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Abstract. In this study, we consider field hospital location decisions for emergency treatment points 

in response to large scale disasters. Specifically, we developed a two-stage stochastic model that 

determines the number and locations of field hospitals and the allocation of injured victims to these 

field hospitals. Our model considers the locations as well as the failings of the existing public 

hospitals while deciding on the location of field hospitals that are anticipated to be opened. The model 

that we developed is a variant of the P-median location model and it integrates capacity restrictions 

both on field hospitals that are planned to be opened and the disruptions that occur in existing public 

hospitals. We conducted experiments to demonstrate how the proposed model can be utilized in 

practice in a real life problem case scenario. Results show the effects of the failings of existing 

hospitals, the level of failure probability and the capacity of projected field hospitals to deal with the 

assessment of any given emergency treatment system’s performance. Crucially, it also specifically 

provides an assessment on the average distance within which a victim needs to be transferred in order 

to be treated properly and then from this assessment, the proportion of total satisfied demand is then 

calculated. 
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1. Introduction 

Disasters have always been parts of human life 

and continued to be a steady increase in the 

number and severity of natural disasters in recent 

years ([1-2]). Disaster can be defined as any 

expected or unexpected incident that causes 

catastrophic injuries to humans’ life, or damage 

to the economy and environment. Past case 

studies relating to this specific area have shown 

that effective and well-organized preparation 

helps in decreasing the catastrophic effect of 

disasters [3]. Disasters can be natural (such as 

earthquakes, floods, tsunamis, storms or 

hurricanes) or man-made (such as terrorist 

attacks, industrial accidents, or war) ([3-5]). Both 

types of disasters can cause major economic loss

 

and human fatalities. A recent earthquake 

occurred on April 2015 in Nepal (with 7.9 

magnitude) and caused about 9,000 fatalities. 

Another example of such a disaster occurred in 

2011 with 9.0 magnitude earthquake and tsunami 

in Japan, which caused around 19,000   fatalities 

and huge economic loss [6].  The earthquake that 

hit Haiti in January 2010 caused an estimated 

230,000 deaths and 250,000 injuries [7].  Another 

tsunami occurred in the Indian Ocean on 

December 26th, 2004, which had a 9.0 magnitude 

which  left in its wake a total of 229,866 people 

lost: 186,983 officially identified as dead and 

another 42,883 missing [3]. In relation to man-

made disasters, a terrorist attack occurred on 

September 11, 2001 when terrorists attacked the 

World Trade Centre in New York, which caused
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 the death of 2,750 people and another 2,260 

injures. The economic loss suffered as a result of 

these disasters amounted to trillions of dollars. 

Economic damage is recoverable while fatalities 

are not. Therefore, locating the injured people 

and moving them to the nearest emergency 

service/hospital for timely treatment is a vital 

process. Under a disaster scenario it is critical to 

have available and well-functioning hospitals 

close to areas where injured people are most 

densely located. 

Even though we cannot forecast a disaster with 

significant certainty, emergency preparedness is 

crucial to eliminate or at least minimize potential 

fatalities ([3], [8]). Succeeding a disaster, 

hospitals can expect a sudden increase of injured 

victims which can easily overwhelm and crush a 

hospitals capacity. One way to be prepared for 

disasters, such as a bio-terrorist attack or an 

epidemic, is to have excess capacity as 

mentioned in [9] and [10]. Since the time and 

severity of disasters cannot be anticipated, the 

number of the injured victims is uncertain as 

highlighted in the author’s research study in [12]. 

The number of injured victims is not the only 

uncertainty in a disaster. In addition to this, it is 

uncertain how much disruption will be 

experienced in hospitals. Therefore, in order to be 

fully prepared, taking these two uncertainties into 

account is vital for emergency management 

systems. Current literature considers the 

uncertainty in the number of injuries and the 

uncertainty regarding the disruption of hospitals. 

However, there is still lack of studies that 

considers both uncertainties at the same. 

Therefore, in this study we consider the 

disruption of hospitals to assist emergency 

management systems managers. 

Despite the importance of field hospitals in 

mitigating the effects of disasters, there has been 

a lack of research in the area even there are some 

valuable studies in the related field ([2] , [5], [7], 

[12-18])  and some other analysis on capacity 

planning of hospitals for disaster preparedness 

([3], [19-20]). In this paper, we want to separate 

and distinguish the general humanitarian relief 

chain from planning field hospitals because 

medical supplies and treatment are more 

important than other supplies, especially during 

the first 72 hours after a disaster occurs. This new 

area of research provided us with the requisite 

motivation to seek to determine the optimum 

number and location for these field hospitals in 

Zeytinburnu/Istanbul. We aimed to achieve the 

following objectives: 

• To determine the optimal number of field 

hospitals in Zeytinburnu/Istanbul to satisfy all 

demand (injured disaster victims) whilst 

considering existing hospitals and their 

capacities. 

• To determine the optimal locations of field 

hospitals in order to treat injured people on time. 

• Optimal allocation of the demand to the 

hospitals (both to public hospitals and field 

hospitals).  

This work focuses on developing and analyzing a 

model for field hospitals’ locations and capacity 

allocation for regions subject to large-scale 

disasters. While achieving these objectives, we 

took the failure (disruption) of the existing public 

hospitals into account. A scenario based two-

stage stochastic mathematical model was 

developed and the results were thereafter 

presented. 

The paper is organized as follows: Section 2 

reviews the relevant literature relating to the field 

hospitals, disaster relief chain and scenario based 

stochastic programs. Section 3 presents the 

stochastic P-median mathematical model. Section 

4 describes the presented model and results. 

Analyses are also presented in Section 4. The 

final section includes conclusions and directions 

for future researches.   

2. Literature review 

Disaster literature is somewhat limited when 

compared with other fields of Operations 

Research. Nevertheless, the number of studies on 

disaster has increased in recent years. Altay and 

Green [21] identified 77 articles that have been 

published in OR/MS related journals out of a 109 

disaster management studies. They stated that 

40% of these 109 articles were published 

between 1990 and 2000, while the remaining 

articles were published after 2000 [22]. It could 

be argued, therefore, that more studies need to be 

done in these topic areas. As in our study, 

research studies were usually undertaken in some 

specific disaster regions that have suffered from 

some type of disaster.  

In this literature review section, we analyze 

facility location problems that are related to 

disasters. Firstly, we review the logistical 

problems related to emergency response and 

disaster management operations. Later we set out 

a brief analyze of past studies on facility location 

literature that have touched on areas of research 

in common with our own proposed model. 

Wright et al. [23] published a survey study on 

models and applications in homeland security. 



A stochastic mathematical model to locate field hospitals under disruption uncertainty…              87 

Their analyses were on emergency preparedness 

and response, border security, port security, cyber 

security, and critical infrastructure protection. 

They proposed location and allocation evacuation 

models and disaster and response to natural 

disasters. They also highlighted the apparent lack 

of research into the whole area of disaster and 

response. Dekle et al. [24] developed a two-stage 

model to locate potential disaster recovery 

centers in the city of Florida. In the first stage of 

their study, a fixed, total disaster and response 

coverage area was assessed and determined (ie a 

‘set covering’ problem is solved). They 

determined the requisite, optimal locations for the 

future facilities. The coverage of each disaster 

recovery center was assessed as being within a 

distance of 20 miles in the first stage. 

Subsequently, in the second stage, the initial “20 

mile” constraints were then relaxed and new 

locations closest to the original optimal locations 

were determined and evaluated based on the 

combined evaluation criteria. 

Facility location problem models for medical 

services relating to large scale disasters such as 

earthquakes, terrorist attacks, etc. were proposed 

by [25]. In their study, they reviewed three types 

of location models: p-median (PMP), p-center 

(PCP) and set covering (SC), for emergency 

services. A common formulation was proposed to 

generalize these three models. In this generalized 

formulation they presented scenarios and service 

level requirements. It was determined that each 

demand point would probably have a different 

service level requirement under any given 

scenario. Therefore the service level was 

calculated and determined by the number and 

condition of the facilities that served the demand 

point i.e. the higher the number of facilities and 

the better the facility conditions there were then 

the higher the service level one could attract. 

These two ideas are usually presented in disaster 

management studies. Balcik and Beamon [1] also 

proposed a scenario-based model with service 

levels in a humanitarian relief chain. In this 

study, they determined the number and the 

optimal location of the facilities and the amount 

of supplies stocked at each distribution centers. 

Their model considered multi commodity types, 

suppliers with capacity restrictions and a single 

demand point. Each commodity has a different 

weight, which shows the critical level of the 

commodity. Then the total expected demand was 

maximized by the located distribution centers. 

They showed the effects of budgetary constraints 

for both pre and post disaster relief funding 

separately arising out of the performance of the 

system. In another study, [26] proposed a facility 

location model for locating emergency response 

and distribution centers for the expected 

earthquake in Istanbul. The model they proposed, 

which is a two-stage stochastic programming 

problem, consists of five objectives: the average 

risk of each distribution center, the cost of 

opening a new distribution center, the maximum 

service time for each supply, the total response 

time and the expected unmet demand. They 

identified multiple criteria along with the priority 

level of each objective. A goal programming 

method was used to solve the proposed problem. 

A multi-objective programming methodology for 

designing relief distribution system was 

suggested by [27]. Three objectives were 

featured: minimizing the total cost, minimizing 

travel time and maximizing the minimal 

satisfaction. Unlike other studies in the literature, 

they recommended locating temporary stocking 

centers due to permanent storage centers 

tendency to be fully capacitated. To assist with 

implementing this approach, fuzzy multi-

objective linear programming was used. It is 

different than other studies in terms of the level 

of the problem it analyzes. In other words, their 

model is more at operational level.  

Unmet daily emergency problems have led in the 

past to frequent criticism of disaster management 

models. A PMP on locating fire stations in 

Barcelona was studied by [28]. A scenario 

dependent demand and travel time model was 

developed in this study. The model was 

constructed considering uncertain parameters i.e. 

uncertain demand and travel time. Two 

objectives were sought, namely: the minimization 

of the maximum travel time per population and 

maximum regret. The regret was calculated by 

assessing the difference between optimal travel 

time and the realized average travel time. 

Barbarosoglu and Arda [29] proposed a two-

stage stochastic programming model with 

uncertain demand on transportation planning for 

Istanbul in the event of an expected earthquake.  

Supply and arc capacities were assumed to be 

random. The location and the allocation decisions 

were respectively made in the first and second 

stages.  

One way to measure the effectiveness of a 

facility location is to determine the average 

distance travelled [30] and one should make 

reference using this method to the PMP [31]. 

Assuming that locations become unreliable when 

the distance to a demand point increases then this 
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is another method to model the effect of distance 

as modeled in [32]. Injured victims have different 

level of survivability defendant upon their 

injuries. Therefore it essentially follows that the 

transfer of injured victims to hospital locations 

should be prioritized based on the survivability 

times [15]. A study has been done on such 

prioritizing in [33].   

However, essential measures in disaster are not 

only to minimize the distance travelled but also 

to maximize the survivability competence of the 

hospital that the patients are transferred to. Our 

study as far as we are aware uniquely considers 

both issues. Since existing public and field 

hospitals can be count as a facility, we also 

considered the facility location literature in our 

study as well.  For the most part, the facility 

location literature assumes that the facilities 

function is always at a full capacity. This 

assumption is not realistic for disaster studies 

whilst recognizing that it is reasonable to make 

such an assumption for many other different 

scenarios. There have been various studies in the 

field of reliable facility location [34].  

Next, we review some reliable facility location 

problem studies that are not necessarily related to 

disasters but instead are related to our studies in 

terms of failure/disruption of existing facilities. 

Facility location decisions are one of the main 

strategic supply chain decisions and should 

require noteworthy investment planning spanning 

over long- term planning horizons, e.g., ranging 

from 2 to 8 years depending on the business. 

Given the period of the planning horizon and the 

level of uncertainty in today’s business world, the 

supply chain designers are now obligated to make 

an allowance for forestalling and for the planning 

of uncertain future events in their network 

design. A significant category of these supply 

chain uncertainties is the disruption/failure of 

facilities which affect the supply chain’s 

capability to efficiently fulfill demand [35]. As 

mentioned earlier, these disruptions/failures can 

be either natural disasters or man-made (such as 

terrorist attacks, earthquakes etc.). In many cases, 

the disruption of a region may spread or migrate 

through the network and affect other fragments of 

the supply chain network [36].  

Following a disruptive event, there is barely any 

recourse of action available to modify the supply 

chain infrastructure quickly [37]. As an 

alternative, a common recourse of action is to 

reallocate demand to other existing facilities or 

organize substitute sources of supply. In both 

cases, the cost of satisfying customer demand 

increases e.g., due to higher transportation costs. 

Over the past decade, consideration of such 

disruptions disturbing the supply chain network 

design has received substantial attention from 

both academics and practitioners.  

An exemplary early research in this area can be 

found in [38]. Authors developed a reliability 

based formulation called Un-capacitated Facility 

Location Problem (UFLP) and the PMP. Later, 

Shen et al. [39] studied a variant of reliable 

UFLP model and proposed and applied efficient 

approximation algorithms to URFLP by using the 

special substructure of the problem. Nonetheless 

these approximations cannot be employed to the 

general class of facility location problems such as 

Capacitated Reliable Facility Location Problems 

(CRFLP). 

In practice, capacity decisions are considered 

together with location decisions. Further, the 

capacity of facilities usually cannot be modified 

right after the event of a disruption. Following a 

facility failure, demands can be reassigned to 

other facilities only if these facilities have enough 

available capacity. Therefore CRFLPs are more 

complex than their un-capacitated counterparts 

[39] and the studies considering CRFLPs are 

limited. Snyder and Ülker [40] studied the 

CRFLP and developed an algorithm based on 

Sample Average Approximation (SAA) 

embedded with Lagrangean relaxation. Gade [41] 

employed the SAA method in combination with a 

dual decomposition method to solve CRFLP. 

Later, Aydin and Murat [34] applied Particle 

Swarm Optimization (PSO) based SAA to solve 

the same type of CRFLP faster. 

3. Problem statement and methodology 

As stated in the JICA report [42] Istanbul expects 

an earthquake in the near future. JICA provided 

four scenarios for the earthquake. In all four 

scenarios the magnitude that will most probably 

occur will be near to or over 7.0 on the Richter 

scale. An earthquake with this Richter scale 

recording will cause a huge number of deaths and 

injuries to people. This can be assessed from 

earlier earthquakes. For examples studies in ([3-

4], [6-7]) provide valuable analyzes on 

earthquakes. Succeeding a disaster, a hospital 

emergency room might expect a rapid flow of 

injured people that can certainly crush hospital 

capacities [3], because treatment centers and 

hospitals are the very first places that injured 

people will run to after a disaster.  

From now on in this study, we will refer to 

people who need medical treatment after a 
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disaster as ‘victims’. 

The capacity of hospitals should, essentially, be 

sufficient to treat all injured victims. Also the 

distance of these hospitals to demand points is of 

equal importance. In our study, we determined 

the optimal number and location of field hospitals 

in a district of Istanbul-Zeytinburnu to minimize 

the distance that victims needed to travel. 

Zeytinburnu is thought to be one of the most 

risky earthquake places to live according to the 

[42]. There are six existing hospitals available in 

Zeytinburnu. Two of them are public hospitals 

while the others are privately owned. Besides 

these hospitals,   possible locations were 

identified as suitable locate field hospitals in the 

event of a disaster. All these locations are public 

schools. Using the schools as distribution or 

emergency centers (field hospitals) was proposed 

in the [22] and [42]. Also the public schools were 

considered as possible locations for relief centers 

[43]. The Report also highlighted that it would 

not be useful to found a large number of facilities 

that stayed idle until a disaster occurs. Instead, 

the report concluded that it would be more 

effective to operate the existing public schools 

following a disaster. Thinking along the same 

lines we proposed to set up field hospitals once 

the disaster had occurred, in our simulated 

earthquake disaster, in the same way as the report 

suggested. Not that, in this study, we aim to 

determine the locations of field hospitals 

considering the disruption of field hospitals and 

not embedding the set up time of field hospitals, 

which is suggested as a future work. 

The field hospitals would thus serve as 

temporarily located hospitals-field hospitals 

following a disaster. The main assumption in this 

study is that the existing hospitals may be 

disrupted. In our study scenario we assessed that 

this could happen in many ways, such as by the 

disruption of fallen buildings or damaged roads. 

We also considered that the hospitals (both 

existing and field hospitals) would be 

capacitated. Furthermore, we made an 

assumption that the hospitals would be identical 

in terms of services carried out within the 

hospitals. Here, we want to highlight another 

future work, which is restricting the assumption 

and considering the different capabilities of 

hospitals. Lastly, we assumed that the field 

hospitals would survive after the earthquake 

because these field hospitals are planned to be set 

up following a disaster and are selected among 

the schools that are resistant to the earthquakes. 

3.1. Data collection 

The data we used in this study was gathered from 

the websites of the Ministry of Health of Turkey 

[44], the Ministry of National Education of 

Turkey [45], the Municipality of 

Zeytinburnu/Istanbul [46] and the [42]. The JICA 

report provides analyzes for the disaster 

mitigation study which was compiled at the 

direction of and under the supervision of the 

IMM (Istanbul Metropolitan Municipality) and 

the JICA. Four possible earthquake scenarios in 

Istanbul were presented in the JICA, i.e. Model 

A, Model B, Model C and Model D. In the 

report, the number of victims, buildings and 

infrastructure damage estimates were provided 

for each district of Istanbul in Model A and 

Model C. Model A was identified as the most 

probable scenario with a magnitude of   reading 

provided for on the Richter scale and Model C 

was reported as the worst-case scenario and was 

given a magnitude   reading. The fault segment 

for these two models can be seen in Figure 1 (a) 

and (b). Each figure shows the entire fault line 

and the portion of the fault line estimated to be 

broken for the corresponding scenario. 

The JICA [42] also reported that Model A was 

about   km long. This segment starts from the 

west of the Izmit, where an earthquake occurred 

in 1999, and ends in Silivri. Model C assumes a 

simultaneous break of the entire   km section of 

the NAF (North Anatolian Fault) in the Marmara 

Sea.  In this study, we analyzed these two 

scenarios, separately.  

As reported in the JICA [42], there are six 

existing hospitals and 35 public schools in 

Zeytinburnu. Each school is considered as a 

potential location for field hospitals. Coordinates 

of hospitals and schools were gained from google 

maps [47]. Figure 2 shows the existing hospitals 

and the potential school locations on the 

Zeytinburnu district’s map. On the map, existing 

hospitals’ locations were shown with “H” and 

public schools’ locations were shown with 

circles. Lastly, the triangles represent demand 

points. Demand points were selected as the center 

of each neighborhood; these are commonly 

referred to as “mahalles” in Turkish. 

The district based expected number of injured 

victims are provided as an estimate in JICA [42]. 

In variance to the JICA [42] and in order to 

represent the distribution of demand more 

accurately we used the neighborhoods as the 

demand points. We identified each 

neighborhood’s location with a single (x,y)



90                                                   N. Aydin, / Vol.6, No.2, pp.85-102 (2016) © IJOCTA 

Figure 2. Locations of existing hospitals, public schools and demand 

points.[46] 
 

  
Figure 1 (a). Fault segment for Model A [42] 

 

coordinate. There are   neighborhoods in the 

Zeytinburnu, and the center of each 

neighborhood was considered as the demand 

point. 

Then, we calculated the 

expected total number of 

injured victims for each 

demand point via the 

production of population 

census of each specified 

neighborhood and the 

expected percentage of 

injuries, which is provided 

in the JICA [42]. When we 

obtained the numbers we 

rounded them up to the 

nearest integer. The 

population of each 

neighborhood was gained 

from the Turkish Statistical 

Institute [48].  The JICA 

[42] assumed that 2.80% of 

the Zeytinburnu’s 

population would be 

heavily injured if Model A 

scenario occurs and 3.10 % 

of the population would be 

heavily injured if Model C 

scenario occurs. For 

instance, the population of 

Bestelsiz neighborhood was 

26,524. Consequently, the 

number of heavily injured 

victims in Bestelsiz was 

calculated as follows: 

26,524x0.028= 742.672 ≈ 

742. It was assumed in the 

JICA [42] that the expected 

total number of injured 

victims would be three times as the number of 

heavily injured victims. Therefore the expected 

total number of victims in Bestelsiz would be 

2,228. Lastly, the distance between the two (x,y)  

 
Figure 1 (b). Fault segment for Model C [42] 

 

coordinates was calculated by using the 

Euclidean distance formula. 

3.2. Stochastic p-median model 

We now introduce the following notation which 

we use throughout the rest of this paper: D   

denotes the set of demand points (i.e. effected 

areas in neighborhoods) and H denotes the set of
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school locations (possible field hospital 

locations). We let 𝑑𝑗 be the demand at 

neighborhood 𝑗 ∈ 𝐷, and we let 𝑓𝑖𝑗 denote the 

distance between the existing or field hospital 𝑖 
and demand point 𝑗. We also let 𝐻𝐸 denote the 

set of existing hospitals and 𝐻𝐹 denote the set of 

field hospitals. It was clear that the set of 

hospitals was 𝐻𝐸 ∪ 𝐻𝐹 = 𝐻. Each hospital 𝑖 had 

a limited capacity and could serve at most, 𝑐𝑖 

victims. Existing hospitals may have failed 

during a disaster and may not have been available  

after the event.  

Therefore, victims could not be treated by any of 

the hospitals when all the other existing hospitals 

failed, there would not be sufficient capacity at 

the field hospitals and/or victim treatment at 

other available hospitals would be prohibited. In 

such cases, the victim would be assigned to the 

hospitals in other districts and a large penalty, in 

terms of distance, would occur. Assigning 

victims to the hospitals in the other districts could 

be seen as representing a transportation of 

victims to hospitals that are not within range. For 

simplicity, we denoted the last location in 𝐻𝐹 as a 

hospital which was located out of the specified 

district. Then, 𝑓|𝐻𝐹|𝑗 denoted the distance 

between demand point 𝑗 and the hospital which 

was located out of the district. We let 𝑄 denoted 

the number of hospitals that were allowed to be 

opened (including existing hospitals, 𝑄 ≥ |𝐻𝐸|). 
This constraint is added to help decision makers 

consider their budget while deciding to open field 

hospitals. This constraint easily can be removed 

is budget is not an issue for decision makers. 

We formulated the problem as a stochastic P-

median model. In the first stage, the location 

decisions for field hospitals were made before 

random failures of the existing hospitals had 

occurred (before the event-earthquake occurs). In 

the second stage, following the existing hospital 

failures, the victim-hospital assignment decisions 

were made for each victim on the basis that the 

existing hospitals had survived or that field 

hospital were located. The goal was to identify 

the set of field hospitals to be opened while 

minimizing the maximum service distance for all 

the demand points. The service distance for a 

demand point 𝑗 was defined as the distances from 

demand point 𝑗 to its nearest ℎ𝑖 hospitals.  

In the scenario based formulation of the P-

median problem, we let 𝑠 denote a failure 

scenario and a set of all failure scenarios we 

denoted as being 𝑆, where 𝑠 ∈ 𝑆. We let 𝑝𝑠 be the 

probability when a scenario s occurred and we let 

∑ 𝑝𝑠 = 1𝑠∈𝑆 . Further we let 𝑘𝑖
𝑠 denote whether 

the hospital 𝑖 survived (i.e., 𝑘𝑖
𝑠 = 1, and 𝑘𝑖

𝑠 = 0 

otherwise). For instance, in the case of 

independent hospital failures, we had |𝑆| = 2|𝐻𝐸| 

possible failure scenarios for |𝐻𝐸| hospitals. Note 

that our proposed methodology did not require 

any assumption on independence and distribution 

for each hospital’s failure. Please note that the 

field hospitals and the hospital that were out of 

district were perfectly reliable, as 

abovementioned in detailed. 

The binary decision variable 𝑦𝑖 specified whether 

the hospital 𝑖 was opened or not. Note that 𝑦𝑖 = 1 

where 𝑖 ∈ 𝐻𝐹. Integer variable 𝑥𝑖𝑗
𝑠  specified the 

number of victims that were at demand point 𝑗 

and assigned to hospital 𝑖 in scenario 𝑠. We noted 

that while the single sourcing assumption was a 

favored method in practice, it was not restricting 

for the proposed model.  

The scenario-based formulation of two stage 

stochastic P-median model is as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑝𝑠 (∑ ∑ 𝑓𝑖𝑗𝑥𝑖𝑗
𝑠

𝑗∈𝐷𝑖∈𝐻

) 

𝑠∈𝑆

                    (1) 

∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝐷

≤ 𝑐𝑖𝑘𝑖
𝑠𝑦𝑖    , ∀𝑖 ∈ 𝐻, 𝑠 ∈ 𝑆                        (2) 

∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝐻

≥ 𝑑𝑗   , ∀𝑗 ∈ 𝐷, 𝑠 ∈ 𝑆                                (3) 

∑ 𝑦𝑖

𝑖∈𝐻𝐹

= 𝑄                                                              (4) 

∑ 𝑦𝑖

𝑖∈𝐻𝐸

= |𝐻𝐸|                                                         (5) 

𝑦𝑖 ∈ {0,1}     , ∀𝑖 ∈ 𝐻                                             (6) 

𝑥𝑖𝑗
𝑠 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  , ∀𝑖 ∈ 𝐻, 𝑗 ∈ 𝐷, 𝑠 ∈ 𝑆    (7) 

The objective function in (1) finds an optimal 

facility location solution while minimizes the 

expected total distance travelled by service 

victims. The constraints in (2) prevent the 

assignment of any victim to a hospital that have 

been failed and ensure that the total demand 

assigned to the hospital does not exceed 

hospital’s capacity in all scenarios. The 

constraints in (2) also ensure that a hospital could 

not function unless it is opened. The constraints 

in (3) ensure that demand of all affected areas are 

satisfied in all scenarios. The constraints in (4) 

guarantee that in total the Q field hospitals 

function. The constraints in (5) ensure that all 

existing hospitals are opened (does not matter 

they are failed or survived, because Constraints 

in (2) prevent any hospital to serve if it is failed). 

The constraints in (6) and (7) are integrality 



92                                                   N. Aydin, / Vol.6, No.2, pp.85-102 (2016) © IJOCTA 

constraints. 

4. Results 

In this section, we provide the results for both un-

capacitated and capacitated versions of the P-

median model for field hospitals in 

Zeytinburnu/Istanbul. 

 We solved both problems optimally by using the 

deterministic equivalent formulations of the 

stochastic mathematical models. Models were 

programmed using MATLAB R2010b and the 

integer programs were solved by using CPLEX 

12.1 (IBM Ilog). The experiments were 

conducted on a laptop with Intel(R) Core (TM) 

i7-CPU, a 2.10 GHz processor and a 12.0 GB 

RAM running on Windows 7 OS. Next, we 

describe the data in detail. 

4.1. Un-capacitated field hospitals and 

capacitated existing public hospitals 

Initially, we analyzed the un-capacitated version 

of the P-median model. The objective function 

stayed the same just as in (1). However, we 

revised the constraints in (2) as follows: 

∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝐷

≤ 𝑀𝑘𝑖
𝑠𝑦𝑖    , ∀𝑖 ∈ 𝐻, 𝑠 ∈ 𝑆                        (8) 

where 𝑀 represent a sufficiently big number. The 

constraints (3)-(7) stayed the same. 

Then, we introduce an artificial hospital to ensure 

that unsatisfied demand was satisfied by 

hospital(s) that were located outside the 

neighborhoods as stated in Section 3.2. The 

distance between the artificial hospital and all 

other hospitals was set to 5𝑘𝑚, which was larger 

than the maximum distance (4.11) between any 

demand point and the hospitals. The capacities of 

the existing hospitals were selected based on the 

data provided by hospital managers. It was note 

that the total available capacity of the existing 

hospitals was 31,500 less than expected total 

demand for both models (i.e., Model A and 

Model C). The expected total demand for Model 

A and Model C were estimated as 32,652 

and36,151, respectively. (Detailed data can be 

found in Appendix). As already mentioned in this 

section the field hospitals were un-capacitated.  

In generating the failure scenarios, we assumed 

that the failure of existing hospitals was 

independently and identically distributed 

according to the Bernoulli distribution with 

probability 𝑞𝑖 (i.e. the failure probability of 

hospital 𝑖). In our experiments, we used uniform 

failure probability (i.e., 𝑞𝑖=1,…,|𝐻𝐸| = 𝑞) and 

considered the cases 𝑞 = {1.0, 0.5, 0.2, 0.1, 0.0}. 

All field hospitals and artificial hospital were 

assumed to be perfectly reliable (i.e., 

𝑞𝑖=1,…,|𝐻𝐹| = 0). We noted the case scenario that 

when 𝑞 = 0  this corresponds to the deterministic 

P-median problem and when 𝑞=1 this 

corresponds to the case scenario that all existing 

hospitals fail. The failure scenarios 𝑠 ∈ 𝑆 were 

generated as follow: We let 𝐻𝐸
𝑓

⊂ 𝐻𝐸 be the set 

of hospitals that failed, and 𝐻𝐸
𝑟 ≡ 𝐻𝐸\𝐻𝐸

𝑓
 be the 

set of hospitals that were reliable (i.e., not failed). 

We let the hospital failure indicator (ki
s) be equal 

to 1 otherwise if  i ∈ HE
r , then ki

s = 0. The 

probability of scenario s was then calculated 

as ps = q|HE
f |(1 − q)|HE

r |. The size of the failure 

scenario set |S| assessment= 64. The 

deterministic equivalent formulation was found 

to have 42 binary variables, yi, and 34,944 (≔
|H| × |D| × |S|) integer variables, xij

s . Similarly, 

it had constraints (3), (4), (5) and (8) totaling 

3,522 (: = |D| × |S| + 1 + 1 + |H| × |S| = 13 ×
64 + 1 + 1 + 42 × 64) constraints. Note that all 

datasets used in the paper are available from the 

authors upon request.  

We then presented the results relating to the un-

capacitated field hospitals. As mentioned earlier, 

there were six existing public hospitals in 

Zeytinburnu. The locations of existing hospitals 

were fixed and unchangeable. In determining the 

locations of the field hospitals, the location of 

existing hospitals were considered. We provided 

the results for five different failure probabilities 

relating to the existing hospitals. That is, we 

considered the following case scenarios: that all 

the existing hospitals failed (i.e.,𝑞𝑖 = 1.0), 

existing hospitals failed with 50% (i.e.,𝑞𝑖 = 0.5), 

20% (i.e.,𝑞𝑖 = 0.2) and 10% (i.e.,𝑞𝑖 = 0.1) 

probability and finally that all the existing 

hospitals survived (i.e.,𝑞𝑖 = 0.0).  

First, we solved the model for both Model A and 

Model C under all five failure scenarios. The 

objective function values of these two models 

(Model A and Model C) are provided in Table 1. 

The first column in Table 1 shows the number of 

opened field hospitals (public schools that were 

going to serve as field hospitals). Column 2 

shows the expected total distance for Model A 

when all existing public hospitals failed (i.e.,𝑞𝑖 =
1.0), and columns 3 − 6 show the expected total 

distance when the public hospitals failed with a 

probability of 0.5, 0.2 and 0.1 and then when all 

public hospitals survived consecutively. Columns 

7 − 11 show relative results for Model C. 

We noted that the solutions in column 2 were the 
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same in the case scenarios where 12 or more 

field hospitals were opened. In other words, we 

showed that if the events in Model A occurred 

and all the public hospitals failed, opening up 12 

field hospitals would be sufficient enough to 

transport victims within a minimum distance. 

Again, we showed that 12 field hospitals were 

sufficient if the failure probability was reduced to 

0,5, 0,2 and 0,1, as seen in columns 3, 4, and 5. 

On the other hand, if all public hospitals 

survived, only 11 field hospitals would be 

needed to transport all victims within a minimum 

distance. Since we assessed that 12 field 

hospitals would be needed for the case scenario 

where the public hospitals failed with a 

probability of 1,0, 0.5, 0,2 and 0,1, we deduced 

that decision makers should consider providing a 

service of at least 12 field hospitals in order to be 

able to transport victims within a minimum 

distance if scenario A occurs. 

Table 1. Expected total distance. 

 

 

Model A: Total Distance (m) Model C: Total Distance (m) 

 Failure Probability Failure Probability 

 1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 

N
u

m
b
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 o

f 
O

p
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ed
 F
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ld
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o
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a
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0 163260.0 96390.8 60289.8 48954.9 37994.4 180755.0 113128.5 76144.1 64367.9 52837.9 
1 29399.9 20341.6 17686.2 16970.5 16348.7 32551.6 22858.8 19996.1 19198.6 18512.5 

2 18976.5 16464.6 14915.7 14321.9 13756.5 21011.0 18343.3 16821.4 16215.7 15608.7 

3 16011.1 13720.7 12294.6 11895.9 11501.5 17727.3 15268.7 13893.8 13487.5 13097.9 

4 13259.8 11595.9 10413.2 10064.9 9728.8 14681.1 12921.5 11738.4 11416.8 11077.4 

5 11147.1 9839.5 9293.2 8979.2 8684.7 12342.2 10915.0 10400.6 10176.6 9876.7 

6 10027.1 8719.5 8243.7 8123.6 8019.1 11102.1 9674.9 9160.4 9031.6 8920.0 

7 8954.0 8321.1 7845.4 7725.2 7620.7 9914.0 9233.9 8719.5 8590.6 8479.0 

8 8378.6 7954.1 7603.3 7524.9 7462.0 9276.8 8827.5 8451.5 8368.7 8303.3 

9 7980.2 7721.1 7544.6 7477.0 7423.9 8835.9 8569.6 8377.2 8305.3 8250.7 

10 7834.8 7629.9 7506.5 7438.9 7386.9 8674.9 8462.8 8334.8 8262.9 8208.3 

11 7796.7 7591.8 7468.8 7427.1 7375.1 8632.5 8420.4 8293.2 8249.8 8195.2 

12 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8249.8 8195.2 

13 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

14 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

15 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

16 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

17 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

18 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

19 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

20 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

21 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

22 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

23 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

24 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

25 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

26 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

27 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

28 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

29 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

30 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

31 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

32 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

33 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

34 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

35 7784.9 7580.0 7457.1 7416.1 7375.1 8619.4 8407.3 8280.0 8237.6 8195.2 

 

We assessed that in scenario C, at most 13 

hospitals would be needed and that this would 

occur when the failure probability was 0.1.  We 

concluded that regardless of any of the 

occurrences in Model A or Model C scenarios. 

13 schools would be sufficient enough to serve 

as field hospitals. It was noted that the

 

improvement in expected total distance was 

significantly larger for the first few field hospitals 

than for the others and it was very small after 6-8 

field hospitals. We also noted that. no 

improvement could be attained in expected total 

traveled distance after a certain number of field 

hospitals were opened. This state was achieved 
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when all demand points could be assigned to 

their closest potential hospital out of the 41 

locations. Since the field hospitals were un-

capacitated. there would be no restriction on the 

allocation of demand points to assign to their 

closest field hospital. establishing an additional 

field hospital could not improve the reduced 

service distance. We randomly selected 7 as the 

maximum number of opened field hospitals. This 

was also meaningful since it was unlikely that a 

service could be provided to a large number of 

field hospitals due to the budget constraints that 

would be imposed in a real life scenario. 

 

                                            (a)                                                                                      (b) 
Figure 3. Expected total distances under different failure probabilities for un-capacitated field hospitals. 

 
As was observed in Figure 3 a) and b). the 

improvement rate in expected total distance 

reduction got slower when 7 or more field 

hospitals  were opened. in both models. The 

results were very similar because it was apparent 

that in only a few neighborhoods reallocation of 

demand was advantageous. In the majority of the 

neighborhoods, the schools were sufficiently 

close to demand points. It was considered that 

this was also reasonable since there would have 

been some other public schools that could have 

been allocated for treatment operations. We 

concluded that opening only 7 field hospitals 

would be an acceptable and sufficient number in 

order to service victims over a reasonable and 

rational distance. 
 

Table 2. Distance differences between opening 7 and 12 field hospitals. 

Number of 

Opened Field 

Hospitals 

Differences in Distances for 7 and 12 Field Hospitals  (km) 

Model A Failure Probability Model C Failure Probability 

1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 

7 11,147 8,321 7,845 7,725 7,621 9,914 9,234 8,719 8,591 8,479 

12 7,785 7,580 7,457 7,416 7,375 8,619 8,407 8,280 8,250 8,195 

Difference 3,362 741 388 309 246 1.295 827 439 341 284 

Average 

Distance per 

Victim 

0.10 0.02 0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.01 

 

In Table 2 we illustrated that if 12 field hospitals 

were opened in case of all public hospitals failed. 

victims would be transported for 3,362 (km) 

more if only 7 field hospitals were opened. We 

deduced that if this value was divided by the 

expected total demand for Model A (: = 32652). 

each victim would be transported only 0.1 (𝑘𝑚) 

on average.  In the cases where the failure 

probability was reduced to 0.2, 0.1 and 0.0 each 

victim would be transported only for 0.01 (𝑘𝑚) 

on average. In Model C, when  

 

failure probabilities were 0.2, 0.1 and 0.0, these 

values were also 0.01 (𝑘𝑚). However, when the 

failure probability was  1.0 the expected average 

distance per victim became 0.04. Interestingly. 

we were able to conclude that opening 7 field 

hospitals provided a better solution in terms of 

expected average or total reduced distance. 

Please note that that distances were divided by  

32,652 which was the expected total demand for 

the Model C. 
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Table 3. Opened field hospitals under different failure probabilities. 

Failure 

Probability 

Open 7 Field Hospitals Open 12 Field Hospitals 
Model A Model C Model A Model C 

1.0 
15,18, 19, 20, 26, 

27,38 

15, 18, 19, 20, 26, 

27, 38 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

0.5 
15, 18, 19, 20, 22, 

26, 27 

15, 18, 19, 20, 22, 

26, 27 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

0.2 
15, 18, 19, 20, 22, 

26, 27 

15, 18, 19, 20, 22, 

26, 27 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

0.1 
15,18, 19, 20, 22, 

26, 27 

15,18, 19, 20, 22, 

26, 27 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 38 

12, 15, 17, 18, 19, 20, 

22, 23, 25, 26, 27, 36 

0.0 
15,18, 19, 20, 22, 

26, 27 

15,18, 19, 20, 22, 

26, 27 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 29, 36 

12, 15, 17, 18, 19, 20, 

22, 23, 26, 27, 36, 41 

 

 

 

Table 4. Average distance per victim for capacitated field hospitals. 
 

 

Model A: Average Distance Per Victim Model C: Average Distance Per Victim 

Capacity=1000 Capacity=2000 Capacity=1000 Capacity=2000 

Failure Probability Failure Probability Failure Probability Failure Probability 

1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 

N
u

m
b

er
 o

f 
O

p
en

ed
 F

ie
ld

 H
o

sp
it

a
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0 5.00 2.95 1.85 1.50 1.16 5.00 2.95 1.85 1.50 1.16 5.00 3.13 2.11 1.78 1.46 5.00 3.13 2.11 1.78 1.46 

1 4.85 2.80 1.70 1.35 1.02 4.70 2.66 1.57 1.24 0.95 4.86 3.00 1.97 1.65 1.33 4.73 2.86 1.84 1.51 1.19 

2 4.70 2.66 1.57 1.25 0.95 4.40 2.37 1.33 1.05 0.84 4.73 2.86 1.84 1.52 1.20 4.46 2.60 1.58 1.25 0.93 

3 4.55 2.51 1.45 1.15 0.89 4.10 2.08 1.10 0.88 0.74 4.60 2.73 1.71 1.38 1.07 4.19 2.33 1.34 1.05 0.79 

4 4.41 2.37 1.33 1.05 0.84 3.81 1.81 0.92 0.75 0.66 4.46 2.60 1.58 1.25 0.93 3.93 2.07 1.13 0.89 0.71 

5 4.26 2.23 1.22 0.97 0.79 3.52 1.54 0.77 0.64 0.58 4.33 2.47 1.46 1.14 0.84 3.66 1.82 0.94 0.75 0.64 

6 4.11 2.09 1.11 0.88 0.75 3.23 1.30 0.64 0.55 0.51 4.20 2.34 1.35 1.06 0.80 3.40 1.58 0.79 0.64 0.57 

7 3.97 1.95 1.01 0.81 0.71 2.94 1.08 0.54 0.47 0.44 4.07 2.21 1.24 0.97 0.75 3.14 1.35 0.66 0.55 0.50 

8 3.82 1.81 0.93 0.75 0.66 2.65 0.88 0.46 0.41 0.39 3.94 2.08 1.14 0.90 0.72 2.87 1.14 0.56 0.49 0.45 

9 3.68 1.68 0.85 0.70 0.63 2.36 0.71 0.39 0.36 0.34 3.81 1.96 1.04 0.82 0.68 2.61 0.94 0.48 0.42 0.40 

10 3.53 1.56 0.78 0.65 0.59 2.07 0.58 0.35 0.32 0.30 3.67 1.83 0.95 0.76 0.65 2.35 0.77 0.41 0.37 0.35 

11 3.39 1.43 0.72 0.61 0.56 1.79 0.48 0.32 0.30 0.29 3.54 1.71 0.88 0.71 0.62 2.10 0.64 0.37 0.34 0.32 

12 3.24 1.32 0.66 0.57 0.53 1.50 0.40 0.30 0.29 0.27 3.41 1.59 0.81 0.66 0.59 1.84 0.52 0.33 0.31 0.30 

13 3.10 1.21 0.62 0.54 0.50 1.22 0.35 0.29 0.28 0.27 3.28 1.48 0.75 0.62 0.56 1.59 0.44 0.31 0.29 0.28 

14 2.96 1.10 0.57 0.50 0.47 0.94 0.32 0.28 0.27 0.26 3.15 1.37 0.70 0.59 0.54 1.33 0.38 0.30 0.29 0.28 

15 2.81 1.00 0.53 0.47 0.45 0.67 0.30 0.27 0.27 0.26 3.03 1.26 0.64 0.55 0.51 1.08 0.34 0.29 0.28 0.27 

16 2.67 0.91 0.49 0.45 0.42 0.40 0.29 0.27 0.27 0.26 2.90 1.16 0.60 0.52 0.49 0.83 0.31 0.28 0.28 0.27 

17 2.53 0.83 0.46 0.43 0.40 0.31 0.28 0.27 0.27 0.26 2.77 1.07 0.56 0.50 0.47 0.58 0.30 0.28 0.28 0.27 

18 2.39 0.76 0.44 0.41 0.39 0.30 0.28 0.27 0.27 0.26 2.64 0.98 0.52 0.47 0.45 0.34 0.29 0.28 0.28 0.27 

19 2.25 0.69 0.42 0.40 0.38 0.30 0.28 0.27 0.27 0.26 2.51 0.90 0.50 0.45 0.43 0.31 0.29 0.28 0.28 0.27 

20 2.11 0.63 0.41 0.38 0.37 0.30 0.28 0.27 0.27 0.26 2.39 0.83 0.47 0.44 0.41 0.31 0.29 0.28 0.28 0.27 

21 1.97 0.59 0.40 0.37 0.36 0.30 0.28 0.27 0.27 0.26 2.26 0.76 0.45 0.42 0.40 0.31 0.29 0.28 0.28 0.27 

22 1.83 0.54 0.38 0.37 0.35 0.30 0.28 0.27 0.27 0.26 2.13 0.70 0.44 0.41 0.39 0.31 0.29 0.28 0.28 0.27 

23 1.69 0.50 0.38 0.36 0.35 0.30 0.28 0.27 0.27 0.26 2.01 0.64 0.42 0.40 0.39 0.31 0.29 0.28 0.28 0.27 

24 1.55 0.47 0.37 0.36 0.35 0.30 0.28 0.27 0.27 0.26 1.88 0.60 0.41 0.39 0.38 0.31 0.29 0.28 0.28 0.27 

25 1.42 0.44 0.36 0.36 0.35 0.30 0.28 0.27 0.27 0.26 1.76 0.56 0.40 0.39 0.38 0.31 0.29 0.28 0.28 0.27 

26 1.28 0.42 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 1.64 0.52 0.40 0.39 0.38 0.31 0.29 0.28 0.28 0.27 

27 1.15 0.41 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 1.52 0.49 0.39 0.38 0.38 0.31 0.29 0.28 0.28 0.27 

28 1.02 0.40 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 1.39 0.47 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

29 0.89 0.39 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 1.27 0.45 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

30 0.76 0.39 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 1.16 0.44 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

31 0.63 0.38 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 1.04 0.43 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

32 0.52 0.38 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 0.93 0.43 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

33 0.46 0.38 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 0.83 0.43 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

34 0.46 0.38 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 0.74 0.43 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

35 0.46 0.38 0.36 0.35 0.35 0.30 0.28 0.27 0.27 0.26 0.66 0.42 0.39 0.38 0.37 0.31 0.29 0.28 0.28 0.27 

 

In Table 3, we presented the opened field 

hospitals for seven and twelve field hospital cases  

 

under different failure probabilities. In the 

opening seven field hospitals case scenarios, 
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when the failure probability was 1.0, schools in 

regions  15,18,19,20,26,27 and 38 were selected 

for both Model A and Model C. When the failure 

probability was reduced to 0.5,0.2,0.1 and 0.0 

existing hospitals had more chance to survive, 

then model substituted school in region 38 by 22 

and it decided to open schools in regions  

15,18,19,20,26 and  27. We determined the effect 

of such changes in a scenario where twelve field 

hospitals were opened as well. Surprisingly, we 

concluded that high demand had the same effect 

on the decision making if the field hospitals had 

infinite capacity and the number of opened field 

hospitals stayed the same. Next, we analyzed the 

capacitated field hospitals case scenarios. 

4.2. Capacitated field and capacitated 

existing public hospitals 

In the previous section, we assumed that the field 

hospitals were un-capacitated, whereas the 

existing public hospitals and field hospitals 

would have been capacitated in real life.  In this 

section, we present the results and analysis where 

both field and existing hospitals were deemed to 

be capacitated. In this approach, we assumed that 

the total capacity of the existing hospitals was the 

same as in the previous section (31,500). We 

analyzed the capacitated version of the problem 

for multiple cases such as low capacity and high 

capacity and each case tested for 5 different 

failure scenarios.  

The values in the Table 4 show the average 

distances per victim. The averages that have been 

taken represent the division of expected total 

distances dependent upon demand. The first 

column in Table 4 shows the number of opened 

field hospitals. Columns 2-6 show the average 

distances per victim in Model A for 5 different 

failure scenarios when the capacity of the field 

hospitals was 1,000. Columns 7 to 11 show the 

results, when the capacities of the field hospitals 

were increased to 2,000. Likewise, columns 12 to 

16 and 17 to 21 show the average distance per 

victim in Model C for 5 different failure 

scenarios when the capacities of the field 

hospitals were equal to 1,000 and 2,000, 

consecutively.  
As expected, the average serving distance 

decreased as the demand decreased. The 

locations of the field hospitals were selected as 

close as possible to the most populated 

neighborhoods. In comparison with the un-

capacitated case scenario, the requisite number of 

field hospitals was higher in order to provide a 

service within the same distance range. For 

instance, in Model A when all existing hospitals 

failed the minimum average distance that could 

be achieved was   (km) with 33 field hospitals. 

However, the minimum average distance that 

could be achieved in the un-capacitated case 

scenario was 0.24 (km) and with only 9 field 

hospitals. This comparison is valid for all the 

other cases as predicted. Further, the average 

serving distance decreased as the failure 

probability decreased in both the capacitated and 

un-capacitated cases because as the failure 

probability is decreased more existing hospitals 

are survived and more capacity is became 

available to serve victims. 

If the capacities of the field hospitals were equal 

to 1,000, the total available capacity would be 

35,000 and if the capacities were equal to 2,000, 

the total available capacity would be 70,000. The 

total demand was always less than the total 

available capacity in Model A. However, the total 

demand was higher than the total available 

capacity in Model C when the capacities of the 

field hospitals were restricted to 1,000. 

Obviously, the total demand would be always 

less than the total available capacity in un-

capacitated cases. This is because in capacitated 

cases, the selected locations of the field hospitals 

were farther away than in the un-capacitated 

cases. The capacitated model could not achieve 

as lower an average distance per victim as in the 

case of the un-capacitated model. In other words, 

in capacitated cases, the model does not allow for 

an allocation of victims to the closest field or 

existing hospitals because of the capacity 

constraints. Therefore as a result, higher than 

expected serving distance would occur. 

As seen in Figure 4 a) 33 field hospitals were 

needed to achieve a minimum average distance 

per victim when all existing hospitals failed and 

31,25,26 and 22  field hospitals were needed 

when the failure probabilities reduced to 

0.5,0.2,0.1 and 0.0 (all existing hospitals 

survived), respectively. When capacities 

increased to 2,000, (Figure 4b) the number of 

needed field hospitals decreased to 18,17,15,14, 

and 14. Even though, the total demand and the 

minimum average distance that could be 

achieved is higher in model C, there was really 

little difference between Model A and Model C 

when the capacities of the field hospitals were 

equal to 2,000 this was because the capacity of 

the field hospitals was doubled while the demand 

increased only by 0.3%-which represents a figure 

of only 3,499 more victims.  

We went on to analyze the effect of the different 
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failure probabilities and field hospital capacities 

on expected total unsatisfied demand. We 

presented the results in Table 5. The first 

observation we gained was that when the failure 

probability was very high or high, i.e., q=1.0,0.5, 

and the capacities of the field hospitals were 

equal to 1,000, full satisfaction of demand could  

not be achieved even if all 35 field hospitals were 

opened, in Model C. 

As mentioned earlier, these circumstances 

occurred when the total capacity of the field 

hospitals was less than the total demand. In 

another words, some of the victims needed to be 

transported to the hospitals located on the other 

regions because of the lack of capacity. 

Therefore, in this event it should have been 

suggested to decision makers to set up higher 

capacitated field hospitals. Secondly, at least 11 

field hospitals for Model A and 13 for Model C 

would be needed to satisfy demand even if the 

failure probability was very low, i.e., q=0.1, and 

the capacities of the field hospitals was equal to 

2,000. This may be a reference point for how 

failure of the existing hospitals effects satisfying 

the demand. 

 
Figure 4. Average distance under different failure probabilities for capacitated field hospitals. 

 

Consequently, decision makers or managers may 

in the future be better off giving greater attention 

to the infrastructure of the existing public 

hospitals as well as and strengthening the 

buildings. We want to state out that if public 

hospitals are projected to fail then its whole 

capacity is unusable. Here, we would like to 

point out a future study, which will be the next 

step of this study and consider partial failure of 

the existing public hospitals. Lastly, it was 

observed that the demand satisfaction rate 

increased with a smaller number of field hospitals 

when the failure probability of the existing 

hospitals decreased. We therefore deduced from 

this that this further observation supported our 

second observation. 

 

 

5. Conclusions and future studies 

The next predicted earthquake is anticipated to 

cause major havoc to many regions of Istanbul. 

The anticipated earthquake severely threatens 

human life and health, not to mention the 

substructure and it even threatens the economy of 

Turkey as a whole. The Government and the 

Istanbul Metropolitan Municipality have taken 

preparatory action, both for pre-disaster and post 

disaster scenarios, against possible earthquakes to 

mitigate the effects of such a disaster. Locating 

the disaster relief facilities is one of the crucial 

tasks to strategically prepare for this event. Life- 

saving decisions on the location of hospitals, 

such as field hospitals, essentially must rank as 

one of the most important managerial issues. 
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Table 5. Percentage of unsatisfied demand for Model A and Model C under different failure probabilities and field hospital capacities. 

 
 

Model A: Percentage of Unsatisfied Demand Model C: Percentage of Unsatisfied Demand 

Capacity=1000 Capacity=2000 Capacity=1000 Capacity=2000 

Failure Probability Failure Probability Failure Probability Failure Probability 

1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 1.0 0.5 0.2 0.1 0.0 
N

u
m

b
er

 o
f 

O
p

en
ed

 F
ie

ld
 H

o
sp

it
a
l 

0 100.00 51.76 22.82 13.18 3.53 100.00 51.76 22.82 13.18 3.53 100.00 56.43 30.29 21.58 12.87 100.00 56.43 30.29 21.58 12.87 

1 96.94 48.70 19.76 10.11 0.47 93.87 45.68 17.38 8.43 0.00 97.23 53.67 27.53 18.81 10.10 94.47 50.90 24.76 16.05 7.33 

2 93.87 45.68 17.38 8.43 0.00 87.75 39.67 12.93 5.62 0.00 94.47 50.90 24.76 16.05 7.33 88.94 45.37 19.23 10.51 1.80 

3 90.81 42.66 15.12 7.00 0.00 81.62 33.73 8.81 3.11 0.00 91.70 48.13 21.99 13.28 4.57 83.40 39.89 14.67 6.96 0.00 

4 87.75 39.67 12.93 5.62 0.00 75.50 28.10 5.98 1.76 0.00 88.94 45.37 19.23 10.51 1.80 77.87 34.48 10.75 4.51 0.00 

5 84.69 36.70 10.87 4.37 0.00 69.37 22.80 3.85 0.94 0.00 86.17 42.62 16.71 8.26 0.00 72.34 29.17 7.22 2.42 0.00 

6 81.62 33.73 8.81 3.11 0.00 63.25 17.87 2.29 0.46 0.00 83.40 39.89 14.67 6.96 0.00 66.81 24.13 4.83 1.35 0.00 

7 78.56 30.89 7.26 2.32 0.00 57.12 13.50 1.27 0.20 0.00 80.64 37.17 12.63 5.67 0.00 61.27 19.45 3.09 0.73 0.00 

8 75.50 28.10 5.98 1.76 0.00 51.00 9.88 0.71 0.09 0.00 77.87 34.48 10.75 4.51 0.00 55.74 15.13 1.82 0.35 0.00 

9 72.44 25.38 4.77 1.25 0.00 44.87 6.86 0.37 0.04 0.00 75.10 31.81 8.89 3.38 0.00 50.21 11.30 0.99 0.14 0.00 

10 69.37 22.80 3.85 0.94 0.00 38.75 4.41 0.15 0.01 0.00 72.34 29.17 7.22 2.42 0.00 44.68 8.16 0.54 0.07 0.00 

11 66.31 20.27 3.00 0.67 0.00 32.62 2.72 0.07 0.00 0.00 69.57 26.64 5.96 1.83 0.00 39.14 5.59 0.27 0.03 0.00 

12 63.25 17.87 2.29 0.46 0.00 26.50 1.56 0.03 0.00 0.00 66.81 24.13 4.83 1.35 0.00 33.61 3.58 0.11 0.01 0.00 

13 60.19 15.65 1.76 0.32 0.00 20.37 0.79 0.01 0.00 0.00 64.04 21.75 3.87 0.98 0.00 28.08 2.14 0.05 0.00 0.00 

14 57.12 13.50 1.27 0.20 0.00 14.25 0.33 0.00 0.00 0.00 61.27 19.45 3.09 0.73 0.00 22.55 1.19 0.02 0.00 0.00 

15 54.06 11.61 0.95 0.13 0.00 8.12 0.13 0.00 0.00 0.00 58.51 17.20 2.37 0.50 0.00 17.01 0.58 0.01 0.00 0.00 

16 51.00 9.88 0.71 0.09 0.00 2.00 0.03 0.00 0.00 0.00 55.74 15.13 1.82 0.35 0.00 11.48 0.25 0.00 0.00 0.00 

17 47.94 8.25 0.51 0.06 0.00 0.00 0.00 0.00 0.00 0.00 52.98 13.14 1.36 0.23 0.00 5.95 0.09 0.00 0.00 0.00 

18 44.87 6.86 0.37 0.04 0.00 0.00 0.00 0.00 0.00 0.00 50.21 11.30 0.99 0.14 0.00 0.42 0.01 0.00 0.00 0.00 

19 41.81 5.53 0.24 0.02 0.00 0.00 0.00 0.00 0.00 0.00 47.44 9.70 0.75 0.10 0.00 0.00 0.00 0.00 0.00 0.00 

20 38.75 4.41 0.15 0.01 0.00 0.00 0.00 0.00 0.00 0.00 44.68 8.16 0.54 0.07 0.00 0.00 0.00 0.00 0.00 0.00 

21 35.69 3.53 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00 41.91 6.80 0.39 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

22 32.62 2.72 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.14 5.59 0.27 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

23 29.56 2.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 36.38 4.46 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

24 26.50 1.56 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.61 3.58 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

25 23.44 1.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 30.85 2.80 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

26 20.37 0.79 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.08 2.14 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

27 17.31 0.51 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.31 1.65 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

28 14.25 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.55 1.19 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

29 11.18 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.78 0.84 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

30 8.12 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.01 0.58 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

31 5.06 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.25 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

32 2.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.48 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.72 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.95 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.18 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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In this study, we developed models and solutions 

for the problem of locating field hospitals in 

Zeytinburnu/Istanbul in the event of a major 

earthquake hitting this region. Using our 

representative, we divided the hospitals into two 

categories: existing public hospitals and field 

hospitals. Existing public hospitals are the 

hospitals that are already functioning and that are 

supposed to function or fail with a probability in 

a post-disaster scenario.  

On the other hand, field hospitals are defined as 

schools that will function as emergency centers 

or as hospital post-disaster. However, the 

decision making about the location of these field 

hospitals must be done prior to the occurrence of 

any such disaster. Therefore we set out to 

determine the possible and preferable locations of 

the field hospitals whilst collaterally also 

considering the existing public hospitals 

functionality after a disaster. We also considered, 

within our analysis, optimizing the number of 

such field hospitals needed in the event of a 

failure of the existing hospitals. We developed a 

two stage stochastic P-median model and then 

identified the number, location and size of the 

field hospitals in Zeytinburnu/Istanbul. The 

district of Zeytinburnu has multiple 

neighborhoods. Each neighborhood has different 

sizes of population and the locations of these 

neighborhoods were taken as the demand points 

whilst we were constructing our solution model 

to determine the field hospitals locations. 

We constructed and provided solutions to 

numerous case scenario models for this purpose 

and after analyzing the results further provided 

alternate, more efficient solution improvements. 

Two different earthquake scenarios, called Model 

A and Model C and provided by [42], are 

analyzed separately in detailed. 

In the first case, we considered un-capacitated 

field hospitals and analyzed how to minimize the 

expected total distance to them. The marginal 

development of establishing an additional field 

hospital reduced abruptly after the first few field 

hospitals. We observed that seven field hospitals 

would be satisfactory for both Model A and 

Model C scenarios. While analyzing Model A, it 

was realized that nine field hospitals could 

reasonably serve the victims with an average 

distance of 0.24 km even if all the existing 

hospitals failed. Generally, the average serving 

distances were found to be between 0.23 km and 

0.30 km, even with only a few field hospitals in 

the un-capacitated field hospitals case scenarios. 

However, more field hospitals were needed for 

capacitated cases. If capacities of the field 

hospitals were low (1,000 km), then we found 

that these ranges were never reached. In Model 

C, the same ranges of expected total distance as 

was the case with Model A could be achieved for 

un-capacitated field hospital cases. The expected 

total distance when comparing locating either 7  

or alternatively 12 field hospitals had a 

significant different resulting effect in Model A 

and Model C. Under high failure probabilities 

locating 7 field hospitals in Model C provided 

more advantages than in locating 7 field hospitals 

in Model A. For example, in the 1.0 failure 

probability case the difference in the expected 

total distance between locating 7 field hospitals 

and 12 field hospitals was 3,362 km in Model A 

while it was as low as 1,295 km in Model C. 

However we demonstrated that an opposing, 

opposite analysis could be obtained if the failure 

probability was lower. In the second case, we 

consider capacitated field hospitals and the whole 

question of how to minimize the expected total 

distance as well as calculating average distances 

per victim. We found that there was no marginal 

development requirement for establishing an 

additional field hospital in both Models A or C 

when the capacity of the field hospitals was 

1,000. As increasing number of opened field 

hospitals improved average distance reductions 

but we concluded that more than 35 field 

hospitals would be needed, [which would be very 

costly], to achieve the requisite average level of 

distance reduction achieved in the un-capacitated 

case scenario. The average distance levels that 

were achieved in the un-capacitated case with up 

to 7 field hospitals could be achieved with more 

than 20 field hospitals in capacitated cases.  

The selected numbers of field hospitals under the 

various case scenarios were found to be 

sufficient. However, the result of introducing 

capacity limits to field hospitals caused the need 

for a higher number of field hospitals in order to 

gain the desired level of average distances. Since 

the un-capacitated field hospitals are not practical 

in real life and the capacity expansion of field 

hospitals makes a high impact on serving victims 

within a minimum distance a higher level of 

capacity is desirable.  

In our study we analyzed the effects of available 

earthquake scenarios on existing hospitals. In our 

opinion the associated damage estimates of 

earthquake scenarios on roads, substructure, and 

network could usefully be incorporated into the 

models. Furthermore, in this study, if public 

hospitals are projected to fail then its whole 
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capacity is unusable. Another future study, which 

will be the next step of this study, may be 

considering partial failure of the existing public 

hospitals and categorizing type of victims (as in 

[2]) and the service type that a hospital serve 

because all public hospitals do not serve the same 

types treatments. Also for a larger number of case 

scenarios heuristic methods, such as SAA 

(Sample Average Approximation [49]) and GA 

(Genetic Algorithm), etc., could usefully be 

applied. We believe that our study provides 

valuable, contributory information for the benefit 

of the aforementioned decision makers. 
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Appendix 

Demand for Model A and Model C of neighborhoods in Zeytinburnu/Istanbul 

  
 Model A  Model C 

 

Population 
 Heavily 

Injured Injured Total 
 Heavily 

Injured Injured Total 

Beştelsiz 26,524  743 2,228 2,971  822 2,467 3,289 
Çırpıcı 29,946  838 2,515 3,354  928 2,785 3,713 

Gökalp 20,978  587 1,762 2,350  650 1,951 2,601 

Kazlıçeşme 1,289  36 108 144  40 120 160 

Maltepe 153  4 13 17  5 14 19 

Merkezefendi 22,413  628 1,883 2,510  695 2,084 2,779 

Nuripaşa 27,885  781 2,342 3,123  864 2,593 3,458 

Sümer 37,565  1,052 3,155 4,207  1,165 3,494 4,658 

Telsiz 38,742  1,085 3,254 4,339  1,201 3,603 4,804 

Yenidoğan 10,709  300 900 1,199  332 996 1,328 

Yeşiltepe 23,026  645 1,934 2,579  714 2,141 2,855 

Seyitnizam 23,405  655 1,966 2,621  726 2,177 2,902 

Veliefendi 28,914  810 2,429 3,238  896 2,689 3,585 

Total 291,549  8,163 24,490 32,652  9,038 27,114 36,151 
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