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Abstract. In this paper, a new class of nonconvex nonsmooth multiobjective programming prob-
lems with directionally differentiable functions is considered. The so-called G-V -type I objective and
constraint functions and their generalizations are introduced for such nonsmooth vector optimization
problems. Based upon these generalized invex functions, necessary and sufficient optimality conditions
are established for directionally differentiable multiobjective programming problems. Thus, new Fritz
John type and Karush-Kuhn-Tucker type necessary optimality conditions are proved for the considered
directionally differentiable multiobjective programming problem. Further, weak, strong and converse
duality theorems are also derived for Mond-Weir type vector dual programs.
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1. Introduction

It is well known that the convexity notion plays a
vital role in many aspects of mathematical pro-
gramming including sufficient optimality condi-
tions and duality theorems. However, it is not
possible to prove under convexity fundamental
results in optimization theory for a lot of op-
timization problems. During the past decades,
therefore, generalized convex functions received
much attention. Various generalizations of con-
vex functions have appeared in literature, not
only for scalar optimization problems, but also
for multiobjective programming problems. This
is simply a consequence of the fact that, in re-
cent years, the analysis of optimization problems
with several objectives conflicting with one an-
other has been a focal issue. Such multiobjective

optimization problems are useful mathematical
models for the investigation of real-world prob-
lems, for example, in engineering, economics, and
human decision making.

One of a generalization of convexity is invexity
defined by Hanson [11]. Hanson showed that the
Kuhn-Tucker necessary conditions are sufficient
for a minimum in differentiable scalar optimiza-
tion problems involving invex functions with re-
spect to the same function η. Craven [10] has
shown that f has the previous property when
f = h ◦φ, with h convex, φ differentiable, and φ′

having full rank. Thus some invex functions, at
least, may be obtained from convex functions by
a suitable transformation of the domain spaces.
Such transformation destroy convexity, but not
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the invex property; the term invex, from invari-
ant convex, was introduced by Craven in [10] to
express this fact. Further, Ben-Israel and Mond
[9] considered a class of functions called pre-invex
and also showed that the class of invex functions
is equivalent to the class of functions whose sta-
tionary points are global minima.

Later, Hanson and Mond [12] defined two new
classes of functions called type-I and type-II func-
tions, and they established sufficient optimality
conditions and duality results for differentiable
scalar optimization problems by using these con-
cepts. Mukherjee and Singh [21] derived a set of
sufficient conditions for a solution to be efficient
for a multiobjective programming problem where
the objective as well as constraint functions are
semi-differentiable and η-convex. In [16], Kaul et
al. proved Kuhn-Tucker type necessary and suf-
ficient conditions for a feasible point to be an ef-
ficient or properly efficient solution in the consid-
ered multiobjective programming problems with
(generalized) type I functions. Following Jeyaku-
mar and Mond [15], Hanson et al. [13] intro-
duced the V -type I vector optimization problem,
including positive real-valued functions αi and βj
in their definition, and they obtained optimal-
ity conditions and duality results under various
types of generalized V -type I requirements. They
showed that V -type I property can replace in-
vex, in proving sufficient KKT conditions. Fur-
ther, Aghezzaf and Hachimi [2] [14] introduced
classes of generalized type I functions for a dif-
ferentiable multiobjective programming problem
and derived some Mond-Weir type duality results
under the generalized type I assumptions. In [17],
Kuk and Tanino derived optimality conditions
and duality theorems for non-smooth multiobjec-
tive programming problems involving generalized
Type I vector valued functions. Suneja and Sri-
vastava [24] introduced generalized d-type I func-
tions in terms of directional derivative for a mul-
tiobjective programming problem and discussed
Wolfe type and Mond-Weir type duality results.
Suneja and Gupta [25] established necessary op-
timality conditions for a multiobjective nonlinear
programming involving semilocally convex func-
tions and Wolfe type and Mond-Weir type duals
are formulated.

In [4], Antczak studied d-invexity as one of the
nondifferentiable generalization of an invex func-
tion. He established, under weaker assumptions
than Ye [27], the Fritz John type and Karush-
Kuhn-Tucker type necessary optimality condi-
tions for weak Pareto optimality and duality re-
sults which have been stated in terms of the right

differentials of functions involved in the consid-
ered multiobjective programming problem. Some
authors proved that the Karush-Kuhn-Tucker
type necessary conditions [4] are sufficient un-
der various generalized d-invex functions (see,
for instance, [1], [3], [18], [19], [20]). In [5],
Antczak defined the classes of d-r-type I objec-
tive and constraint functions and, moreover, the
various classes of generalized d-r-type I objective
and constraint functions for multiobjective pro-
gramming problems with directionally differen-
tiable functions. He corrected the Karush-Kuhn-
Tucker necessary conditions proved in [4] and
established sufficient optimality conditions and
various Mond Weir duality results for nondiffer-
entiable multiobjective programming problems in
which the functions involved belong to the intro-
duced classes of directionally differentiable gen-
eralized invex functions. Finally, he showed that
the introduced d-r-type I notion with r 6= 0 is
not a sufficient condition for Wolfe weak dual-
ity to hold. Slimani and Radjef [23] introduced
new concepts of dI -invexity and generalized dI -
invexity in which each component of the ob-
jective and constraint functions is directionally
differentiable in its own direction di. Further,
they proved new Fritz–John type necessary and
Karush–Kuhn–Tucker type necessary and suffi-
cient optimality conditions for a feasible point to
be weakly efficient, efficient or properly efficient
and, moreover, weak, strong, converse and strict
duality results for a Mond–Weir type dual under
various types of generalized dI -invexity assump-
tions. Ahmad [3] introduced a new class of gener-
alized dI -univexity in which each component of
the objective and constraint functions is direc-
tionally differentiable in its own direction di for
a nondifferentiable multiobjective programming
problem. Based upon these generalized func-
tions, he proved sufficient optimality conditions
for a feasible point to be efficient and properly ef-
ficient and duality results under the generalized
dI -univexity requirements.

This paper represents the study concerning
nonconvex nonsmooth multiobjective program-
ming with a new class of directionally differ-
entiable functions. Thus, for the considered
nonsmooth multiobjective programming problem
with inequality constraints, we define a new class
of directionally differentiable nonconvex vector-
valued functions, namely directionally differen-
tiable G-V -type I objective and constraint func-
tions and various classes of its generalizations.
The class of directionally differentiable G-V -type
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I objective and constraint functions is a gener-
alization of the class of d-invex functions intro-
duced by Ye [27], the class of G-invex functions
introduced by Antczak [6] and [7] for differen-
tiable multiobjective programming problems and
also the class of V -invex functions defined by
Jeyakumar and Mond [15] for differentiable vec-
tor optimization problems to the directionally
differentiable vectorial case.

The class of G-invex functions extends the no-
tion of invexity since it contains many various in-
vexity concepts. A characteristic global optimal-
ity property of various classes of invex functions
is also proved in the case of a G-invex functions.
It turns out that every stationary point of G-
invex function is its global minimum point. The
importance of the G-invex functions is because,
similarly to Craven’s work [10], the transforma-
tions of functions do not destroy properties of
invex functions.

The main purpose of this article is, however, to
apply the concept of directionally differentiable
G-V -type I objective and constraint functions
to develop optimality conditions for a new class
of nonconvex directionally differentiable multi-
objective programming problems. Considering
the concept of a (weak) Pareto solution, we es-
tablish both the so-called G-Fritz John neces-
sary optimality conditions and the so-called G-
Karush-Kuhn-Tucker necessary optimality con-
ditions for directionally differentiable vector op-
timization problems under the constraint qual-
ification introduced in this work. The G-Fritz
John necessary optimality conditions and the G-
Karush-Kuhn-Tucker necessary optimality con-
ditions proved in this paper are more general
than the classical Fritz John necessary optimality
conditions and the classical Karush-Kuhn-Tucker
necessary optimality conditions well-known in
the literature. Furthermore, based on the in-
troduced G-Karush-Kuhn-Tucker necessary op-
timality conditions, we prove sufficient optimal-
ity for both weak Pareto and Pareto optimality
in multiobjective programming problems involv-
ing directionally differentiable G-V -type I objec-
tive and constraint functions. In particular, the
sufficient optimality conditions established un-
der semi-G-V -type I assumptions are more useful
for some class of nonconvex directionally differ-
entiable vector optimization problems than the
sufficient optimality conditions proved for vector
optimization problems with directionally differ-
entiable vector-valued invex functions. Further-
more, a so-called G-Mond–Weir type dual is for-
mulated for the considered directionally differ-
entiable vector optimization problem and weak,

strong, converse and strict duality results are
proved under semi-G-V -type I assumptions.

2. Directionally differentiable G-type I

functions and generalized G-type I

functions

In this section, we provide some definitions and
some results that we shall use in the sequel. The
following convention for equalities and inequali-
ties will be used throughout the paper.

For any x = (x1, x2, ..., xn)T , y =

(y1, y2, ..., yn)T , we define:

(i) x = y if and only if xi = yi for all
i = 1, 2, ..., n;

(ii) x < y if and only if xi < yi for all
i = 1, 2, ..., n;

(iii) x ≦ y if and only if xi ≦ yi for all
i = 1, 2, ..., n;

(iv) x ≤ y if and only if x ≦ y and x 6= y.

Throughout the paper, we will use the same
notation for row and column vectors when the
interpretation is obvious.

Definition 1. A function θ : R → R is said to
be strictly increasing if and only if

∀x, y ∈ R x < y ⇒ θ(x) < θ(y).

Definition 2. [9] Let Φ : X → R be defined on a
nonempty invex set X ⊂ Rn and u ∈ X. If there
exists a vector-valued function η : X ×X → Rn

such that the inequality

Φ (u+ λη(x, u)) ≦ λΦ(x) + (1 − λ) Φ(u) (1)

holds for all x ∈ X and any λ ∈ [0, 1], then Φ
is said to be a pre-invex function (with respect to
η) at u on X. If inequality (1) holds for each
u ∈ X, then Φ is said to be a pre-invex function
(with respect to η) on X.

Definition 3. We say that a mapping f : X →
Rk defined on a nonempty set X ⊆ Rn is direc-
tionally differentiable at u ∈ X into a direction v
if, for every i = 1, ..., k, the limit

f+i (u; v) = lim
λ→0+

fi (u+ λv) − fi (u)

λ

exists finite. We say that f is directionally dif-
ferentiable or semi-differentiable at u, if its di-
rectional derivative f+i (u; v) exists finite for all
v ∈ Rn.

In the paper, we consider the following con-
strained multiobjective programming problem
(VP):

V -minimize f(x) := (f1(x), ..., fk(x))
g(x) ≦ 0,
x ∈ X,

(VP)
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where fi : X → R, i ∈ I = {1, ..., k}, gj : X → R,
j ∈ J = {1, ...,m}, are directionally differentiable
functions on a nonempty set X ⊂ Rn.

Let D = {x ∈ X : gj(x) ≦ 0, j ∈ J} be the set
of all feasible solutions for problem (VP). Fur-
ther, we denote by J(x) := {j ∈ J : gj(x) = 0}
the set of constraint indices active at x ∈ D and
by J̃(x) = {j ∈ {1, ...,m} : gj(x) < 0} the set
of constraint indices inactive at x ∈ D. Then
J(x) ∪ J̃(x) = {1, ...,m}. Furthermore, let gJ(x)
denote the vector of active constraints at x.

Before studying optimality in multiobjective
programming, one has to define clearly the
well-known concepts of optimality and solutions
in multiobjective programming problem. The
(weak) Pareto optimality in multiobjective pro-
gramming associates the concept of a solution
with some property that seems intuitively nat-
ural.

Definition 4. A feasible point x is said to be
a Pareto solution (an efficient solution) for the
multiobjective programming problem (VP) if and
only if there exists no x ∈ D such that

f(x) ≤ f(x).

Definition 5. A feasible point x is said to be a
weak Pareto solution (a weakly efficient solution,
a weak minimum) for the multiobjective program-
ming problem (VP) if and only if there exists no
x ∈ D such that

f(x) < f(x).

As it follows from the definition of (weak)
Pareto optimality, x is nonimprovable with re-
spect to the vector cost function f . The quality
of nonimprovability provides a complete solution
if x is unique. However, usually this is not the
case, and then one has to find the entire exact
set of all Pareto optimality solutions in a multi-
objective programming problem.

Let f : X → Rk and g : X → Rm be vector-
valued directionally differentiable functions de-
fined on a nonempty open set X ⊂ Rn at u ∈ X.
Further, let Ifi(X), i = 1, ..., k, be the range of
fi, that is, the image of X under fi and Igj (X),
j = 1, ...,m, be the range of gj , that is, the image
of X under gj .

Definition 6. If there exist a differentiable
vector-valued function Gf = (Gf1 , ..., Gfk) : R →

Rk such that any its component Gfi : Ifi(X) →
R, i = 1, ..., k, is a strictly increasing function on
its domain, a differentiable vector-valued func-
tion Gg = (Gg1 , ..., Ggm) : R→ Rm such that any
its component Ggj : Igj (X) → R, j = 1, ...,m, is
a strictly increasing function on its domain, func-
tions αi, βj : X × X → R+ \ {0}, i = 1, ..., k,

j = 1, ...,m, and a vector-valued function η :
X × X → Rn such that the following inequali-
ties

Gfi (fi(x)) −Gfi (fi(u))

−αi (x, u)G′
fi

(fi(u)) f+i (u; η(x, u)) ≧ 0,

ı = 1, ..., k, (2)

−Ggj (gj(u))

≧ βj (x, u)G′
gj

(gj(u)) g+j (u; η(x, u)) ,

j = 1, ...,m (3)

hold for all x ∈ X, then (f, g) is said to be semi-
G-V -type I objective and constraint functions at
u on X with respect to η (and with respect to Gf

and Gg). If (2) and (3) are satisfied for each
u ∈ X, then (f, g) is said to be semi-G-V -type I
objective and constraint functions on X with re-
spect to η (and with respect to Gf and Gg).
If (2) and (3) are satisfied for all x ∈ X, but (2)
is strict for all x ∈ X, (x 6= u), then (f, g) is
said to be semi-strictly-G-V -type I objective and
constraint functions at u on X with respect to η
(and with respect to Gf and Gg).

Remark 1. In the case when Gfi(a) ≡ a, i ∈ I,
for any a ∈ Ifi(X), Ggj (a) ≡ a, j ∈ J , for any
a ∈ Igj (X), we obtain the definition of direc-
tionally differentiable V -type I objective and con-
straint functions. In the case when the functions
are differentiable, it reduces to the definition of
V -type I objective and constraint functions (see
Hanson et al. [13] for differentiable multiobjec-
tive programming problems).

Now, we introduce the concepts of general-
ized semi-G-V -type I functions for the considered
multiobjective programming problem (VP).

Definition 7. If there exist a differentiable
vector-valued function Gf = (Gf1 , ..., Gfk) :

R → Rk such that any its component Gfi :
Ifi(X) → R is a strictly increasing function on
its domain, a differentiable vector-valued func-
tion Gg = (Gg1 , ..., Ggm) : R→ Rm such that any
its component Ggj : Igj (X) → R is a strictly in-
creasing function on its domain, functions αi, βj :
X ×X → R+ \ {0}, i = 1, ..., k, j = 1, ...,m, and
a vector-valued function η : X × X → Rn such
that, for all x ∈ X, the following relations

∑k
i=1G

′
fi

(fi(u)) f+i (u; η(x, u)) ≧ 0 =⇒
∑k

i=1 αi (x, u) [Gfi (fi(x)) −Gfi (fi(u))] ≧ 0,(4)

∑m
j=1G

′
gj

(gj(u)) g+j (u; η(x, u)) ≧ 0 =⇒

−
∑m

j=1 βj (x, u)Ggj (gj(u)) ≧ 0 (5)
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hold, then (f, g) is said to be semi-pseudo-G-V -
type I objective and constraint functions at u on
X with respect to η (and with respect to Gf and
Gg). If (4) and (5) are satisfied for each u ∈ X,
then (f, g) is said to be semi-pseudo-G-V -type I
on X with respect to η (and with respect to Gf

and Gg).
If the second (implied) inequalities in (4) and (5)
are strict for all x ∈ X, x 6= u, then (f, g) is
said to be semi-strictly-pseudo-G-V -type I objec-
tive and constraint functions at u on X with re-
spect to η (and with respect to Gf and Gg).

Now, we give an example of semi-pseudo-G-
V -type I objective and constraint functions with
respect to η not being semi-G-V -type I objective
and constraint functions with respect to the same
function η.

Example 1. Let f : R → R2 and g : R → R

be defined as follows: f (x) = (f1 (x) , f2 (x)) =(
arctan (e−x |x|) , e−x2

)
and g (x) = g1 (x) =

ex
2+2|x| − 1. We show that (f, g) is semi-pseudo-

G-V -type I objective and constraint functions
with respect to η at u = 0 on X = R. In or-
der to do this, we set

η (x, u) = x− u,

Gf1 (t) = tan (t) ,

Gf2 (t) = ln (t) ,

Gg1 (t) = ln (t+ 1) ,

α1 (x, u) = ex
(
x2 + 1

)
,

α2 (x, u) =
1

2 (x2 + 1)
,

β1 (x, u) = 1.

Then, by Definition 7, it follows that (f, g) is
semi-pseudo-G-V -type I objective and constraint
functions with respect to η (and with respect to
Gf and Gg) at u = 0 on R. Further, by Defini-
tion 6, it follows that (f, g) is not semi-G-V -type
I objective and constraint functions with respect
to the same function η at u = 0 on R.

Definition 8. If there exist a differentiable
vector-valued function Gf = (Gf1 , ..., Gfk) :

R → Rk such that any its component Gfi :
Ifi(X) → R is a strictly increasing function on
its domain, a differentiable vector-valued func-
tion Gg = (Gg1 , ..., Ggm) : R→ Rm such that any
its component Ggj : Igj (X) → R is a strictly in-
creasing function on its domain, functions αi, βj :
X ×X → R+ \ {0}, i = 1, ..., k, j = 1, ...,m, and
a vector-valued function η : X × X → Rn such

that, for all x ∈ X, the following relations
∑k

i=1 αi (x, u) [Gfi (fi(x)) −Gfi (fi(u))] ≦ 0

=⇒
∑k

i=1G
′
fi

(fi(u)) f+i (u; η(x, u)) ≦ 0, (6)

−
∑m

j=1 βj (x, u)Ggj (gj(u)) ≦ 0

=⇒
∑m

j=1G
′
gj

(gj(u)) g+j (u; η(x, u)) ≦ 0 (7)

hold, then (f, g) is said to be semi-quasi-G-V -
type I objective and constraint functions at u on
X with respect to η (and with respect to Gf and
Gg). If (6) and (7) are satisfied for each u ∈ X,
then (f, g) is said to be semi-quasi G-V -type I ob-
jective and constraint functions on X with respect
to η (and with respect to Gf and Gg).

Example 2. Let f : R → R2 and g : R → R

be defined as follows: f (x) = (f1 (x) , f2 (x)) =(
e−|x| , ex

3
)

and g (x) = g1 (x) = e
1

2
(|x|+x) − 1.

We prove that (f, g) is semi-quasi-G-V -type I ob-
jective and constraint functions with respect to η
at u = 0 on X = R. In order to do this, we set

η (x, u) = − |x− u| ,

Gf1 (t) = ln (t) ,

Gf2 (t) = ln (t) ,

Gg1 (t) = ln (t+ 1) ,

α1 (x, u) = 1, α2 (x, u) =
1

3 (x4 + 1)
, β1 (x, u) = 1.

Then, by Definition 8, (f, g) is semi-quasi-G-V -
type I objective and constraint functions at u = 0
on R with respect to η given above (and with re-
spect to Gf and Gg also given above).

Definition 9. If there exist a differentiable
vector-valued function Gf = (Gf1 , ..., Gfk) :

R → Rk such that any its component Gfi :
Ifi(X) → R is a strictly increasing function on
its domain, a differentiable vector-valued func-
tion Gg = (Gg1 , ..., Ggm) : R→ Rm such that any
its component Ggj : Igj (X) → R is a strictly in-
creasing function on its domain, functions αi, βj :
X ×X → R+ \ {0}, i = 1, ..., k, j = 1, ...,m, and
a vector-valued function η : X × X → Rn such
that, for all x ∈ X, the following relations

∑k
i=1G

′
fi

(fi(u)) f+i (u; η(x, u)) ≧ 0 =⇒
∑k

i=1 αi (x, u) [Gfi (fi(x)) −Gfi (fi(u))] ≧ 0,(8)

−
∑m

j=1 βj (x, u)Ggj (gj(u)) ≦ 0 =⇒
∑m

j=1G
′
gj

(gj(u)) g+j (u; η(x, u)) ≦ 0 (9)

hold, then (f, g) is said to be semi-pseudo-quasi-
G-V -type I objective and constraint functions at
u on X with respect to η (and with respect to Gf

and Gg). If (8) and (9) are satisfied for each
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u ∈ X, then (f, g) is said to be semi-pseudo-
quasi-G-V -type I objective and constraint func-
tions on X with respect to η (and with respect to
Gf and Gg).
If the second (implied) inequality in (8) is strict
for all x ∈ X, x 6= u, then (f, g) is said to be
semi-strictly-pseudo-quasi-G-V -type I at u on X
with respect to η (and with respect to Gf and Gg).

Example 3. Let f : R → R2 and g : R → R

be defined as follows: f (x) = (f1 (x) , f2 (x)) =(
arctan (e−x |x|) , e−x2

)
and g (x) = g1 (x) =

e
1

2
(|x|+x)−1. We prove that (f, g) is semi-pseudo-

quasi-G-V -type I objective and constraint func-
tions with respect to η at u = 0 on X = R. In
order to do this, we set

η (x, u) = − |x− u| ,

Gf1 (t) = tan (t) , Gf2 (t) = ln (t) ,

Gg1 (t) = ln (t+ 1) ,

α1 (x, u) = ex
(
x2 + 1

)
,

α2 (x, u) =
1

2 (x4 + 1)
,

β1 (x, u) = 1.

Then, by Definition 9, (f, g) is semi-pseudo-
quasi-G-V -type I objective and constraint func-
tions at u = 0 on R with respect to η given above.
Note that (f, g) is not semi-G-V -type I objective
and constraint functions at u = 0 on R with re-
spect to η given above (and with respect to Gf

and Gg also given above).

Definition 10. If there exist a differentiable
vector-valued function Gf = (Gf1 , ..., Gfk) :

R → Rk such that any its component Gfi :
Ifi(X) → R is a strictly increasing function on
its domain, a differentiable vector-valued func-
tion Gg = (Gg1 , ..., Ggm) : R→ Rm such that any
its component Ggj : Igj (X) → R is a strictly in-
creasing function on its domain, functions αi, βj :
X ×X → R+ \ {0}, i = 1, ..., k, j = 1, ...,m, and
a vector-valued function η : X × X → Rn such
that, for all x ∈ X, the following relations

∑k
i=1 αi (x, u) [Gfi (fi(x)) −Gfi (fi(u))] ≦ 0

=⇒
∑k

i=1G
′
fi

(fi(u)) f+i (u; η(x, u)) ≦ 0,(10)

∑m
j=1G

′
gj

(gj(u)) g+j (u; η(x, u)) ≧ 0 =⇒

−
∑m

j=1 βj (x, u)Ggj (gj(u)) ≧ 0 (11)

hold, then (f, g) is said to be semi-quasi-pseudo-
G-V -type I objective and constraint functions at
u on X with respect to η (and with respect to
Gf and Gg). If (10) and (11) are satisfied for

each u ∈ X, then (f, g) is said to be semi-quasi-
pseudo-G-V -type I objective and constraint func-
tions on X with respect to η (and with respect to
Gf and Gg). If the second (implied) inequality in
(11) is strict for all x ∈ X, x 6= u, then (f, g) is
said to be semi-quasi-strictly-pseudo-G-V -type I
at u on X with respect to η (and with respect to
Gf and Gg).

Now, we give an example of semi-quasi-
pseudo-G-V -type I objective and constraint func-
tions with respect to η not being semi-G-V -type
I objective and constraint functions with respect
to the same function η.

Example 4. Let f : R → R2 and g : R → R

be defined as follows: f (x) = (f1 (x) , f2 (x)) =(
e−|x| , ex

3
)
and g (x) = g1(x) = arctan(e−|x|x).

We show that (f, g) is semi-quasi-pseudo-G-V -
type I objective and constraint functions with re-
spect to η at u = 0 on X = R. In order to do
this, we set

η (x, u) = |x− u| ,

Gf1 (t) = ln(t), Gf2 (t) = ln (t) , Gg1 (t) = tan (t) ,

α1 (x, u) = 1, α2 (x, u) =
1

2 (x4 + 1)
, β1 (x, u) = 1.

Then, by Definition 10, it follows that (f, g) is
semi-quasi-pseudo-G-V -type I objective and con-
straint functions with respect to η (and with re-
spect to Gf and Gg) at u = 0 on R. Further,
by Definition 6, it follows that (f, g) is not semi-
G-V -type I objective and constraint functions at
u = 0 on R with respect to the same functions η,
Gf and Gg.

3. Optimality conditions for

directionally differentiable

multiobjective programming

In this section, we prove necessary and suffi-
cient optimality conditions for the considered di-
rectionally differentiable multiobjective program-
ming problem (VP). Before we prove necessary
optimality conditions of Fritz John type and
Karush-Kuhn-Tucker type for problem (VP), we
establish the following useful lemma:

Lemma 1. If x is a weak Pareto solution for

(VP) and gj, j ∈ J̃(x), is continuous at x, then
the system

G′
fi

(fi (x)) f+i (x; η(x, x)) < 0, i = 1, ..., k, (12)

G′
gj

(gj (x)) g+j (x; η(x, x)) < 0, j ∈ J(x) (13)

has no solution x ∈ X, where Gfi , i ∈ I, is a dif-
ferentiable real-valued strictly increasing function
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defined on Ifi(D) and Ggj , j ∈ J , is a differen-
tiable real-valued strictly increasing function de-
fined on Igj (D), such that Ggj (0) = 0, j ∈ J(x).

Proof. Let x be a weak Pareto solution in prob-
lem (VP) and suppose, contrary to the result,
that there exists x̃ ∈ X such that the inequal-
ities (12)-(13) are fulfilled. Let ϕfi (x, x̃, λ) =
Gfi (fi (x+ λη(x̃, x))) − Gfi (fi (x)), i = 1, ..., k.
We observe that this function vanishes at λ = 0.
Therefore, the right differential of ϕfi (x, x̃, λ)
with respect to λ at λ = 0 satisfies the follow-
ing relations

lim
λ→0+

ϕfi (x, x̃, λ) − ϕfi (x, x̃, 0)

λ

= lim
λ→0+

Gfi (fi (x+ λη(x̃, x))) −Gfi (fi (x))

λ

= G′
fi

(fi (x)) f+i (x; η(x, x)) < 0, i = 1, ..., k,

where the last inequality follows from (12).
Therefore ϕfi (x, x̃, λ) < 0 if λ is in some open
interval (0, δfi). Hence, it follows that

Gfi (fi (x+ λη(x̃, x))) −Gfi (fi (x)) < 0,

λ ∈ (0, δfi) , i = 1, ..., k.

Since Gfi : Ifi(X) → R, i = 1, ..., k, is a strictly
increasing function on its domain, the above in-
equality yields

fi (x+ λη(x̃, x)) < fi (x) ,

λ ∈ (0, δfi) , i = 1, ..., k.

Similarly, we define ϕgj (x, x̃, λ)
= Ggj (gj (x+ λη(x̃, x))) −Ggj (gj (x)), j ∈ J(x).
Hence, by (13), it follows

Ggj (gj (x+ λη(x̃, x))) < Ggj (gj (x)) ,

λ ∈
(
0, δgj

)
, j ∈ J(x). (14)

Since each Ggj : Igj (X) → R, j ∈ J , is a strictly
increasing function on its domain, (14) yields

gj (x+ λη(x̃, x)) < gj (x) ,

λ ∈
(
0, δgj

)
, j ∈ J(x).

By definition of J(x), it follows that

gj (x+ λη(x̃, x)) < 0, λ ∈
(
0, δgj

)
, j ∈ J(x).

Since gj , j ∈ J̃(x), is continuous at x, therefore,
there exists δj such that

gj (x+ λη(x̃, x)) < 0, λ ∈ (0, δj) , j ∈ J̃(x).

Let δ = min
{
δfi , i = 1, ..., k, δgj , j ∈ J(x), δj , j ∈ J̃(x)

}
,

then

(x+ λη(x̃, x)) ∈ Nδ (x) , λ ∈
(
0, δ

)
, (15)

where Nδ (x) is a neighbourhood of x.
Hence, we have that

f (x+ λη(x̃, x)) < f (x) , (16)

gj (x+ λη(x̃, x)) < 0, j ∈ J(x), (17)

gj (x+ λη(x̃, x)) < 0, j ∈ J̃(x). (18)

By (17) and, (18), it follows that

(x+ λη(x̃, x)) ∈ Nδ (x) ∩D, λ ∈
(
0, δ

)
,

and this means that x+ λη(x̃, x) is a feasible so-
lution in problem (VP). Hence, (16) is a contra-
diction to the assumption that x is a weak Pareto
solution in problem (VP). Thus, there exists no
x ∈ X satisfying the system (12)-(13). The proof
of this lemma is completed. �

In order to prove the next result, we need the
following lemma:

Lemma 2. [26] Let S be a nonempty set in Rn

and ψ : S → Rm be a pre-invex function on S.
Then either

ψ(x) < 0 has a solution x ∈ S

or

λTψ(x) ≧ 0 for all x ∈ S, for some λ ∈ Rm
+\{0},

but both alternatives are never true.

Now, we give the necessary optimality criteria
of Fritz John type for x ∈ D to be a weak Pareto
optimal solution in the considered directionally
differentiable multiobjective programming prob-
lem in which the right differentials of f and gJ(x)
at x are pre-invex functions.

Theorem 1. (G-Fritz John Type Necessary Op-
timality Conditions). Let x ∈ D be a weak
Pareto optimal solution for problem (VP). Fur-

ther, assume that gj, j ∈ J̃(x), is continu-
ous, f and g are directionally differentiable at x
with f ′ (x, η(x, x)), g′

J(x) (x, η(x, x)) are pre-invex

functions of x on D. Then, there exist λ ∈ Rk,
ξ ∈ Rm such that the following conditions

∑k
i=1 λiG

′
fi

(fi (x)) f+i (x; η(x, x))

+
∑m

j=1 ξjG
′
gj

(gj (x)) g+j (x; η(x, x)) ≧ 0,

∀x ∈ D, (19)

ξjGgj (gj (x)) = 0, j ∈ J , (20)

(
λ, ξ

)
≥ 0 (21)

hold, where Gfi , i ∈ I, is a differentiable
real-valued strictly increasing function defined
on Ifi(D) and Ggj , j ∈ J , is a differentiable
real-valued strictly increasing function defined on
Igj (D), such that Ggj (0) = 0, j ∈ J(x).
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Proof. If x is a weak Pareto solution for problem
(VP) then, by Lemma 1, the system

G′
fi

(fi (x)) f+i (x; η(x, x)) < 0, i = 1, ..., k,

G′
gj

(gj (x)) g+j (x; η(x, x)) < 0, j ∈ J(x)

has no solution x ∈ D. Since the right differential
of f , gJ(x) are pre-invex functions on D, there-

fore, by Lemma 2, there exist λ ∈ Rk, λ ≧ 0,
µj ≧ 0 for j ∈ J(x),

(
λ, µ

)
6= 0, such that the

inequality
∑k

i=1 λiG
′

fi
(fi (x)) f+i (x; η(x, x))

+
∑

j∈J(x) µjG
′

gj
(gj (x)) g+j (x; η(x, x)) ≧ 0 (22)

hold for all x ∈ D. We put ξj = µj for j ∈ J(x)

and ξj = 0 for j ∈ J̃(x). Hence, (22) im-
plies that (19) is satisfied. Using the feasibility
of x together with the assumption Ggj (0) = 0,
j ∈ J(x), we obtain that the relation (20) is
satisfied. This completes the proof of this the-
orem. �

In order to prove the next result, we need the
following G-constraint qualification (G-CQ).

Definition 11. It is said that the directionally
differentiable multiobjective programming prob-
lem (VP) satisfies the G-constraint qualification
(G-CQ) at x ∈ D if there exists x̃ ∈ D such that
G′

gj
(gj (x)) g+j (x; η(x̃, x)) < 0, j ∈ J(x).

Now, the following Karush-Kuhn-Tucker type
necessary optimality conditions for the consid-
ered vector optimization problem (VP) are satis-
fied:

Theorem 2. (G-Karush-Kuhn-Tucker Type
Necessary Optimality Conditions). Let x be a
weak Pareto solution for the directionally dif-
ferentiable multiobjective programming problem

(VP) and gj be continuous for j ∈ J̃(x). Fur-
ther, assume that f , g are directionally differ-
entiable at x with f ′ (x, η(x, x)), g′

J(x) (x, η(x, x))

being pre-invex functions of x on D, Gfi , i ∈ I,
is a differentiable real-valued strictly increasing
function defined on Ifi(D) and Ggj , j ∈ J , is a
differentiable real-valued strictly increasing func-
tion defined on Igj (D), such that Ggj (0) = 0,
j ∈ J(x). If the G-constraint qualification (G-
CQ) is satisfied at x for problem (VP) (with Gg),

then there exist λ ∈ Rk, ξ ∈ Rm such that the fol-
lowing conditions

∑k
i=1 λiG

′
fi

(fi (x)) f+i (x; η(x, x))

+
∑m

j=1 ξjG
′
gj

(gj (x)) g+j (x; η(x, x)) ≧ 0,

∀x ∈ D, (23)

ξjGgj (gj (x)) = 0, j ∈ J , (24)

λ ≥ 0, ξ ≧ 0 (25)

hold.

Proof. Let the constraint qualification (G-CQ)
be satisfied at x for the considered directionally
differentiable multiobjective programming prob-
lem (VP). Suppose, contrary to the result, that
λ = 0. Hence, by the G-Fritz John type nec-
essary optimality condition (19) (Theorem 1), it
follows that
∑

j∈J(x)

ξjG
′
gj

(gj (x)) g+j (x; η(x, x)) ≧ 0, ∀x ∈ D.

(26)
By assumption, the constraint qualification
(G-CQ) is satisfied at x for problem (VP).
Hence, there exist x̃ ∈ D such that
G′

gj
(gj (x)) g+j (x, η(x̃, x)) < 0, j ∈ J(x). Thus,

the following inequality
∑

j∈J(x)

ξjG
′
gj

(gj (x)) g+j (x; η(x̃, x)) < 0 (27)

holds. Then x̃ ∈ D implies that the inequality
(27) contradicts (26). Hence, λ 6= 0 and, there-
fore, the proof of this theorem is completed. �

We now prove the sufficiency of the G-Karush-
Kuhn-Tucker type necessary optimality condi-
tions.

Theorem 3. (Sufficient optimality conditions).
Let x ∈ D, Gf = (Gf1 , ...Gfk) be a differentiable
vector-valued function such that each its Gfi ,
i ∈ I, is a strictly increasing function defined
on Ifi(D), Gg = (Gg1 , ...Ggm) be a differentiable
vector-valued function such that each its compo-
nent Ggj , j ∈ J , is a strictly increasing function
defined on Igj (D) with Ggj (0) = 0, j ∈ J . As-

sume that there exist vectors λ ∈ Rk and ξ ∈ Rm

such that the G-Karush-Kuhn-Tucker type neces-
sary optimality conditions (23)-(25) are satisfied
at x with functions Gf and Gg. Furthermore, as-
sume that (f, g) is semi-G-V -type I objective and
constraint functions at x on D with respect to η
and with respect to Gf and Gg. If the Lagrange

multiplier λ is assumed to satisfy λ > 0, then x

is an efficient solution in problem (VP).

Proof. Let x ∈ D. Further, assume that there
exist a differentiable vector-valued function Gf =
(Gf1 , ...Gfk) such that each its Gfi , i ∈ I, is
a strictly increasing function defined on Ifi(D),
and a differentiable vector-valued function Gg =
(Gg1 , ...Ggm) such that each its component Ggj ,
j ∈ J , is a strictly increasing function defined on
Igj (D) with Ggj (0) = 0, j ∈ J . Furthermore, as-

sume that there exist vectors λ ∈ Rk and ξ ∈ Rm
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such that theG-Karush-Kuhn-Tucker type neces-
sary optimality conditions (23)-(25) are fulfilled
at x with functions Gf and Gg.

We proceed by contradiction. Suppose, con-
trary to the result, that x is not an efficient so-
lution in problem (VP). Thus, by Definition 4, it
follows that there exists x̃ ∈ D such that

f(x̃) ≤ f(x). (28)

By assumption, (f, g) is vector semi-G-V -type I
at x on D (with respect to η and with respect to
Gf and Gg). Then, by Definition 6, the following
inequalities

Gfi (fi(x)) −Gfi (fi(x))

−αi (x, x)G′
fi

(fi(x)) f+i (x; η(x, x)) ≧ 0,

i = 1, ..., k,

−Ggj (gj(x)) ≧ βj (x, x)G′
gj

(gj(x)) g+j (x; η(x, x)) ,

j = 1, ...,m

are satisfied for all x ∈ D. Since the inequalities
above are fulfilled for all x ∈ D, therefore, they
are also satisfied for x = x̃. Thus,

Gfi (fi(x̃)) −Gfi (fi(x))

−αi (x̃, x)G′
fi

(fi(x)) f+i (x; η(x̃, x)) ≧ 0,

i = 1, ..., k, (29)

−Ggj (gj(x)) ≧ βj (x̃, x)G
′

gj
(gj(x)) g

+

j (x; η(x̃, x)) ,

j = 1, ...,m. (30)

By Definition 6, the functions Gfi : Ifi(D) → R,
i ∈ I, are strictly increasing on their domains.
Hence, (28) yields

Gfi (fi (x̃)) ≦ Gfi (fi (x)) , i = 1, ..., k, (31)

but for at least i∗ ∈ I,

Gfi∗ (fi∗ (x̃)) < Gfi∗ (fi∗ (x)) . (32)

Combining (29), (31) and (32), we get

αi (x̃, x)G′
fi

(fi(x)) f+i (x; η(x̃, x)) ≦ 0,

i = 1, ..., k, (33)

but for at least i∗ ∈ I,

αi∗ (x̃, x)G′
fi∗

(fi∗(x)) f+i∗ (x; η(x̃, x)) < 0. (34)

By Definition 6, it follows that αi (x̃, x) > 0,
i = 1, ..., k. Therefore, (33) and (34) imply, re-
spectively,

G′
fi

(fi(x)) f+i (x; η(x̃, x)) ≦ 0, i = 1, ..., k, (35)

G′
fi∗

(fi∗(x)) f+i∗ (x; η(x̃, x)) < 0 for some i∗ ∈ I.

(36)
Since the vector of the Lagrange multipliers λ as-
sociated to the objective function is assumed to
satisfy λ > 0, (35) and (36) yield, respectively,

λiG
′
fi

(fi(x)) f+i (x; η(x̃, x)) ≦ 0, i = 1, ..., k,

λiG
′
fi∗

(fi∗(x)) f+i∗ (x; η(x̃, x)) < 0 for some i∗ ∈ I.

Adding both sides of the above inequalities, we
get

k∑

i=1

λiG
′
fi

(fi(x)) f+i (x; η(x̃, x)) < 0. (37)

Using the G-Karush-Kuhn-Tucker type necessary
optimality condition (25) together with (30), we
obtain

−ξjGgj (gj(x))

≧ ξjβj (x̃, x)G′
gj

(gj(x)) g+j (x; η(x̃, x)) ,

j = 1, ...,m. (38)

By the G-Karush-Kuhn-Tucker type necessary
optimality condition (24), it follows that

ξjβj (x̃, x)G′
gj

(gj(x)) g+j (x; η(x̃, x)) ≦ 0,

j = 1, ...,m. (39)

By Definition 6, it follows that βj (x̃, x) > 0,
j = 1, ...,m. Hence, (39) yields

ξjG
′
gj

(gj(x)) g+j (x; η(x̃, x)) ≦ 0, j = 1, ...,m.

Adding both sides of the above inequalities, we
get

m∑

j=1

ξjG
′
gj

(gj(x)) g+j (x; η(x̃, x)) ≦ 0. (40)

Then, adding both sides of (37) and (40), we ob-
tain that the following inequality

k∑

i=1

λiG
′
fi

(fi(x)) f+i (x; η(x̃, x))

+
m∑

j=1

ξjG
′
gj

(gj(x)) g+j (x; η(x̃, x)) < 0

holds, which contradicts the G-Karush-Kuhn-
Tucker type necessary optimality condition (23).
This means that x is an efficient solution in prob-
lem (VP) and completes the proof of this theo-
rem. �

Remark 2. In order to prove the analogous re-
sult for x ∈ D to be a weak efficient solution in
problem (VP), it is sufficient that the vector of
the Lagrange multipliers λ associated to the ob-
jective function is assumed to satisfy λ ≥ 0.

Now, we illustrate the sufficient optimality
conditions established in Theorem 3 by an ex-
ample of a nonconvex directionally differentiable
vector optimization problem.
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Example 5. Consider the following directionally
differentiable vector optimization problem

V -minimize f (x) = (ln (|x| + 1) , arctan (e−x |x|))
g1 (x) = arctan

(
x2 − |x|

)
≦ 0.

(VP1)

Note that D = {x ∈ R : −1 ≦ x ≦ 1} and x =
0 is a feasible solution in the considered direc-
tionally differentiable vector optimization prob-
lem (VP1). It can be proved, by Definition 6,
that the functions constituting problem (VP1) are
semi-G-V -type I objective and constraint func-
tions at x on D with respect to the same function
η, where

η (x, u) = x− u,

Gf1 (t) = et, Gf2 (t) = tan (t) , Gg1 (t) = tan (t) ,

α1 (x, u) = 1, α2 (x, u) = eu−x, β1 (x, u) = 1.

Thus, the G-Karush-Kuhn-Tucker type necessary
optimality conditions (23)-(25) are satisfied at x
with the functions Gf and Gg defined above and

with the Lagrange multiplier λ > 0. Since all hy-
potheses of Theorem 3 are fulfilled, by Theorem
3, x = 0 is an efficient solution in the consid-
ered directionally differentiable vector optimiza-
tion problem (VP1).

Before we prove the sufficient optimality con-
ditions for x ∈ D to be (weakly) efficient in the
considered directionally differentiable vector op-
timization problem (VP) under assumptions that
the functions constituting the considered vec-
tor optimization problem are generalized semi-G-
type I, we introduce some useful denotations. Let
x be such a feasible solution in problem (VP) at
which theG-Karush-Kuhn-Tucker type necessary
optimality conditions (23)-(25) are fulfilled with
the Lagrange multipliers λ ∈ Rk and ξ ∈ Rm.
Further, let us denote I (x) =

{
i ∈ I : λi > 0

}
.

Then,
(
fI(x), gJ(x)

)
denotes vectors of objective

function components fi, i ∈ I (x) and constraint
function components gj , j ∈ J (x), respectively.
In other words,

(
fI(x), gJ(x)

)
denotes vectors of

such objective function components and such
constraint function components for which the as-
sociated Lagrange multiplier is positive.

Theorem 4. (Sufficient optimality conditions).
Let x ∈ D, Gf = (Gf1 , ..., Gfk) be a differentiable
vector-valued function such that each its Gfi ,
i ∈ I, is a strictly increasing function defined
on Ifi(D), Gg = (Gg1 , ..., Ggm) be a differentiable
vector-valued function such that each its compo-
nent Ggj , j ∈ J , is a strictly increasing function
defined on Igj (D) with Ggj (0) = 0, j ∈ J . As-

sume that there exist vectors λ ∈ Rk and ξ ∈ Rm

such that the G-Karush-Kuhn-Tucker type nec-
essary optimality conditions (23)-(25) are satis-
fied at x with functions Gf and Gg and with the

Lagrange multipliers λ ∈ Rk and ξ ∈ Rm. Fur-
ther, assume that one of the following conditions
is satisfied:

a)
(
fI(x), gJ(x)

)
is semi-strictly-pseudo G̃-V -

type I objective and constraint functions

at x on D with respect to η, G̃f =(
G̃f1 , ..., G̃fk

)
and G̃g =

(
G̃g1 , ..., G̃gm

)
,

where G̃fi = λiGfi, i ∈ I (x), G̃gj =

ξjGgj , j ∈ J(x),

b)
(
fI(x), gJ(x)

)
is semi-strictly-pseudo-quasi

G̃-V -type I objective and constraint func-

tions at x on D with respect to η, G̃f =(
G̃f1 , ..., G̃fk

)
and G̃g =

(
G̃g1 , ..., G̃gm

)
,

where G̃fi = λiGfi, i ∈ I (x), G̃gj =

ξjGgj , j ∈ J(x),

c)
(
fI(x), gJ(x)

)
is semi-quasi-strictly-pseudo

G̃-V -type I at u on X with respect to

η, G̃f =
(
G̃f1 , ..., G̃fk

)
and G̃g =

(
G̃g1 , ..., G̃gm

)
, where G̃fi = λiGfi , i ∈

I (x), G̃gj = ξjGgj , j ∈ J(x).

Then x is an efficient solution in problem
(VP).

Proof. We now prove the theorem under hy-
pothesis a). Suppose, contrary to the result, that
x is not an efficient solution of problem (VP).
Then, there exists x̃ ∈ D such that

fi (x̃) ≦ fi (x) , i ∈ I, (41)

fi∗ (x̃) < fi∗ (x) , for at least one i∗ ∈ I. (42)

By assumption, (f, g) is semi-strictly-pseudo-G̃-
V -type I objective and constraint functions at x

on D with respect to η, G̃f and G̃g. Note that, if
Gfi , i ∈ I (x), and Ggj , j ∈ J(x), are strictly in-

creasing functions on their domains, then G̃fi =

λiGfi , i ∈ I (x), and G̃gj = ξjGgj , j ∈ J(x), are
also strictly increasing functions on these sets.
Further, by the definition of semi-strictly-pseudo-

G̃-V -type I objective and constraint functions
(see Definition 7), it follows that there exist func-
tions αi, βj : X × X → R+ \ {0}, i = 1, ..., k,
j = 1, ...,m. We multiply each inequality (41)
and (42) by the associated αi (x̃, x) > 0, i ∈ I.
Adding both sides of (41) and (42), and then
adding the obtained inequalities, we get
∑

i∈I(x)

αi (x̃, x)
[
λiGfi (fi(x̃)) − λiGfi (fi(x))

]
≦ 0.

(43)
By the G-Karush-Kuhn-Tucker necessary opti-
mality condition (24), it follows that

βj (x̃, x) ξjGgj (gj(x)) = 0, j ∈ J . (44)
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Adding both sides of the inequalities (44), we get
∑

j∈J(x)

βj (x̃, x) ξjGgj (gj(x)) = 0. (45)

Since (f, g) is semi-strictly-pseudo-G̃-V -type I
objective and constraint functions at x on D

(with respect to η), (43) and (45) imply, respec-
tively,

∑

i∈I(x)

λiG
′
fi

(fi(x)) f+i (x; η(x̃, x)) < 0, (46)

∑

j∈J(x)

ξjG
′
gj

(gj(x)) g+j (x; η(x̃, x)) < 0. (47)

Taking into account the Lagrange multipliers
equal to 0 and then adding both sides of the
inequalities above, we get that the following in-
equality

∑k
i=1 λiG

′
fi

(fi(x)) f+i (x; η(x̃, x))

+
∑m

j=1 ξjG
′
gj

(gj(x)) g+j (x; η(x̃, x)) < 0 (48)

holds, contradicting the G-Karush-Kuhn-Tucker
necessary optimality condition (23). Hence, the
proof of this theorem under hypothesis a) is com-
pleted.

The proofs of this theorem under hypotheses
b) and c) are similar and, therefore, they are
omitted in the paper. �

In order to prove that x is a weakly efficient
solution in problem (VP), the hypotheses of The-
orem 4 can be weakened.

Theorem 5. (Sufficiency). Let x ∈ D. As-
sume that there exist a differentiable real-valued
strictly increasing function Gfi , i ∈ I, defined
on Ifi(D), a differentiable real-valued strictly in-
creasing function Ggj , j ∈ J , defined on Igj (D)

with Ggj (0) = 0, j ∈ J , and vectors λ ∈ Rk

and ξ ∈ Rm such that the G-Karush-Kuhn-
Tucker type necessary optimality conditions (23)-
(25) are satisfied at x.

Further, assume that one of the following con-
ditions is satisfied:

a)
(
fI(x), gJ(x)

)
is semi-pseudo-G̃-V -type I

objective and constraint functions at x on

D (with respect to η), where G̃fi = λiGfi ,

i ∈ I (x), G̃gj = ξjGgj , j ∈ J(x),

b)
(
fI(x), gJ(x)

)
is semi-pseudo-quasi-G̃-V -

type I objective and constraint functions
at x on D (with respect to η), where

G̃fi = λiGfi , i ∈ I (x), G̃gj = ξjGgj ,
j ∈ J(x),

c)
(
fI(x), gJ(x)

)
is semi-quasi-pseudo-G̃-V -

type I at u on X (with respect to η), where

G̃fi = λiGfi , i ∈ I (x), G̃gj = ξjGgj ,
j ∈ J(x).

Then x is a weakly efficient solution in prob-
lem (VP).

Proof. Proof of this theorem is similar to that
one for Theorem 4 and, therefore, it is omitted
in the paper. �

4. G-Mond-Weir type duality

In this section, for the considered directionally
differentiable multiobjective programming prob-
lem (VP), we define the following vector dual
problem in the sense of Mond-Weir:

f(y) = (f1(y), f2(y), ..., fk(y)) → max
k∑

i=1

λiG
′
fi

(fi(y)) f+i (x; η(x, y))

+
m∑

j=1

ξjG
′
gj

(gj(y)) g+j (x; η(x, y)) ≧ 0, ∀x ∈ D,

ξjGgj (gj (y)) ≧ 0, j = 1, ...,m,

y ∈ X, λ ∈ Rk, λ ≥ 0, λe = 1,

ξ ∈ Rm, ξ ≧ 0, (G-VMWD)

where e = (1, ..., 1) ∈ Rk, Gf = (Gf1 , ..., Gfk),
where each Gfi , i ∈ I, is a differentiable real-
valued strictly increasing function defined on
Ifi(X), and Gg = (Gg1 , ..., Ggm), where each Ggj ,
j ∈ J , is a differentiable real-valued strictly in-
creasing function defined on Igj (X). We call
(G-VMWD) the G-Mond-Weir vector dual prob-
lem (with respect to η, Gf and Gg) for the con-
sidered directionally differentiable multiobjective
programming problem (VP).

Let W denote the set of all feasible points
of (G-VMWD) and prXW be the projection
of the set W on X, that is, prXW :=
{y ∈ X : (y, λ, ξ) ∈W}. Moreover, for a given
(y, λ, ξ) ∈ W , we denote by I(y) :=
{i ∈ I : λi > 0} and, moreover, by J (y) :=
{j ∈ J : ξj > 0}. Then,

(
fI(y), gJ(y)

)
denotes vec-

tors of fi, i ∈ I (y) and gj , j ∈ J (y), respectively.
Now, we prove duality results between the pri-

mal multiobjective programming problem (VP)
and its vector dual problem in the sense of Mond-
Weir under assumption that the functions consti-
tuting these problems are semi-G-V -type I objec-
tive and constraint functions.

Theorem 6. (G-weak duality): Let x and
(y, λ, ξ) be any arbitrary feasible solutions in the
considered multiobjective programming problem
(VP) and its G-Mond-Weir vector dual problem
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(G-VMWD) with respect to η, Gf and Gg, respec-
tively. Further, we assume that (f, g) is semi-G-
V -type I objective and constraint functions at y
on D∪prXW with respect to η, Gf and Gg. Then

f (x) ≮ f (y) .

Proof. Let x and (y, λ, ξ) be any arbitrary feasi-
ble solutions in problems (VP) and (G-VMWD)
(with respect to η, Gf and Gg), respectively. By
assumption, (f, g) is vector semi-G-V -type I at
y on D ∪ prXW with respect to η (and with re-
spect to η, Gf and Gg). Then, by Definition 6,
the following inequalities

Gfi (fi(z)) −Gfi (fi(y))

−αi (z, y)G′
fi

(fi(y)) f+i (y; η(z, y)) ≧ 0,

i = 1, ..., k,

−Ggj (gj(y)) ≧ βj (z, y)G′
gj

(gj(y)) g+j (y; η(z, y)) ,

j = 1, ...,m

are satisfied for all z ∈ D ∪ prXW . Therefore,
they are also satisfied for z = x ∈ D. Thus, the
above inequalities yield

Gfi (fi(x)) −Gfi (fi(y))

−αi (x, y)G′
fi

(fi(y)) f+i (y; η(x, y)) ≧ 0,

i = 1, ..., k, (49)

−Ggj (gj(y))

≧ βj (x, y)G′
gj

(gj(y)) g+j (y; η(x, y)) ,

j = 1, ...,m. (50)

We proceed by contradiction. Suppose, contrary
to the result, that

f (x) < f (y) .

Thus,

fi (x) < fi (y) , i = 1, ..., k.

Taking into account the increasing property of
each function Gfi , i = 1, ..., k, the inequalities
above imply

Gfi (fi (x)) < Gfi (fi (y)) , i = 1, ..., k. (51)

Combining (49) and (51), we get

αi (x, y)G′
fi

(fi(y)) f+i (y; η(x, y)) < 0, i = 1, ..., k.

Since αi (x, y) > 0, i = 1, ..., k, above inequalities
yield

G′
fi

(fi(y)) f+i (y; η(x, y)) < 0, i = 1, ..., k. (52)

Multiplying each inequality (52) by the associ-
ated Lagrange multiplier λi, we get

λiG
′
fi

(fi(y)) f+i (y; η(x, y)) ≦ 0, i = 1, ..., k,
(53)

and for the least one i∗ ∈ I,

λi∗G
′
fi∗

(fi(y)) f+i∗ (y; η(x, y)) < 0. (54)

Adding both sides of (53) and (54), we obtain

k∑

i=1

λiG
′
fi

(fi(y)) f+i (y; η(x, y)) < 0. (55)

Multiplying each inequality (50) by the associ-
ated Lagrange multiplier ξj , we get

−ξjGgj (gj(y))

≧ βj (x, y) ξjG
′
gj

(gj(y)) g+j (y; η(x, y)) ,

j = 1, ...,m.

The second constraint of dual problem (G-
VMWD) implies

βj (x, y) ξjG
′
gj

(gj(y)) g+j (y; η(x, y)) ≦ 0,

j = 1, ...,m. (56)

Since βj (x, y) > 0, j = 1, ...,m, (56) yields

ξjG
′
gj

(gj(y)) g+j (y; η(x, y)) ≦ 0, j = 1, ...,m.

(57)
Adding both sides of (57), we obtain

m∑

j=1

ξjG
′
gj

(gj(y)) g+j (y; η(x, y)) ≦ 0. (58)

Combining (55) and (58), we get that the follow-
ing inequality

k∑

i=1

λiG
′
fi

(fi(y)) f+i (y; η(x, y))

+

m∑

j=1

ξjG
′
gj

(gj(y)) g+j (y; η(x, y)) < 0

holds, contradicting the first constraint of dual
problem (G-VMWD). Thus, the proof of this the-
orem is completed. �

It is possible to prove a stronger result if we as-
sume stronger semi-G-V -type I assumptions im-
posed on the functions constituting the consid-
ered vector optimization problem (VP).

Theorem 7. (G-weak duality): Let x and
(y, λ, ξ) be any feasible solutions in the consid-
ered multiobjective programming problem (VP)
and its G-Mond-Weir vector dual problem (G-
VMWD) (with respect to η, Gf and Gg), re-
spectively. Further, assume that (f, g) is semi-
strictly-G-V -type I objective and constraint func-
tions at y on D ∪ prXW with respect to η, Gf

and Gg. Then

f (x) � f (y) .

Proof. Since proof of this theorem is similar to
the proof of Theorem 6, therefore, it is omitted
in the paper. �
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Theorem 8. (G-strong duality). Let x ∈ D be a
(weak) Pareto solution in the primal multiobjec-
tive programming problem (VP), the G-constraint
qualification (G-CQ) be satisfied at x. Then there
exist λ ∈ Rk

+, ξ ∈ Rm
+ , λ ≥ 0, ξ ≧ 0 such that(

x, λ, ξ
)
is feasible in the G-Mond-Weir vector

dual problem (G-VMWD) (with respect to η, Gf

and Gg). If also G-weak duality (Theorem 6 or

Theorem 7, respectively) holds, then
(
x, λ, ξ

)
is a

(weakly) efficient solution of a maximum type in
(G-VMWD), and the objective functions values
are equal in problems (VP) and (G-VMWD).

Proof. By assumption, x is a (weak) Pareto so-
lution in the primal multiobjective programming
problem (VP). Then, there exist λ ∈ Rk

+, ξ ∈

Rm
+ , λ ≥ 0, ξ ≧ 0 such that the G-Karush-Kuhn-

Tucker conditions (23)-(25) hold with functions
Gf and Gg. Hence, the feasibility of

(
x, λ, ξ

)
in

dual problem (G-VMWD) (with respect to η, Gf

and Gg) follows from the G-Karush-Kuhn-Tucker
conditions (23)-(25). Moreover, if weak duality
(Theorem 6 or Theorem 7, respectively) holds,
then

(
x, λ, ξ

)
is a (weak) efficient solution of a

maximum type in (G-VMWD). �

Theorem 9. (G-Converse duality): Let
(
y, λ, ξ

)

be a feasible solution of the G-Mond-Weir vector
dual problem (G-VMWD) (with respect to η, Gf

and Gg) with y ∈ D. Further, assume that one
of the following hypotheses is fulfilled:

a) (f, g) is (semi-G-V -type I) semi-strictly-
G-V -type I objective and constraint func-
tions at y on D ∪ prXW with respect to
η, Gf and Gg

b)
(
fI(y), gJ(y)

)
is (semi-pseudo-G̃-V -type I)

semi-strictly-pseudo-G̃-V -type I objective
and constraint functions at y on D ∪

prXW with respect to η, where G̃fi =

λiGfi, i ∈ I (y), G̃gj = ξjGgj , j ∈ J(y),

c)
(
fI(y), gJ(y)

)
is (semi-pseudo-quasi-G̃-V -

type I) semi-strictly-pseudo-quasi-G̃-V -
type I objective and constraint functions
at y on D∪prXW with respect to η, where

G̃fi = λiGfi, i ∈ I (y), G̃gj = ξjGgj ,
j ∈ J(y). Then y is (a weakly efficient
solution) an efficient solution in problem
(VP).

Proof. Proof of this theorem under hypothesis
a) follows directly from weak duality (see, Theo-
rem 6 or Theorem 7, respectively). �

Theorem 10. (G-Strict converse duality): Let
x and

(
y, λ, ξ

)
be feasible solutions in the consid-

ered multiobjective programming problem (VP)

and its G-Mond-Weir vector dual problem (G-
VMWD) (with respect to η, Gf and Gg), respec-
tively, such that

f (x) = f (y) . (59)

Further, assume that one of the following hy-
potheses is fulfilled:

a) (f, g) is semi-strictly-G-V -type I objec-
tive and constraint functions at y on D∪
prXW with respect to η, Gf and Gg

b)
(
fI(y), gJ(y)

)
is semi-strictly-pseudo-G̃-

V -type I objective and constraint func-
tions at y on D ∪ prXW with respect to

η, where G̃fi = λiGfi, i ∈ I (y), G̃gj =

ξjGgj , j ∈ J(y),

c)
(
fI(y), gJ(y)

)
is semi-strictly-pseudo-

quasi-G̃-V -type I objective and constraint
functions at y on D ∪ prXW with re-

spect to η, where G̃fi = λiGfi , i ∈ I (y),

G̃gj = ξjGgj , j ∈ J(y).

Then x = y. If hypothesis a) is fulfilled, then
x is an efficient solution in problem (VP) and(
y, λ, ξ

)
is an efficient solution in problem (G-

VMWD).

Proof. Now, we prove this theorem under hy-
pothesis a). Let x and

(
y, λ, ξ

)
be feasible solu-

tions in the considered multiobjective program-
ming problem (VP) and its G-Mond-Weir vector
dual problem (G-VMWD) (with respect to η, Gf

and Gg), respectively, such that the relation (59)
is fulfilled. By assumption, (f, g) is semi-G-V -
type I objective and constraint functions at y on
D ∪ prXW with respect to η, Gf and Gg. Using

the feasibility of
(
y, λ, ξ

)
in problem (G-VMWD)

with respect to η, Gf and Gg, we have

−ξjGgj (gj (y)) ≦ 0, j = 1, ...,m. (60)

Hence, by the definition of semi-strictly-G-
V -type I objective and constraint functions,
βj (x, y) > 0, j ∈ J , and, therefore, (60) yields

−βj (x, y) ξjGgj (gj (y)) ≦ 0, j ∈ J .

Adding both sides of the inequalities above, we
get

−
m∑

j=1

βj (x, y) ξjGgj (gj (y)) ≦ 0. (61)

Thus, by the definition of semi-G-V -type I objec-
tive and constraint functions, (61) implies

m∑

j=1

ξjG
′
gj

(gj(y)) g+j (u; η(x, y)) ≦ 0. (62)
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By x ∈ D and
(
y, λ, ξ

)
∈ W , the first constraint

of (G-VMWD) and (62) yield

k∑

i=1

λiG
′
fi

(fi(y)) f+i (x; η(x, y)) ≧ 0. (63)

Hence, by the definition of semi-strictly-G-V -
type I objective and constraint functions, (63)
gives

k∑

i=1

αi (x, y)λi [Gfi (fi (x)) −Gfi (fi (y))] > 0.

By definition, αi (x, y) > 0, i ∈ I (y). Since
λi > 0, i ∈ I (y), the inequality above implies
that f (x) 6= f (y), contradicting the assumption
(59). Since the hypotheses of G-weak duality are
also satisfied, by Theorem 6, it follows that x
is a weak efficient solution in problem (VP) and(
y, λ, ξ

)
is a weak efficient solution in problem

(G-VMWD). Hence, the proof of this theorem
under hypothesis a) is completed.

Now, we prove this theorem under hypothesis
b) Let x and

(
y, λ, ξ

)
be feasible solutions in the

considered multiobjective programming problem
(VP) and its G-Mond-Weir vector dual problem
(G-VMWD) (with respect to η, Gf and Gg), re-
spectively. Suppose that x 6= y and exhibit a con-
tradiction. By assumption, (f, g) is semi-strictly-

pseudo-G̃-V -type I objective and constraint func-
tions at y on D∪prXW with respect to η, Gf and
Gg. By definition, there exist functions βj , j ∈ J ,

such that βj (x, y) > 0. Thus, by
(
y, λ, ξ

)
∈ W ,

it follows that

−βj (x, y) ξjGgj (gj (y)) ≦ 0, j ∈ J .

Adding both sides of the inequalities above, we
get

−
m∑

j=1

βj (x, y) ξjGgj (gj (y)) ≦ 0 (64)

Since Ggj , j ∈ J(y), are strictly increasing func-

tions on their domains, therefore G̃gj = ξjGgj ,
j ∈ J(y), are also strictly increasing functions
on the same sets. Then, by the definition of

semi-strictly-pseudo-G̃-V -type I functions, (64)
implies

∑

j∈J(y)

ξjG
′
gj

(gj(y)) g+j (y; η(x, y)) ≦ 0. (65)

By x ∈ D and
(
y, λ, ξ

)
∈ W , the first constraint

of (G-VMWD) and (65) yield
∑

i∈I(y)

λiG
′
fi

(fi(y)) f+i (y; η(x, y)) ≧ 0. (66)

Hence, by hypothesis b), the inequality (66)
yields

∑

i∈I(y)

αi (x, y)λi [Gfi (fi (x)) −Gfi (fi (y))] > 0.

By definition, αi (x, y) > 0, i ∈ I (y). Then, by
λi > 0, i ∈ I (y), the inequality above implies
that f (x) 6= f (y), contradicting the assumption
(59). Hence, the proof of this theorem under hy-
pothesis b) is completed.

Proof of this theorem under hypothesis c) is
similar and, therefore, it is omitted in the pa-
per. �

5. Conclusion

This paper represents the study concerning the
new class of directionally differentiable multiob-
jective programming problems with nonconvex
functions. The so-called class of semi-G-V -type
I objective and constraint functions and its var-
ious generalizations are introduced in the case
of directional differentiability of the functions
constituting the considered nonconvex multiob-
jective programming problem. The importance
of the generalized G-invex functions is because,
similarly to Craven’s work [10], the transforma-
tions of functions do not destroy properties invex
functions. We have proved new necessary and
sufficient optimality conditions for directionally
differentiable multiobjective programming prob-
lems. It is pointed out that our statements of the
so-called G-Fritz John type necessary optimal-
ity conditions and the G-Karush-Kuhn-Tucker
type necessary optimality conditions established
in this work are more general than the classi-
cal Fritz John type necessary optimality condi-
tions and the classical Karush-Kuhn-Tucker nec-
essary optimality conditions found in the liter-
ature. Furthermore, we have proved the suffi-
ciency of the introduced G-Karush-Kuhn-Tucker
necessary optimality conditions for the consid-
ered nonconvex directionally differentiable mul-
tiobjective programming problem. Further, we
have defined a new vector dual problem for the
considered directionally differentiable multiob-
jective programming problem. The so-called G-
Mond-Weir dual problem is a generalization of
a well-known vector dual problem in the sense
Mond-Weir. This work extends results obtained
in literature by many authors (see, for exam-
ple, [3], [6], [7], [18], [22], [23], [27], and oth-
ers). Hence, the sufficiency of the Karush-Kuhn-
Tucker necessary optimality conditions and var-
ious duality results in the sense of Mond-Weir
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have been proved for a new class of nonconvex di-
rectionally differentiable multiobjective program-
ming problems.
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