2.01978×10−3                            4.317×10−3 0.1              

6.96142×10−4                            1.074×10−3 

0.05            2.42301×10−4                            2.670×10−4 

0.01            1.04962×10−5                            1.100×10−5 
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Table2 shows that when x and t  are small, the 
2L  

and 
L error norm are decreasing. From Table 1-2 it is 

easily seen that results are in good agreement with the 

exact solution.  

 

 
Figure 1. Numerical solution of Eq. (1) for finite difference 

method 

Fig. 1 displays the physical behavior of the solution and 

shows that the exact approximations values are almost 

close to the numerically computed values. It is known 

that the truncation error depends on the choice of x

and t . Choosing the values to be very small gives rise 

to very small truncation error. This behavior of the 

numerical and exact solutions can be seen in the graphs 

above when the values of .01.0== tx  

 

4. Remark 

The numerical results for example 1 have been obtained 

by using the programming language Wolfram 

Mathematica package. To the best of our knowledge, 

these numerical solutions have not been published 

previously, and these results are new numerical 

solutions for (1). 

5. Conculusion 

In this study, the FDM is used in approximating the 

numerical solutions to the Cahn-Allen equation. FDM 

is a useful numerical scheme for approximating the 

solutions of various nonlinear differential equations by 

defining suitable differential operators. The initial 

condition for the Cahn-Allen equation is obtained using 

the new analytical solution. The Cahn-Allen equation 

is written as indexed with the help of finite difference 

operators. Error analysis of the index equation was 

analyzed. Cahn-Allen equation is discussed with an 

example and error estimates obtained for the FDM. 

Furthermore, the behavior of potentials u and absolute 

error are examined graphically. 
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