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Abstract. In this paper, a class of Nonlinear Programming problem is modeled with gradient based

system of fractional order differential equations in Caputo’s sense. To see the overlap between the

equilibrium point of the fractional order dynamic system and the optimal solution of the NLP problem

in a longer timespan the Multistage Variational teration Method is applied. The comparisons among

the multistage variational iteration method, the variational iteration method and the fourth order

Runge-Kutta method in fractional and integer order show that fractional order model and techniques

can be seen as an effective and reliable tool for finding optimal solutions of Nonlinear Programming

problems.
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1. Introduction

Many problems in modern science and technol-
ogy are commonly encountered with some class
of optimization problems. This is the main rea-
son why optimization is an attractive research
area for many scientists in various disciplines. In
literature most of efficient methods have been de-
veloped for finding the optimal solution of these
problems. A detailed and modern discussion for
these methods can be found in Luenberger and
Sun [1, 2].

Gradient based method is one of these ap-
proaches for solving NLP problems. The main
idea behind the method is to replace optimiza-
tion problem to a system of ordinary differential
equations (ODEs), which is equipped with op-
timality conditions, for getting optimal solutions
of the NLP problem. The gradient based method
was introduced by Arrow and Hurwicz [3], Fi-
acco and Mccormick [4], Yamashita [5] and Bot-
saris [6]. In this sense, the method improved by

Brown and Bartholomew-Biggs [7], Evtushenko
and Zhadan [8] for equality constrained prob-
lems. Schropp [9] and Wang et al. [10] improved
gradient based method for nonlinear constrained
problem using slack variables and Lagrangian for-
mula. Recently, Jin et al. [11,12], Shikhman and

Stein [13] and Özdemir and Evirgen [14] have
considered a gradient based method for optimiza-
tion problems.

The fractional calculus, which is one of the
other important research areas of science, has
been attracting the attention of many researchers
because of its interdisciplinary application and
physical meaning, e.g. [15]. Most of the stud-
ies in this area have mainly focused on develop-
ing analytical and numerical methods for solv-
ing different kind of fractional differential equa-
tions (FDEs) in science. Recently, several meth-
ods have been proposed for this aim and applied
to different areas, e.g. [16–23]. The variational
iteration method (VIM) is one of these methods,
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which was introduced by He [24], and applied
to FDEs [25]. Momani [26, 27], also used VIM
for solving some FDEs both linear and nonlinear.
Only then, multistage technique is adapted to the
VIM for getting the essential behavior of the dif-
ferential equation system for large time t. This
technique was introduced by Batiha et al. [28] for
a class of nonlinear system of ODEs and applied
to delay differential equations by Gökdog̃an [29].
In recent years, a lot of modifications and devel-
opments have been proposed for the variational
iteration method. For example, in calculation of
the Lagrange multiplier [30–32], by using a local
fractional operators [33, 34] and Laplace trans-
form [35].

In this paper, we construct a fractional gradi-
ent based system for solving equality constrained
optimization problem. The proposed system
shows that the steady state solutions x (t) of the
system approximate to the optimal solutions x∗

of optimization problem on a continuous path as
t → ∞. The variational iteration method (VIM)
and multistage technique are used for achieving
the intended results.

The paper is organized as follows. In Sec-
tion 2, some basic theory and results, which will
be useful subsequently in this paper, are dis-
cussed. In Section 3, the MVIM is adapted to
the fractional gradient based system for solv-
ing optimization problem. The applicability and
efficiency of MVIM is illustrated by compari-
son among VIM and fourth order Runge-Kutta
(RK4) method on some test problems, in Sec-
tion 4. And finally the paper is concluded with a
summary in Section 5.

2. Preliminaries

2.1. Optimization problem

Consider the nonlinear programming problem
with equality constraints:

min f (x) s.t. x ∈ X, (ENLP)

where the feasible set is assumed to be non-empty
and is defined by

X = {x ∈ R
n : h (x) = 0} ,

and f : Rn −→ R, h : Rn −→ R
p are C2 func-

tions. The idea of penalty methods is to ap-
proximate a constrained optimization problem by

an unconstrained optimization problem. A well-
known penalty function for the problem (ENLP)
is given by

F (x, η) = f(x) + η
1

γ

p
∑

i=1

(hi(x))
γ (1)

where γ > 0 is a constant and η > 0 is an aux-
iliary penalty variable. It can be shown that the
solutions of the constrained problem (ENLP) are
solutions of of the following unconstrained one,

min F (x, η) s.t. x ∈ R
n. (UP)

under some conditions and when η > 0 is suffi-
ciently large. One of the main results connect-
ing the minimizers of the constrained problem
(ENLP) and unconstrained problem (UP) is as
follows.

Theorem 1. [1, pp.404] Let {xk} be a sequence
generated by the penalty method. Then any limit
point of the sequence is a solution to the con-
strained problem.

2.2. Fractional calculus

Now we will give some definitions and properties
of the fractional calculus [15]. We begin with the
Riemann-Liouville definition of the fractional in-
tegral of order α > 0.

Definition 1 (Riemann-Liouville Fractional In-
tegral). The Riemann-Liouville fractional inte-
gral operator of order α > 0, of a function f (x),
is given as

Iαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1 f(t)dt, x > 0,

where Γ(.) is the well-known Euler’s gamma func-
tion.

Several definitions of a fractional derivative
such as Riemann-Liouville, Caputo, Grünwald-
Letnikov, Weyl, Marchaud and Riesz have been
proposed. In the following section we formulate
the problem in the Caputo sense, which is defined
as:

Definition 2 (Caputo Fractional Derivative).
The fractional derivative of f(x) in the Caputo
sense with m− 1 < α 6 m, m ∈ N, is defined as

cD
α f(x) = Im−αDmf(x)

= 1
Γ(m−α)

∫ x

0 (x− t)m−α−1 f (m)(t)dt, x > 0
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where f (m)(.) is the usual integer m order deriv-
ative of function f .

Note that Riemann-Liouville fractional integral
and Caputo fractional derivative satisfy follow-
ing elementary properties:

Lemma 1. If f(x) ∈ Cm [0,∞) and m − 1 <

α 6 m, m ∈ N, then

IαDαf(x) = f(x)−
m−1
∑

s=0

f (s)(0+)
xs

s!
, x > 0, (2)

and

DαIαf(x) = f(x). (3)

2.3. Variational iteration method

To describe the solution procedure for variational
iteration method (VIM), we consider the follow-
ing general nonlinear differential equation

L (u (t)) +N (u (t)) = g (t) (4)

where L is a linear operator, N is a nonlinear
operator and g (t) is a known analytical func-
tion. According to the He’s variational iteration
method [24,25,36], we can construct a correction
functional for (4) as follows,

ui,k+1 (t) = ui,k (t)

+
∫ t

t0
λ (τ) {L (ui,k (τ)) +N (ũi,k (τ))− g (τ)} dτ,

n > 0,
(5)

where λ is a general Lagrange multiplier, which
can be identified optimally via variational theory,
un is the n−th approximate solution. Here ũn is
considered as a restricted variation which means
δũn = 0. The accuracy of the result fully depends
on the identification of Lagrange multiplier and
initial condition u0. Finally, the exact solution
may be obtained as

ui (t) = lim
k→∞

ui,k (t) .

3. Fractional gradient based system

Consider the NLP problem with equality con-
straints defined by (ENLP). Generally, these
type of problems are usually solved by transform-
ing to the unconstrained optimization problem
(UP). In the next step, some traditional meth-
ods or dynamical system approaches are used to

get optimal solution of the unconstrained opti-
mization problem.

In this article a fractional gradient based dy-
namical system approach is handled for obtain-
ing optimal solutions of (ENLP) by the help of
MVIM. The fractional derivative is described in
the Caputo sense, because the initial conditions
have the same physical meanings according to the
integer order differential equations. The frac-
tional gradient based approach for solving op-
timization problems was introduced by Evirgen
and Özdemir [37, 38]. Recently, Khader et al.
[39–41] used fractional finite difference method
and Chebyshev Collocation Method for solving
system of FDEs, which are generated by opti-
mization problem.

Utilizing the quadratic penalty function (1)
to the equality constrained optimization problem
(ENLP) with γ = 2, the gradient based fractional
dynamical system can be described by the follow-
ing form:

cD
αx (t) = −∇xF (x, η) ,m− 1 < α 6 m

x(s) (0) = x
(s)
0 , 0 6 s 6 m− 1

(6)

where ∇xF (x, η) is the gradient vector of the
quadratic penalty function (1) with respect to
the x ∈ R

n.

Definition 3. A point xe is called an equilibrium
point of (6) if it satisfies the right hand side of
the equation (6).

The gradient based fractional dynamic system
(6) can be simplified for the readers’ convenience
as follows,

cD
αxi (t) = gi (t, η, x1, x2, ..., xn) ,

i = 1, 2, ..., n.
(7)

The stable equilibrium point of the fractional
order system (7) is acquired with the MVIM
algorithm. The MVIM can be described by
some modifications of VIM. To ensure the valid-
ity of the approximations of the VIM for large
t, we need to treat (5) under arbitrary initial
conditions. Therefore, we divide [t0, t) interval
into subinterval of equal length ∆t as [t0, t1) ,
[t1, t2) , ..., [tj−1, tj = t).

The correction functional for the fractional
nonlinear differential equations system (7) ac-
cording to the MVIM can be approximately con-
structed as
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xi,k+1 (t) = xi,k (t)

+
∫ t

t∗
λi (τ) (cD

αxi,k (τ)− gi (x̃1,k (τ) , ..., x̃n,k (τ))) dτ
(8)

where t∗ is the left end point of each subinterval,
λi, i = 1, 2, ..., n are general Lagrange multiplier,
which can be identified optimally via variational
theory, and x̃1, x̃2, ..., x̃n denote restricted varia-
tions that δx̃i = 0.

Taking variation with respect to the indepen-
dent variable xi, i = 1, 2, ..., n with δxi (t

∗) = 0,

δxi,k+1 (t) = δxi,k (t)

+δ
∫ t

t∗
λi (τ) (cD

αxi,k (τ)− gi (x̃1,k (τ) , ..., x̃n,k (τ))) dτ

and consequently we get following stationary con-
ditions:

λ′
i (τ) |τ=t = 0,

1 + λi (τ) |τ=t = 0, i = 1, 2, ..., n.

Therefore, the Lagrange multipliers can be
easily identified as

λi = −1, i = 1, 2, ..., n. (9)

Substituting Lagrange multipliers (9) into the
correctional functional (8), we acquire the follow-
ing MVIM formula

xi,k+1 (t) = xi,k (t)

−
∫ t

t∗
(cD

αxi,k (τ)− gi (x̃1,k (τ) , ..., x̃n,k (τ))) dτ,
(10)

for i = 1, 2, ..., n. If we begin with ini-
tial conditions xi,0 (t

∗) = xi,0 (t0) = xi (0),
the iteration formula of the multistage VIM
(10) can be carried out in every subinterval of
equal length ∆t, and so all solutions xi,k (t) ,
(i = 1, 2, ..., n; k = 1, 2, ...) are completely deter-
mined.

4. Numerical implementation

To illustrate the effectiveness of the MVIM ac-
cording to the VIM and fourth order Runge-
Kutta (RK4) method, some test problems are
borrowed from Hock and Schittkowski [42, 43].

Example 1. Consider the following nonlinear
programming problem [43, Problem No: 216],

minimize f(x) = 100
(

x21 − x2
)2

+ (x1 − 1)2 ,

subject to h(x) = x1 (x1 − 4)− 2x2 + 12 = 0.
(11)

Firstly, we convert it to an unconstrained opti-
mization problem with quadratic penalty function
(1) for γ = 2, then we have

F (x, η) = 100
(

x21 − x2
)2

+ (x1 − 1)2

+1
2η (x1 (x1 − 4)− 2x2 + 12)2 ,

where η ∈ R
+, η → ∞ is an auxiliary penalty

variable. The corresponding nonlinear system of
FDEs from (6) is defined as

cD
αx1(t) = −400(x21 − x2)x1 − 2(x1 − 1)

− η(2x1 − 4)(x21 − 4x1 − 2x2 + 12),

cD
αx2(t) = 200(x21 − x2)

+ 2η(x21 − 4x1 − 2x2 + 12),

x1(0) = 0, x2(0) = 0,







































(12)

where 0 < α 6 1. By using the MVIM with
auxiliary penalty variable η = 800, step size
∆T = 0.00001 and Lagrange multipliers λi = −1;
the terms of the MVIM solutions for fractional
order are acquired by

xi,k+1 (t) = xi,k (t)

−
∫ t

t∗

(

cD
αxi,k (τ)− gi (x̃1,k (τ) , ..., x̃n,k (τ))

)

dτ,

for i = 1, 2. In the Figure 1 and Table 1, we
clearly see that the fractional MVIM approach the
optimal solutions of optimization problem (11)
faster than the other methods. Furthermore,
MVIM requires only one iteration to reach the
optimal solutions for fractional dynamical sys-
tem. Contrary to this, MVIM for integer order
dynamical system requires two iterations.

Example 2. Consider the nonlinear program-
ming problem [42, Problem No: 79],

minimize f(x) = (x1 − 1)2 + (x1 − x2)
2

+ (x2 − x3)
2 + (x3 − x4)

4 + (x4 − x5)
4 ,

subject to

h1 (x) = x1 + x22 + x33 − 2− 3
√
2 = 0,

h2 (x) = x2 − x23 + x4 + 2− 2
√
2 = 0,

h3 (x) = x1x5 − 2 = 0.
(13)
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This is a practical problem whose exact solu-
tion is not known, but the expected optimal so-
lution is x∗1 = 1.191127, x∗2 = 1.362603, x∗3 =
1.472818, x∗4 = 1.635017, x∗5 = 1.679081. Fol-
lowing the discussion in Section 3, again we set
the quadratic penalty function (1) according to
the NLP problem (13)

F (x, c) = f (x) + 1
2η

∑5
i=1 (hi (x))

2

= (x1 − 1)2 + (x1 − x2)
2 + (x2 − x3)

2

+ (x3 − x4)
4 + (x4 − x5)

4

+ 1
2η

(

x1 + x22 + x33 − 2− 3
√
2
)2

+ 1
2η

(

x2 − x23 + x4 + 2− 2
√
2
)2

+ 1
2η (x1x5 − 2)2 ,

where η ∈ R
+ and η → ∞. The corresponding

nonlinear system of FDEs can be obtained by way
of (6) as follows,

cD
αxi(t) = ∇xi

f(x) + η
∑5

i=1∇xi
h(x)hi (x) ,

xi(0) = 2, i = 1, 2, 3, 4, 5,

}

(14)

where 0 < α 6 1 is order of fractional de-
rivative. Finally, the MVIM algorithm (10) is
adapted to the fractional dynamical system (14)
with auxiliary penalty variable η = 600, step size
∆T = 0.00001 and Lagrange multipliers λi = −1,
i = 1, 2, 3, 4, 5. Tables 2-5 show the approximate
solutions for optimization problem (13) obtained
by different values of α by using methods VIM,
MVIM and RK4. The MVIM for the dynam-
ical system of integer and non-integer order is
obtained very close solutions to the expected ap-
proximate solutions. Again, it should be noted
that the MVIM for fractional order system is used
by one iteration to reach optimal solutions.

Example 3. Consider the nonlinear program-
ming problem [43, Problem No: 320],

minimize f(x) = (x1 − 20)2 + (x2 + 20)2 ,

subject to h (x) =
x21
100

+
x22
4

− 1 = 0.

(15)

This is a practical problem and the exact so-
lution is not known, but the expected optimal so-
lution is x∗1 = 9.395, x∗2 = −0.6846. Firstly, the
quadratic penalty function (1) is used to get un-
constrained optimization problem as follows

F (x, η) = (x1 − 20)2 + (x2 + 20)2

+ 1
2η

(

x21
100

+
x22
4

− 1

)2

,

where η ∈ R
+ and η → ∞ and so that the non-

linear system of FDEs can be given by

cD
αx1(t) = 2x1 − 40

+ η
(

1
5000x

3
1 +

1
200x1x

2
2 − 1

50x1
)

,

cD
αx2(t) = 2x2 + 40

+ η
(

1
200x2x

2
1 +

1
8x

3
2 − 1

2x2
)

,

x1(0) = 0, x2(0) = 0.







































(16)

where 0 < α 6 1 is order of fractional deriva-
tive. The optimal solutions of problem (15) are
achieved by using the MVIM iteration formula
(10) with auxiliary penalty variable η = 106, step
size ∆T = 0.5 × 10−6 and Lagrange multipliers
λi = −1, i = 1, 2. As we see in the previous ex-
amples, the approximate solutions in Table 6 ob-
viously show that the MVIM for fractional order
system is more effective than the other methods
with low iteration calculation.

5. Conclusions

The main goal of this work is to create a bridge
between two attractive research areas, which are
optimization and fractional calculus. In this
sense, the intersection point is composed through
the instrument of fractional order differential
equations (FDEs) system. The system of FDEs
is become appropriate to solve the underlying op-
timization problem by means of optimality con-
ditions.

Furthermore, the variational iteration method
(VIM) and multistage strategy are successfully
composed to obtain the essential behavior of the
system of FDEs, which is generated by nonlin-
ear programming (NLP) problems. The numeri-
cal comparisons among the fourth order Runge-
Kutta (RK4), the MVIM (α = 1 and α = 0.9)
and VIM (α = 0.9) verifies the efficiency of the
MVIM as a promising tool for solving NLP prob-
lems.

The MVIM yields a very rapid convergent se-
ries solution according to the VIM and RK4, and
usually a few iterations lead to accurate approxi-
mation of the exact solution. Also, the numerical
comparisons show that the fractional order gra-
dient based system is more suitable and stable
than the integer order dynamical system to get
optimal solutions of NLP problems.
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Figure 1. Comparison of x(t) for problem (11). Dash: VIM(∆T = 0.00001) for α = 0.9,
Dashdot: MVIM(∆T = 0.00001) for α = 0.9, Solidline: MVIM(∆T = 0.00001) for α = 1, ©:
RK4(∆T = 0.00001) for α = 1

Table 1. Comparison of x(t) for problem (11) between VIM and MVIM with RK4 solutions
for different value of α.

VIM (α = 0.9) MVIM (α = 0.9) MVIM (α = 1) RK4 (α = 1)
t x1(t) x2(t) x1(t) x2(t) x1(t) x2(t) x1(t) x2(t)

0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.001 −574009.98 8464.21 1.9991 3.9996 1.9360 3.8628 1.9338 3.8549
0.002 −0.72E + 7 57043.72 1.9993 3.9998 1.9921 3.9922 1.9916 3.9915
0.003 −0.31E + 8 172707.57 1.9993 3.9998 1.9987 3.9992 1.9986 3.9992
0.004 −0.90E + 8 378083.92 1.9993 3.9998 1.9992 3.9998 1.9992 3.9997
0.005 −0.20E + 9 693522.64 1.9993 3.9998 1.9993 3.9998 1.9993 3.9998

Table 2. The value of x(t) for problem (13) obtained from VIM (α = 0.9).

VIM (α = 0.9)
t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000 2.000000 2.000000 2.000000 2.000000 2.000000
1.000 −7334.9372 −18838.9751 −60138.6394 518.8163 −2493.4099
2.000 −13689.2090 −35156.5027 −112224.4015 966.4133 −4654.5995
3.000 −19718.7730 −50640.1930 −161648.5441 1391.1378 −6705.3508
4.000 −25546.6995 −65606.0859 −209419.8703 1801.6589 −8687.5220
5.000 −31229.1380 −80198.3714 −255998.6368 2201.9318 −10620.2104
6.000 −36798.2638 −94499.6738 −301648.5816 2594.2228 −12514.3593

Table 3. The value of x(t) for problem (13) obtained from MVIM (α = 0.9).

MVIM (α = 0.9)
t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000 2.000000 2.000000 2.000000 2.000000 2.000000
1.000 1.222306 1.390861 1.455863 1.557010 1.636218
2.000 1.194457 1.365383 1.471128 1.627228 1.674395
3.000 1.191455 1.362867 1.472646 1.634220 1.678618
4.000 1.191154 1.362620 1.472796 1.634908 1.679042
5.000 1.191125 1.362596 1.472811 1.634976 1.679084
6.000 1.191122 1.362593 1.472812 1.634983 1.679088
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Table 4. The value of x(t) for problem (13) obtained from MVIM (α = 1).

MVIM (α = 1)
t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000 2.000000 2.000000 2.000000 2.000000 2.000000
1.000 1.204109 1.351636 1.475385 1.653569 1.660933
2.000 1.192243 1.360691 1.473436 1.638730 1.677503
3.000 1.190989 1.362112 1.473034 1.636119 1.679274
4.000 1.190965 1.362415 1.472911 1.635451 1.679308
5.000 1.191032 1.362513 1.472860 1.635202 1.679214
6.000 1.191076 1.362554 1.472836 1.635090 1.679153

Table 5. The value of x(t) for problem (13) obtained from RK4 (α = 1).

RK4 (α = 1)
t x1(t) x2(t) x3(t) x4(t) x5(t)

0.000 2.000000 2.000000 2.000000 2.000000 2.000000
1.000 1.201627 1.349464 1.476662 1.659517 1.664366
2.000 1.191021 1.359663 1.474053 1.641579 1.679226
3.000 1.190381 1.361610 1.473337 1.637515 1.680133
4.000 1.190664 1.362168 1.473060 1.636139 1.679733
5.000 1.190884 1.362391 1.472934 1.635542 1.679424
6.000 1.191002 1.362494 1.472872 1.635258 1.679256

Table 6. Comparison of x(t) for problem (15) between VIM and MVIM with RK4 solutions
for different value of α.

VIM (α = 0.9) MVIM (α = 0.9) MVIM (α = 1) RK4 (α = 1)
t x1(t) x2(t) x1(t) x2(t) x1(t) x2(t) x1(t) x2(t)

0.000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000
0.050 −23349.61 748.5017 7.937 −1.2166 1.868 −1.9647 1.868 −1.9647
0.100 −410.851.52 6494.9196 9.314 −0.7281 3.491 −1.8741 3.491 −1.8741
0.150 −0.21E + 07 22548.2227 9.394 −0.6857 4.889 −1.7446 4.889 −1.7446
0.200 −0.69E + 07 54217.3799 9.396 −0.6846 6.076 −1.5884 6.076 −1.5884
0.250 −0.17E + 08 106811.3600 9.396 −0.6846 7.062 −1.4160 7.062 −1.4160
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[37] Evirgen, F. and Özdemir, N., Multistage
Adomain decomposition method for solving
NLP problems over a nonlinear fractional dy-
namical system. J. Comput. Nonlinear Dyn.,
6, 021003 (2011).
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