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 This article concentrates on discovering numerical behavior of the singular two-

point boundary value problems through various numerical techniques. This is 

carried out in a comparative way by mainly using differential quadrature and 

finite element methods. Also a discussion has been done by means of advantages 

and disadvantages of the numerical methods of interest.To properly understand 

the behavior of the physical processes represented by the model equation, the 

calculated solutions have been discussed in detail. 
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1. Introduction 

Singular two-point boundary value problems are 

encountered in many physical models such as electro-

hydrodynamics and some thermal explosions, and 

thus, have been investigated by using a variety of 

numerical methods [1-5] . 

We consider the class of singular two-point boundary 

value problems showing up frequently in applied 

mathematics, 

(𝑝(𝑥)𝑦′)′ = 𝑝(𝑥)𝑓(𝑥, 𝑦),     0 < 𝑥 ≤ 1,           (1)                                          

with the boundary conditions 

𝑦(0) = 𝐴,     𝛼𝑦(1) + 𝛽𝑦′(1) = 𝐵,                  (2)                                     

or 

𝑦′(0) = 0,     𝛼𝑦(1) + 𝛽𝑦′(1) = 𝐵,                  (3)                                     

where 𝛼 > 0, 𝛽 ≥ 0, and 𝐴, 𝐵 are two finite constants. 

The following conditions apply to the function 𝑝(𝑥): 

1) 𝑝(𝑥) > 0 on (0,1] ,   2) 𝑝(𝑥) > 0 ∈ 𝐶1(0,1] ,  3) 

𝑝(𝑥) = 𝑥𝑏0𝑔(𝑥) on [0,1] and for some 𝑟 > 1, 1/𝑔(𝑥) 

is analytic in {𝑧: |𝑧| < 𝑟}. 

Also, the function 𝑓(𝑥, 𝑦) have been satisfied the 

following conditions: 1) 𝑓(𝑥, 𝑦) ∈ {[0,1] × ℝ} is 

continuous,  2)  
𝜕𝑓

𝜕𝑦
 exists and is continuous,  3) 

𝜕𝑓

𝜕𝑦
≥

0, ∀0 ≤ 𝑥 ≤ 1 and all real 𝑦. 

The problem (1) has a unique solution under the 

conditions (2) or (3) (𝛼 = 1, 𝛽 = 0) [4-5]. 

In most cases, it is not possible to solve the singular 

boundary value problems analytically. However, there 

are some numerical/approximate methods used in the 

literature, for instance, finite difference methods[6-

13], finite element methods [14-16], spline methods 

[17], differential quadrature methods [18-23] and 

series based methods [24-25].  

2. Methods 

2.1. Differential quadrature method (DQM) 

The DQM was presented by Bellman at the beginning 

of the 1970s for solving differential equations [18]. In 

the DQM, derivatives of a function with respect to a 

coordinate direction are expressed as linear weighted 

sums of all the functional values at all grid points 

along that direction. In this study we used the 

polynomial-based differential quadrature (PDQ) but a 

Fourier expansion-based differential quadrature can 

also be used depending on the physical structure of the 

problem [19,22]. 

2.2. Finite difference method (FDM) 

The finite difference approaches for derivatives are 

one of the simplest and oldest methods for solving 

differential equations in the early 18th century. To

http://www.ams.org/msc/msc2010.html
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solve differential equations numerically we can 

replace the derivatives in the equation with finite 

difference approximations on a discretized domain. A 

number of algebraic equations transformed from the 

differential equation can be solved by using a suitable 

method [26]. In this study, we used the second-order 

finite difference (FD2) approximation and the fourth-

order finite difference (FD4) approximation for 

solving the model equations. The details can be found, 

for instance, in reference [11]. 

2.3. Finite element method (FEM) 

The FEM is a numerical method that appeared at the 

beginning of the 1950s to solve various problems of 

science [27-28]. This method is based on the principle 

of  mesh discretization of a continuous domain into a 

set of discrete subdomains, usually called elements. 

The process is to construct an integral of the inner 

product of the residual and the weight functions and 

set the integral to zero. In this study, we used the 

Galerkin FEM for solving the model problem. The 

process steps of the method can also be found in the 

literature [15,27]. 

In summary, as pointed out in the above references, 

the FDM can be considered to be simpler and easier to 

implement than the FEM. However, the FEM can be 

seen to be relatively more effective on nonlineartiy 

and irregular domains. 

It is possible to find the results with sufficient 

accuracy by dividing the solution region into many 

elements in the FEM. If solution is achieved by 

separating the element into too many subregions, the 

required computational capacity and time will 

increase. However, the DQM requires less number of 

grids comparison to its rival methods. The FDM is 

easy to use and produce computer codes but is 

relatively less accurate.  

In order to observe those advantages and 

disadvantages of the methods properly, here, we used 

comparatively the three methods in solving the 

singular two-point BVPs. 

3. Numerical illustrations  

To demonstrate the efficiency and accuracy of the 

DQM, the FDM and the FEM, we have solved the 

following two problems(the first is a linear and the 

second is a non-linear) whose exact solutions are 

known. 

The performances of the approches are measured by 

the absolute and relative errors. 

 

Problem 1 (Kumar [28]) 

  (𝑥𝑦′)′ = −𝑥 cos 𝑥 − sin 𝑥  ,   0 < 𝑥 ≤ 1 

   𝑦′(0) = 0,   𝑦(1) = cos 1, 

with the exact solution 𝑦(𝑥) = cos 𝑥. 

We solved this problem using the DQM, the FDM and 

the FEM with 𝑝(𝑥) = 𝑥,   𝑓(𝑥, 𝑦) = 𝑓(𝑥) =

− cos 𝑥 − (sin 𝑥 /𝑥)in Equation (1) and 𝛼 = 1, 𝛽 =
0, 𝐵 = cos 1 in Equation (3). 

We used here the MATLAB code we produced for 

each method.  

The relative and absolute errors are presented, for N=7 

in Table 1 and for N=50 in Table 2 for uniform grids, 

respectively. The relative errors are plotted, for N=7 

and N=30 in Figures 1,2 respectively.  

 

Table 1. Comparison of the relative and absolute errors in 

Problem 1 for N=7 

(a) Sub-table 1. 
 

 

x 

FD2 

Relative 

Error 

FD4 

Relative 

Error 

FEM 

Relative 

Error 

DQM 

Relative 

Error 

0 7E-02 2E-04 8E-03 2E-07 

0.166 3E-02 2E-04 3E-03 6E-08 

0.333 2E-02 1E-04 2E-03 2E-08 

0.5 1E-02 1E-04 1E-03 7E-08 

0.666 9E-03 1E-04 8E-04 1E-07 

0.833 4E-03 1E-04 3E-04 2E-07 

1 0 0 0 0 

 

(b) Sub-table 2. 
 

 

x 

FD2 

Absolute 

Error 

FD4 

Absolute 

Error 

FEM 

Absolute 

Error 

DQM 

Absolute 

Error 

0 7E-02 2E-04 8E-03 2E-07 

0.166 3E-02 2E-04 3E-03 6E-08 

0.333 2E-02 1E-04 2E-03 2E-08 

0.5 1E-02 1E-03 1E-03 6E-08 

0.666 7E-03 1E-04 6E-04 1E-07 

0.833 3E-03 1E-04 2E-04 1E-07 

1 0 0 0 0 

 

 

Table 2. Comparison of the relative and absolute errors in 

Problem 1 for N=50 

(a) Sub-table 1. 
 

 

x 

FD2 

Relative 

Error 

FD4 

Relative 

Error 

FEM 

Relative 

Error 

DQM 

Relative 

Error 

0 1E-03 3E-09 1E-04 7E-03 

0.16 5E-04 2.4E-09 5.5E-05 1E-03 

0.34 3E-04 2.1E-09 3.1E-05 5E-04 

0.53 2E-04 1.8E-09 1.8E-05 1E-04 

0.65 1E-04 1.6E-09 1.2E-05 5E-04 

0.85 6.4E-05 1E-09 4.9E-06 1E-03 

1 0 0 0 0 

 

(b) Sub-table 2. 

 

x 

FD2 

Absolute 

Error 

FD4 

Absolute 

Error 

FEM 

Absolute 

Error 

DQM 

Absolute 

Error 

0 1E-03 3E-09 1E-04 7E-03 

0.16 5E-04 2.3E-09 2.4E-05 1E-03 

0.34 3E-04 2E-09 2.9E-05 5E-04 

0.53 1E-04 1.6E-09 1.6E-05 1E-04 

0.65 1E-04 1.3E-09 1E-05 4E-04 

0.85 4.2E-05 6.9E-10 3.2E-06 8E-04 

1 0 0 0 0 
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Tables show the absolute and relative errors for the 

DQM, FD2, FD4 and FEM results. The error 

measurements stemmed from the DQM is less than the 

others, as long as less number of grids is used. When 

the number of grids increases, the most effective 

results obtained from the FD4 among the methods of 

interest. 

 

Problem 2 (Kumar [29,30]) 

(𝑥𝛼0𝑦′)′ = 𝛽0𝑥𝛼0+𝛽0−2𝑒𝑦(𝛽0𝑥𝛽0𝑒𝑦 − 𝛼0 − 𝛽0 + 1),

0 < 𝑥 ≤ 1 

𝑦(0) = − ln(4) ,   𝑦(1) = − ln(5), 

with the exact solution 𝑦(𝑥) = ln (
1

4
+ 𝑥𝛽0)  where 

0 ≤ 𝛼0 < 1. 

 

We solved this problem using the DQM and the FDM 

with 𝑝(𝑥) = 𝑥𝛼0 , 𝑓(𝑥, 𝑦) = 𝛽0𝑥𝛼0+𝛽0−2𝑒𝑦 

(𝛽0𝑥𝛽0𝑒𝑦 − 𝛼0 − 𝛽0 + 1) in equation(1) and 𝛼 = 1,

𝛽 = 0, 𝐴 = − ln(4) , 𝐵 = −ln (5) in equation (3). 

 

The relative and absolute errors are presented, for N=7 

in Table 3 and for N=15 in Table 4 for uniform grids, 

respectively. The relative errors are plotted, for N=7 in 

Figure 3, for N=11 in Figure 4, respectively, with 

𝛼0 = 0.5, 𝛽0 = 1. 

From the produced results both qualitatively and 

quantitatively, the DQM has been seen to be the most 

accurate one among the methods for the problems of 

interest. 

 

Table 3. Comparison of the relative and absolute errors in 

Problem 2 for N=7 

(a) Sub-table 1. 

 

x 

FD2 

Relative 

 Error 

FD4 

Relative  

Error 

DQM 

Relative  

Error 

0 0 0 0 

0.166 1E-05 3E-07 1.3E-09 

0.333 1E-05 2.9E-07 9.3E-11 

0.5 8.7E-06 2.6E-07 9.6E-10 

0.666 5.9E-06 2.2E-07 1.6E-09 

0.833 2.9E-06 1.8E-07 2.4E-09 

1 0 0 0 

 

(b) Sub-table 2. 

 

x 

FD2 

Absolute  

Error 

FD4 

Absolute  

Error 

DQM 

Absolute  

Error 

0 0 0 0 

0.166 1.4E-05 4.4E-07 1.8E-09 

0.333 1.5E-05 4.3E-07 1.3E-10 

0.5 1.3E-05 3.9E-07 1.4E-09 

0.666 9.1E-06 3.5E-07 2.5E-09 

0.833 4.6E-06 2.9E-07 3.7E-09 

1 0 0 0 

 

 

Table 4. Comparison of the relative and absolute errors in 

Problem 2 for N=15 . 

(a) Sub-table 1. 

 

x 

FD2 

Relative  

Error 

FD4 

Relative  

Error 

DQM 

Relative  

Error 

0 0 0 0 

0.142 2.3E-06 3.1E-09 1.1E-13 

0.357 2.3E-06 1.8E-09 1.9E-13 

0.5 1.9E-06 1E-09 2.3E-13 

0.642 1.3E-06 2.5E-10 2.6E-13 

0.857 5.4E-07 7.6E-10 2.9E-13 

1 0 0 0 

 

(b) Sub-table 2. 

 

x 

FD2 

Absolute  

Error 

FD4 

Absolute  

Error 

DQM 

Absolute 

 Error 

0 0 0 0 

0.142 3.3E-06 4.4E-09 1.6E-13 

0.357 3.4E-06 2.7E-09 2.8E-13 

0.5 2.8E-06 1.5E-09 3.5E-13 

0.642 2.1E-06 3.9E-10 4.1E-13 

0.857 8.6E-07 1.2E-09 4.6E-13 

1 0 0 0 

 

 

Figure 1. Comparison of relative error in Problem 1 for 

N=7   

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Comparison of relative error in Problem 1 for 

N=30 
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Figure 3. Comparison of relative error in Problem 2 for 

N=7 

 

Figure 4. Comparison of relative error in Problem 2 for 

N=11 

4. Conclusion 

This study has focused on the singular two-point 

BVPs with a linear or non-linear nature through 

different numerical methods.  It has been concluded 

that the DQM is the most accurate one among the 

corresponding methods for this problem. However, the 

FDM and FEM can take opportunity to catch the same 

accuracy for very large number of grid points. 

Note that for higher dimensional problems, the same 

discussion could be an important milestone in 

numerical modeling. In such a probable discussion, 

especially the advantages of the FEM and FDM may 

come out. 
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