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Hölder’s inequality

Fractional derivative

Confromable fractional integrals

Trapezoid inequality

Midpoint inequality

AMS Classification 2010:
26D15, 26A51, 26A33, 26A42

1. Introduction

The convexity property of a given function plays
an important role in obtaining integral inequali-
ties. Proving inequalities for convex functions has
a long and rich history in mathamatics. In [1],
Beckenbach, a leading expert on the theory of
convex functions, wrote that the inequality (1)
was proved by Hadamard in 1893 [2]. In 1974,
Mitrinovič found Hermite and Hadamard’s note
in Mathesis .

Let f : I ⊂ R → R be a convex function define on
an interval I of real numbers, and a, b ∈ I with
a < b. Then, the following inequalities hold:

f

(

a+ b

2

)

≤
1

b− a

b
∫

a

f(x)dx ≤
f(a) + f(b)

2
.

(1)

Inequality (1) is known in the literature as
Hermite-Hadamard inequality for convex map-
pings. Note that some of the classical inequalities
for means can be derived from (1) for appropri-
ate particular selections of the mapping f. Both
inequalities hold in the reversed direction if f is
concave.

Over the last decade, classical inequalities have
been improved and generalized in a number of
ways; there have been a large number of research
papers written on this subject, [3–8]
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Definition 1. The function f : [a, b] ⊂ R → R, is
said to be convex if the following inequality holds

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) (2)

for all x, y ∈ [a, b] and λ ∈ [0, 1] .

In [7], Dragomir and Agarwal proved the follow-
ing results connected with the right part of (1).

Lemma 1. ( [7]) Let f : I◦ ⊆ R → R be a differ-
entiable mapping on I◦, a, b ∈ I◦ with a < b. If
f ′ ∈ L [a, b] , then the following equality holds:

f (a) + f (b)

2
−

1

b− a

b
∫

a
f (x) dx

=
b− a

2

1
∫

0

(1− 2t) f ′ (ta+ (1− t) b) dt.

(3)

Theorem 1. ( [7]) Let f : I◦ ⊆ R → R be a dif-
ferentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′| is convex on [a, b] , then the following inequal-
ity holds:

∣

∣

∣

∣

f (a) + f (b)

2
−

1

(b− a)

∫ b
a f (x) dx

∣

∣

∣

∣

≤
(b− a)

4

(

|f ′ (a)|+ |f ′ (b)|

2

)

.

(4)

In [6], Kırmacı gave the following results.

Lemma 2. ( [6]) Let f : I◦ ⊂ R → R be a dif-
ferentiable mapping on I◦, a, b ∈ I◦ (I◦ is the
interior of I) with a < b. If f ′ ∈ L [a, b], then the
following equality holds:

1

b− a

∫ b
a f (x) dx− f

(

a+ b

2

)

= (b− a)
[

∫ 1/2
0 tf ′ (ta+ (1− t) b) dt

+
∫ 1
1/2 (t− 1) f ′ (ta+ (1− t) b) dt

]

.

(5)

Theorem 2. ( [6]) Let f : I◦ ⊂ R → R be a
differentiable mapping on I◦, a, b ∈ I◦ (I◦ is the
interior of I) with a < b. If |f ′| is convex on [a, b],
then the following inequality holds:

∣

∣

∣

∣

α

b− a

∫ b
a f (x) dx− f

(

a+ b

2

)∣

∣

∣

∣

≤
b− a

8
(|f ′ (a)|+ |f ′ (b)|) .

(6)

2. Definitions and Properties of

Conformable Fractional Derivative

and Integral

The following definitions and theorems with re-
spect to conformable fractional derivative and in-
tegral were referred in [9–14].

Definition 2. (Conformable fractional de-

rivative) Given a function f : [0,∞) → R. Then
the “conformable fractional derivative” of f of or-
der α is defined by

Dα (f) (t) = lim
ε→0

f
(

t+ εt1−α
)

− f (t)

ε
(7)

for all t > 0, α ∈ (0, 1] . If f is α−differentiable

in some (0, a) , α > 0, lim
t→0+

f (α) (t) exist, then

define

f (α) (0) = lim
t→0+

f (α) (t) . (8)

We can write f (α) (t) for Dα (f) (t) to denote the
conformable fractional derivatives of f of order α.
In addition, if the conformable fractional deriva-
tive of f of order α exists, then we simply say f

is α−differentiable.

Theorem 3. Let α ∈ (0, 1] and f, g be
α−differentiable at a point t > 0. Then

i. Dα (af + bg) = aDα (f)+bDα (g) , for all a, b ∈
R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα (fg) = fDα (g) + gDα (f) ,

iv. Dα

(

f

g

)

=
Dα (f) g −Dα (g) f

g2
.

If f is differentiable, then

Dα (f) (t) = t1−αdf

dt
(t) . (9)

Also:

1. Dα (1) = 0

2. Dα (e
ax) = ax1−αeax, a ∈ R

3. Dα (sin(ax)) = ax1−α cos(ax), a ∈ R

4. Dα (cos(ax)) = −ax1−α sin(ax), a ∈ R

5. Dα

(

1
α t

α
)

= 1

6. Dα

(

sin( t
α

α )
)

= cos( t
α

α )
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7. Dα

(

cos( t
α

α )
)

= − sin( t
α

α )

8. Dα

(

e(
tα

α
)
)

= e(
tα

α
).

Theorem 4 (Mean value theorem for con-
formable fractional differentiable functions). Let
α ∈ (0, 1] and f : [a, b] → R be a continuous
on [a, b] and an α-fractional differentiable map-
ping on (a, b) with 0 ≤ a < b. Then, there exists
c ∈ (a, b), such that

Dα (f) (c) =
f(b)− f(a)

bα

α − aα

α

.

Definition 3 (Conformable fractional integral).
Let α ∈ (0, 1] and 0 ≤ a < b. A function
f : [a, b] → R is α-fractional integrable on [a, b]
if the integral

∫ b

a
f (x) dαx :=

∫ b

a
f (x)xα−1dx (10)

exists and is finite. All α-fractional integrable on
[a, b] is indicated by L1

α ([a, b])

Remark 1.

Iaα (f) (t) = Ia1
(

tα−1f
)

=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper
integral, and α ∈ (0, 1].

Theorem 5. Let f : (a, b) → R be differentiable
and 0 < α ≤ 1. Then, for all t > a we have

IaαD
a
αf (t) = f (t)− f (a) . (11)

Theorem 6. (Integration by parts) Let f, g :
[a, b] → R be two functions such that fg is differ-
entiable. Then

∫ b
a f (x)Da

α (g) (x) dαx

= fg|ba −
∫ b
a g (x)Da

α (f) (x) dαx.

(12)

Theorem 7. Assume that f : [a,∞) → R such

that f (n)(t) is continuous and α ∈ (n, n+1]. Then,
for all t > a we have

Da
αf (t) Iaα = f (t) .

Theorem 8. Let α ∈ (0, 1] and f : [a, b] → R be
a continuous on [a, b] with 0 ≤ a < b. Then,

|Iaα (f) (x)| ≤ Iaα |f | (x) .

For more details and properties concerning the
conformable integral operators, we refer, for ex-
ample, to the works [15–18].

In this paper, we establish the Hermite-Hadamard
type inequalities for conformable fractional inte-
gral and we will investigate some integral inequal-
ities connected with the left and right hand side
of the Hermite-Hadamard type inequalities for
conformable fractional integral. The results pre-
sented here would provide generalizations of those
given in earlier works.

3. Hermite-Hadamard’s Inequalities for

Conformable Fractional Integral

We will start the following important result for
α-fractional differentiable mapping;

Theorem 9. Let α ∈ (0, 1] and f : [a, b] → R

be an α-fractional differentiable mapping on (a, b)
with 0 ≤ a < b. Then, the following conditions
are equivalent:

i) f is a convex functions on [a, b]

ii) Dαf (t) is an increasing function on [a, b]

iii) for any x1, x2 ∈ [a, b]

f(x2) ≥ f(x1) +
(xα2 − xα1 )

α
Dα (f) (x1) . (13)

Proof. i) → ii) Let x1, x2 ∈ [a, b] with x1 < x2
and we take h > 0 which is small enough such
that x1 − h, x2 + h ∈ [a, b] . Since x1 − h < x1 <

x2 < x2 + h, then we know that

f(x1)− f(x1 − h)

h

≤
f(x2)− f(x1)

x2 − x1

≤
f(x2 + h)− f(x2)

h
.

(14)

Multipling the inequality (14) with x1−α
1 ≤ x1−α

2 ,
for x1 < x2, α ∈ (0, 1], we get

x1−α
1

f(x1)− f(x1 − h)

h

≤ x1−α
2

f(x2 + h)− f(x2)

h
.

(15)

Let us put h = εxα−1
1 (and h = εxα−1

2 ) such that
h → 0, ε → 0, then the inequality (14) can be
converted to

f(x1)− f(x1 − εxα−1
1 )

ε
≤

f(x2 + εxα−1
2 )− f(x2)

ε
.

Since f is α-fractional differentiable mapping on
(a, b) , then let ε → 0+, we obtain
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Dαf(x1) ≤ Dαf(x2) (16)

this show that Dαf is increasing in [a, b].

ii) → iii) Take x1, x2 ∈ [a, b] with x1 < x2. Since
Dαf is increasing in [a, b], then by mean value
theorem for conformable fractional differentiable
we get

f(x2)− f(x1) =
(xα2 − xα1 )

α
Dα (f) (c)

≥
(xα2 − xα1 )

α
Dα (f) (x1)

(17)

where c ∈ (x1, x2) . It is follow that

f(x2) ≥ f(x1) +
(xα2 − xα1 )

α
Dα (f) (x1) .

iii) → i) For any x1, x2 ∈ [a, b], we take x3 =
λx1 + (1− λ)x2 and xα3 = λxα1 + (1− λ)xα2
for λ ∈ (0, 1) . It is easy to show that xα1 − xα3 =
(1− λ) (xα1 − xα2 ) and xα2 − xα3 = −λ (xα1 − xα2 ).
Thus, by using (13), we obtain that

f(x1) ≥ f(x3) +
(xα1 − xα3 )

α
Dα (f) (x3)

= f(x3) + (1− λ)
(xα1 − xα2 )

α
Dα (f) (x3)

and

f(x2) ≥ f(x3) +
(xα2 − xα3 )

α
Dα (f) (x3)

= f(x3)− λ
(xα1 − xα2 )

α
Dα (f) (x3) .

Both sides of the above two expressions, multi-
ply by λ and (1− λ) , repectively, and add side to
side, then we have

λf(x1) + (1− λ) f(x2)

≥ f(x3)

= f(λx1 + (1− λ)x2)

which is show that f is a convex function. The
proof is completed. �

Theorem 10. Let α ∈ (0, 1], a ≥ 0, and f :
[a, b] → R is a continuous function and ϕ :
[0,∞) → R be continuous and convex function.
Then,

ϕ

(

α

bα − aα

∫ b
a f (x) dαx

)

≤
α

bα − aα

∫ b
a ϕ (f (x)) dαx.

(18)

Proof. Let ϕ : [0,∞) → R be a convex function
and x0 ∈ [0,∞). From the definition of convexity,
there exists m ∈ R such that,

ϕ(y)− ϕ(x0) ≥ m (y − x0) . (19)

Since f is a continuous function

x0 =
α

bα − aα

∫ b

a
f (x) dαx (20)

is well defined. The function ϕ ◦ f is also contin-
uous , thus we may apply (19) with y = f(t) and
(20) to obtain

ϕ(f(t))− ϕ(x0) ≥ m (f(t)− x0) .

Integrating above inequality from a to b, we get

∫ b

a
ϕ(f(t))dαt− ϕ(x0)

∫ b

a
dαt

≥ m

(∫ b

a
f(t)dαt− x0

∫ b

a
dαt

)

= m

(∫ b

a
f(t)dαt− xα0

∫ b

a
dαt

)

= 0.

It is obvious that the inequality (18) holds. �

Hermite-Hadamard’s inequalities can be repre-
sented in conformable fractional integral forms as
follows:

Theorem 11. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be a convex function and f ∈ L1
α ([a

α, bα]) with
0 ≤ a < b. Then, the following inequality for
conformable fractional integral holds:

f

(

aα + bα

2

)

≤
α

bα − aα

∫ b
a f (xα) dαx

≤
f (aα) + f (bα)

2
.

(21)

Proof. Since f is a convex function on I ⊂
R
+, for xα, yα ∈ [aα, bα] with λ = 1

2 , we have
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f

(

xα + yα

2

)

≤
f (xα) + f (yα)

2
(22)

i.e, with xα = tαaα + (1− tα) bα, yα =
(1− tα) aα + tαbα, for t ∈ [0, 1] , α ∈ (0, 1]

2f

(

aα + bα

2

)

≤ f (tαaα + (1− tα) bα)

+f ((1− tα) aα + tαbα) .

(23)

By integrating the resulting inequality with re-
spect to t over [0, 1] , we obtain

2
∫ 1
0 f
(

aα+bα

2

)

dαt

≤
∫ 1
0 f (tαaα + (1− tα) bα) dαt

+
∫ 1
0 f ((1− tα) aα + tαbα) dαt

= 2α
bα−aα

∫ b
a f (xα) dαx,

(24)

and the first inequality is proved. For the proof
of the second inequality in (22) we first note that
if f is a convex function, then, for λ ∈ [0, 1] , it
yields

f (tαaα + (1− tα) bα) ≤ tαf (aα) + (1− tα) f (bα)

and

f ((1− tα) aα + tαbα) ≤ (1− tα) f (aα) + tαf (bα) .

By adding these inequalities we have

f (tαaα + (1− tα) bα) + f ((1− tα) aα + tαbα)
≤ f (aα) + f (bα) .

(25)

Integrating inequality with respect to t over
[0, 1] , we obtain

∫ 1
0 f (tαaα + (1− tα) bα) dαt

+
∫ 1
0 f ((1− tα) aα + tαbα) dαt

≤ [f (aα) + f (bα)]
∫ 1
0 dαt

i.e.

1

bα − aα

∫ b

a
f (xα) dαx ≤

f (a) + f (b)

2α
.

The proof is completed. �

Remark 2. If we choose α = 1 in (21), then
inequality (21) become inequality (1).

Theorem 12. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be a convex function and f ∈ L1
α ([a

α, bα]) with
0 ≤ a < b. Then, for t ∈ [0, 1], the following in-
equality for conformable fractional integral holds:

f

(

aα + bα

2

)

≤ h (tα)

≤
α

bα − aα

∫ b
a f (xα) dαx

≤ H (tα) ≤
f (aα) + f (bα)

2

(26)

where

h (tα) = (1− tα) f

(

(1 + tα) aα + (1− tα) bα

2

)

+tαf

(

aαtα + (2− tα) bα

2

)

and

H (tα) = 1
2 [(1− tα) f (aα)

+ f (tαaα + (1− tα) bα) + tαf (bα)] .

Proof. Since f is a convex function on
I, by applying (21) on the subinterval
[aα, tαaα + (1− tα) bα] , with t 6= 1, we have

f

(

(1 + tα) aα + (1− tα) bα

2

)

≤
α

(1− tα) (bα − aα)

(27)

×

∫ (tαaα+(1−tα)bα)
1
α

a
f (xα) dαx

≤
f (aα) + f (tαaα + (1− tα) bα)

2
.

Now, by applying (21) on the subinterval
[tαaα + (1− tα) bα, bα] , with t 6= 0, we have
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f

(

aαtα + (2− tα) bα

2

)

≤
α

tα (bα − aα)

∫ b

(tαaα+(1−tα)bα)
1
α

f (xα) dαx(28)

≤
f (tαaα + (1− tα) bα) + f (bα)

2
.

Multiplying (27) by (1− tα) , and (27) by tα, and
adding the resulting inequalities, we obtain the
following inequalities

h (tα) ≤
α

bα − aα

∫ b

a
f (xα) dαx ≤ H (tα) (29)

where h (tα) and H (tα) are defined as in Thereom
12. Using the fact that f is a convex function, we
get

f

(

aα + bα

2

)

= f

(

(1− tα)
(1 + tα) aα + (1− tα) bα

2

+tα
aαtα + (2− tα) bα

2

)

(30)

≤ (1− tα) f

(

aα + [tαaα + (1− tα) bα]

2

)

+tαf

(

[aαtα + (1− tα) bα] + bα

2

)

≤
1

2
[(1− tα) f (aα)

+ f (tαaα + (1− tα) bα) + tαf (bα)]

≤
f (aα) + f (bα)

2
.

Therefore, by (29) and (30) we have (26). �

4. Trapezoid Type Inequalities for

Conformable Fractional Integral

We need the following lemma. With the help of
this, we give some integral inequalities connected
with the right-side of Hermite–Hadamard-type in-
equalities for conformable fractional integral.

Lemma 3. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on (a, b)
with 0 ≤ a < b. If Dα (f) be an α-fractional

integrable function on [aα, bα] ,then the following
identity for conformable fractional integral holds:

α

bα − aα

∫ b
a f (xα) dαx−

f (aα) + f (bα)

2

=
1

2

∫ 1
0 (1− 2tα)

×Dα (f) (t
αaα + (1− tα) bα) dαt.

(31)

Proof. Integrating by parts

∫ 1
0 (1− 2tα)Dα (f) (t

αaα + (1− tα) bα) dαt

= (1− 2tα) f (tαaα + (1− tα) bα)|10

+2α
∫ 1
0 f (tαaα + (1− tα) bα) dαt

= − [f (aα) + f (bα)] +
2α

(bα − aα)

∫ b
a f (xα) dαx.

Thus, by multiplying both sides by
1

2
, we have

conclusion (31). �

Remark 3. If we choose α = 1 in (31), then
equality (31) become equality (3).

Theorem 13. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I with 0 ≤ a < b. If |f ′| be a convex function
on I,then the following inequality for conformable
fractional integral holds:

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b

a
f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2





23α
2

+
(

6× 2α
2
)

− 8

3α× 23α2



 (32)

[

aα(α−1) |Dα (f) (a
α)|+ bα(α−1) |Dα (f) (b

α)|

2

]

.

Proof. Using Lemma 3, it follows that

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
1

2

∫ 1
0 |1− 2tα| |Dα (f) (t

αaα + (1− tα) bα)| dαt.

Since |f ′| is a convex function, by using the
properties Dα (f ◦ g) (t) = f ′ (g(t))Dαg(t) and
Dα (f) (t) = t1−αf ′(t), it follows that
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|Dα (f) (t
αaα + (1− tα) bα)|

≤ α (bα − aα)
[

tαaα(α−1) |Dα (f) (a
α)| (33)

+ (1− tα) bα(α−1) |Dα (f) (b
α)|
]

Using (33), we have

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2

∫ 1
0 |1− 2tα|

×
[

tαaα(α−1) |Dα (f) (a
α)|

+ (1− tα) bα(α−1) |Dα (f) (b
α)|
]

dαt

=
α (bα − aα)

2

×
{

aα(α−1) |Dα (f) (a
α)|
∫ 1
0 |1− 2tα| tαdαt

+ bα(α−1) |Dα (f) (b
α)|
∫ 1
0 |1− 2tα| (1− tα) dαt

}

where

∫ 1

0
|1− 2tα| (1− tα) dαt

=

∫ 1

0
|1− 2tα| tαdαt =

23α
2

+
(

6× 2α
2
)

− 8

3α× 23α2

Thus, the proof is completed. �

Remark 4. If we choose α = 1 in (32), then
inequality (32) become inequality (4).

Theorem 14. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I with 0 ≤ a < b. If |f ′|q , q > 1, be a con-
vex function on I, then the following inequality
for conformable fractional integral holds:

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2
(A(α))

1

p

(

aqα(α−1) |Dα (f) (a)|
q + bqα(α−1) |Dα (f) (b)|

q

2α

) 1

q

(34)

where 1
p + 1

q = 1, A(α) is given by

A(α) =
1

2α (p+ 1)

{

2−

(

1−
1

2α2−1

)p+1

−

(

1

2α2−1
− 1

)p+1
}

.

Proof. Using Lemma 3 and Hölder’s integral in-
equality, we find

∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
1

2

∫ 1
0 |1− 2tα| |Dα (f) (t

αaα + (1− tα) bα)| dαt

≤
1

2

(

∫ 1
0 |1− 2tα|p dαt

) 1

p

(

∫ 1
0 |Dα (f) (t

αaα + (1− tα) bα)|q dαt
) 1

q
.

Since |f ′|q is a convex function, by using the
properties Dα (f ◦ g) (t) = f ′ (g(t))Dαg(t) and
Dα (f) (t) = t1−αf ′(t), it follows that

|Dα (f) (t
αaα + (1− tα) bα)|q

≤ αq (bα − aα)q (35)

[

tαaqα(α−1) |Dα (f) (a
α)|q

+ (1− tα) bqα(α−1) |Dα (f) (b
α)|q

]

.

By using (35), we have
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∣

∣

∣

∣

f (aα) + f (bα)

2
−

α

bα − aα

∫ b
a f (xα) dαx

∣

∣

∣

∣

≤
α (bα − aα)

2

(

∫ 1
0 |1− 2tα|p dαt

) 1

p

[

∫ 1
0

(

tαaqα(α−1) |Dα (f) (a
α)|q

+(1− tα) bqα(α−1) |Dα (f) (b
α)|q

)

dαt
]
1

q

≤
α (bα − aα)

2

(

∫ 1
0 |1− 2tα|p dαt

) 1

p

(

aqα(α−1) |Dα (f) (a)|
q + bqα(α−1) |Dα (f) (b)|

q

2α

) 1

q

.

It follows that

∫ 1

0
|1− 2tα|p dαt

=

∫ 1

2α

0
(1− 2tα)p dαt+

∫ 1

1

2α

(2tα − 1)p dαt

=
1

2α (p+ 1)

{

2−

(

1−
1

2α2−1

)p+1

−

(

1

2α2−1
− 1

)p+1
}

which is completed the proof. �

Remark 5. If we choose α = 1 in (34), then
inequality (34) become Theorem 2.3. in [7].

5. Midpoint Type Inequalities for

Conformable Fractional Integral

We need the following lemma. With the help of
this, we give some integral inequalities connected
with the left-side of Hermite–Hadamard-type in-
equalities for conformable fractional integral.

Lemma 4. Let α ∈ (0, 1] and f : I ⊂ R
+ → R be

an α-fractional differentiable function on I◦ with
0 ≤ a < b. If Dα (f) be an α-fractional integrable
function on I, then the following identity for con-
formable fractional integral holds:

f

(

aα + bα

2

)

−
α

bα − aα

∫ b
a f (xα) dαx

=
∫ 1
0 P (t)Dα (f) (t

αaα + (1− tα) bα) dαt

(36)

where

P (t) =







tα, 0 ≤ t < 1
21/α

tα − 1, 1
21/α

≤ t ≤ 1.

Proof. Integrating by parts

∫ 1

0
P (t)Dα (f) (t

αaα + (1− tα) bα) dαt

=

∫ 1

21/α

0
tαDα (f) (t

αaα + (1− tα) bα) dαt

+

∫ 1

1

21/α

(tα − 1)Dα (f) (t
αaα + (1− tα) bα) dαt

= tαf (tαaα + (1− tα) bα)|
1

21/α

0

−α

∫ 1

21/α

0
f (tαaα + (1− tα) bα) dαt

+ (tα − 1)f (tαaα + (1− tα) bα)|1 1

21/α

−α

∫ 1

1

21/α

f (tαaα + (1− tα) bα) dαt

= f

(

aα + bα

2

)

−
α

(bα − aα)

∫ b

a
f (xα) dαx.

Thus, we have conclusion (36). �

Remark 6. If we choose α = 1 in (36), then
equality (36) become equality (5).

Theorem 15. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I. If |f ′| be a convex function on I, then the
following inequality for conformable fractional in-
tegrals holds:

∣

∣

∣

∣

α

bα − aα

∫ b

a
f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤
α (bα − aα)

8
(37)

(

aα(α−1) |Dα (f) (a
α)|+ bα(α−1) |Dα (f) (b

α)|

α

)

.

Proof. Using Lemma 3, it follows that
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∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤







1

21/α
∫

0

tα |Dα (f) (t
αaα + (1− tα) bα)| dαt

+
1
∫

1

21/α

(1− tα) |Dα (f) (t
αaα + (1− tα) bα)| dαt







.

By using (33), we have

∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤ α (bα − aα)

{

∫

1

21/α

0 tα
[

tαaα(α−1) |Dα (f) (a
α)|

+(1− tα) bα(α−1) |Dα (f) (b
α)|
]

dαt

+
∫ 1

1

21/α
(1− tα)

[

tαaα(α−1) |Dα (f) (a
α)|

+ (1− tα) bα(α−1) |Dα (f) (b
α)|
]

dαt
}

=
α (bα − aα)

8

×

(

aα(α−1) |Dα (f) (a
α)|+ bα(α−1) |Dα (f) (b

α)|

α

)

.

Thus, the proof is completed. �

Remark 7. If we choose α = 1 in (37), then
inequality (37) become the inequality (6).

Theorem 16. Let α ∈ (0, 1] and f : I ⊂ R
+ → R

be an α-fractional differentiable function on I◦

and Dα (f) be an α-fractional integrable function
on I. If |f ′|q , q > 1,be a convex function on I,

then the following inequality for conformable frac-
tional integrals holds:

∣

∣

∣

∣

α

bα − aα

∫ b

a
f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

(38)

≤ α (bα − aα)

(

1

α (p+ 1) 2p+1

)1/p

B(α)

where 1
p + 1

q = 1, B(α) is defined by

B(α)

=

(

aqα(α−1) |Dα (f) (a
α)|q

8α

+
3bqα(α−1) |Dα (f) (b

α)|

8α

)1/q

+

(

3aqα(α−1) |Dα (f) (a
α)|q

8α

+
bqα(α−1) |Dα (f) (b

α)|

8α

)1/q

.

Proof. Using Lemma 3 and from Hölder’s in-
equality, it follows that

∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤







1

21/α
∫

0

tα |Dα (f) (t
αaα + (1− tα) bα)| dαt

+
1
∫

1

21/α

(1− tα) |Dα (f) (t
αaα + (1− tα) bα)| dαt







≤















1

21/α
∫

0

tpαdαt





1/p

×





1

21/α
∫

0

|Dα (f) (t
αaα + (1− tα) bα)|q dαt





1/q

+





1
∫

1

21/α

(1− tα)p dαt





1/p





1
∫

1

21/α

|Dα (f) (t
αaα + (1− tα) bα)|q dαt





1/q










.

By using (35), it follows that
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∣

∣

∣

∣

α

bα − aα

∫ b
a f (xα) dαx− f

(

aα + bα

2

)∣

∣

∣

∣

≤ α (bα − aα)

(

1

α (p+ 1) 2p+1

)1/p

×











1

21/α
∫

0

[

tαaqα(α−1) |Dα (f) (a
α)|q

+(1− tα) bqα(α−1) |Dα (f) (b
α)|q

]

dαt
)1/q

+





1
∫

1

21/α

[

tαaqα(α−1) |Dα (f) (a
α)|q

+(1− tα) bqα(α−1) |Dα (f) (b
α)|q

]

dαt
)1/q

}

= α (bα − aα)

(

1

α (p+ 1) 2p+1

)1/p

×

{(

aqα(α−1) |Dα (f) (a
α)|q

8α

+
3bqα(α−1) |Dα (f) (b

α)|

8α

)1/q

+

(

3aqα(α−1) |Dα (f) (a
α)|q

8α

+
bqα(α−1) |Dα (f) (b

α)|

8α

)1/q






.

Thus, the proof of completed. �

Remark 8. If we choose α = 1 in (38), then in-
equality (38) become the inequality (2.1) in The-
orem 2.3. in [6].

6. Conclusion

In this work, we have obtained some new Hermite-
Hadamard type integral inequalities for con-
formable integrals and we will investigate some
integral inequalities connected with the left and
right hand side of the Hermite-Hadamard type in-
equalities for conformable fractional integral. The
results presented here would provide generaliza-
tions of those given in earlier works and we show
that some our results are better than the other
results with respect to midpoint inequalities.
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