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Abstract. This paper addresses the chaos control and synchronization problems of a hyperchaotic 

system. It is assumed that the parameters of the hyperchaotic system are unknown and the system is 

perturbed by the external disturbance. Based on the Lyapunov stability theory and the adaptive control 

theory, suitable nonlinear controllers are designed for the asymptotic stability of the closed-loop 

system both for stabilization of hyperchaos at the origin and complete synchronization of two identical 

hyperchaotic systems. Accordingly, suitable update laws are proposed to estimate the fully uncertain 

parameters. All simulation results are carried out to validate the effectiveness of the theoretical 

findings. The effect of external disturbance is under our discussion. 
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hyperchaotic system. 
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1. Introduction 

Chaos theory is the study of nonlinear dynamical 

systems, in which apparently random events are 

foreseeable from simple deterministic equations. 

In today’s research, mathematical theory of chaos 

has become an essential base for natural sciences 

[1]. A chaotic system in nature is a complex 

system that exhibits a complicated, random and 

disorganized behavior. The chaotic systems are 

highly sensitive to tiny changes in their initial 

conditions and parameters variation [2].  For the 

last three decades, chaos theory has become the 

subject of intensive research field, paying a wide 

range of applications in different technical and 

scientific disciplines such as laser physics, atomic 

physics, biological  systems, ecological systems, 

Traffic control, economics, secure 

communications and information systems [3] etc.  

 

 

 

Chaos control and synchronization are 

especially noteworthy and important research 

fields levelling to affect dynamics of chaotic 

systems in order to apply them for different kinds 

of applications that can be examined within many 

different scientific research [3-5]. At present, 

there are different kinds of control methods and 

techniques that have been proposed for carrying 

out chaos control and synchronization of chaotic 

dynamical systems. These include the active 

control techniques [6], adaptive control [7], 

modified projective synchronization [8], linear 

feedback control [9] and the sliding mode control 

[10], which are worth citing here among others. 

[11-13]. 

Recently, Jia et al. [8] proposed and 

investigated a class of new hyperchaotic systems 
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that contain two cross product terms and a 

quadratic term. The hyperchaotic systems [8] 

show rich complex dynamics. The modified 

projective synchronization of the disturbance free 

hyperchaotic systems with general form which 

linearly depends on uncertain parameters, are 

investigated by presenting an adaptive control 

technique together with parameter update laws 

and a nonlinear control scheme based on the 

Lyapunov stability theory.  

Although, in real situations, the effect of 

external (environmental) disturbance cannot be 

ignored, which may affect the synchronization 

performance. Therefore, it is important 

analytically as well as practically that the 

stabilization of hyperchaos and complete 

synchronization in the presence of external 

disturbance objectives are achieved.  

Most of the conventional control problems 

assumed that the states of a system is measurable 

and the parameters are completely or partially 

known in advance [11-15]. Although, in practice, 

uncertainty in the parameters and the presence of 

environmental disturbances badly affect the 

control and synchronization performance. This 

gives rise to a high frequency resonance within 

the system, which may break the control and 

synchronization behavior completely. If the 

parameters of the chaotic systems are unknown, 

then the adaptive control techniques are used for 

chaos control and synchronization of 

hyperchaotic (chaotic) systems [16]. These 

characteristics of the adaptive control techniques 

have motivated a huge research in the area of 

chaos control and synchronization.   

In this paper, the authors further investigated 

the stabilization of hyperchaos at one of its 

equilibrium point at the origin and complete 

synchronization behavior of uncertain 

hyperchaotic system [8] in the presence of 

external disturbance. To the best of the authors’ 

knowledge, this problem has not been discussed 

before. Motivated by the above discussions, there 

are three main objectives of the present study that 

can be summarized as follows: 

i. Based on the Lyapunov stability theory and 

adaptive control theory, a suitable nonlinear 

adaptive control functions and an 

appropriate update laws will be designed to 

guarantee the asymptotic stabilization of 

hyperchaotic system [8] from its current 

hyperchaotic state to regular state with 

estimation of uncertain parameters in the 

present of external disturbances. 

ii. Based on the Lyapunov stability theory and 

using the adaptive control technique, a 

suitable nonlinear control functions and 

parameter update laws will be proposed for 

asymptotic chaos synchronization and 

identification of fully uncertain parameters 

of the hyperchaotic system [8] in the 

presence of external disturbance.  

iii. Numerical simulations and graphs will be 

provided to justify the efficiency and the 

performance of the proposed adaptive 

control approach. 

The rest of the paper is organized as follows. In 

Section 2, description of the new hyperchaotic 

system is given. Section 3 presents the problem 

statement and stabilization of hyperchaos.  In 

Section 4, a complete synchronization scheme for 

identical hyperchaotic systems [8] is derived.  

Finally, this paper is concluded in Section 5.  

2. System description 

The mathematical model of the hyperchaotic 

system [8] that contains both linear and nonlinear 

terms that is described as follows:  
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where         4,  ,  ,  
T

x t y t z t w t R     are the 

state variables and ,  ,  ,  a b c d  are the system 

positive parameters. To discuss the stability of 

the hyperchaotic system (1), let us linearize 

system (1) at the equilibrium point  

 0 0,  0,  0,  0E   for the parameters values
 

20, 35,a b  3, 10c d  . The Jacobean 

matrix is given as under:  

 
 0, 0, 0, 0

0 0

1 0 1

0 0 0

0 0 0

a a

b
J

c

d

 
 
 
 
 

 

 

For the parameters values, 20,a  35,b   3,c   

 10d   and using the mathematica 10v, the four 
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eigenvalues are estimated as:  1 37.8819,   

2 18.5980,   3 0.2839   and 4  4   . In 

continuous nonlinear dynamical systems, the real 

part of all eigenvalues are negative and at least 

one positive Lyapunov exponent. We can see that 

the two eigenvalues  1 4,  0    are negative 

and two eigenvalues  2 3,  0    are non-

negative  and  with the Lyapunov exponents: 

1 21.0677, 0.094,L L  3 0L   and 

4 23.1526L    [8] respectively, which confirms 

that the hyperchaotic system (1) is globally 

unstable at the equilibrium point 

 0 0,  0,  0,  0E  . On any initial condition on 

one of the negative eigenvector, the orbit will 

converge to the equilibrium point 

 0 0,  0,  0,  0E   through the eigenplane of these 

two negative eigenvectors. On the other side, any 

deviation along 
2 3,  0    will expand and the 

orbit becomes unstable which shows a saddle 

node unstable point. Hence from the Lyapunov 

stability theory [1], the equilibrium point 

 0 0,  0,  0,  0E   is globally unstable. 

Physically, this result bears the fact that the 

system can oscillate chaotically and forbids the 

existence of stable fixed point motion in the 

system. Thus, the new hyperchaotic system [8] 

exhibits a hyperchaos for parameters values: 

20, 35,   ,   103a b dc    and hence, the 

control problem takes place. In the following 

sections, a systematic procedure for hyperchaos 

stabilization and synchronization of hyperchaotic 

systems are given which ensures asymptotic 

stability of the closed-loop systems in the 

presence of external disturbance with estimation 

of fully uncertain parameters. The proposed 

schemes can be applied to a variety of chaotic 

and hyperchaotic systems for stabilization of 

chaos and complete synchronization.  

3. Stabilization scheme for suppressing 

hyperchaos  

In the following sub-section, a recursive 

approach via the adaptive control technique will 

be proposed to stabilize the hyperchaos at its 

equilibrium  0 0,  0,  0,  0E   point at the origin. 

3.1.   Problem statement 

Let us consider the controlled hyperchaotic system 

(1), which is described by the following: 
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where           4,  ,  ,  
T

X t x t y t z t w t R     is 

the state vector and ,  ,  ,  a b c d  are the uncertain 

system parameters,  iD t  is the external 

disturbance present in the hyperchaotic system  

and           4
1 2 3 4,  ,  ,  

T
t t t t t R        

is the control input. In this situation, it is desired 

to design a nonlinear feedback control law which 

describes the synthesis of a bounded control 

input   4t R . This control input accomplishes 

the asymptotic stabilization of the hyperchaotic 

system (2) to its equilibrium point  

 0 0,  0,  0,  0E   at the origin. 

3.2. Controller design 

In the absence of a proper feedback controller 

  4t R ; the trajectories of the chaotic system 

will quickly bifurcate from each other in all 

future states and the system will become 

unstable. Hence, the role of a proper feedback 

controller for the chaos stabilization problem is to 

restrict the system converges to the equilibrium 

point  0 0,  0,  0,  0E   for all initial conditions. 

Thus, the main focus of this part is to design an 

adaptive control function and parameters updated 

law that will stabilize the hyperchaotic system (2) 

to its equilibrium point  0 0,  0,  0,  0E   at the 

origin asymptotically. The asymptotic 

stabilization of the hyperchaotic system [8] from 

its current chaotic state to a stable regular state 

will be ensured with the estimation of uncertain 

parameters, where a desired dynamic of the 

hyperchaotic system is obtained. In order to 
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ensure that the controlled system (2) globally 

converges to the origin asymptotically, let us state 

the following theorem. 

 

Theorem 1. The hyperchaotic systems (1) can be 

stabilized asymptotically with the following 

adaptive control law: 
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                                                                      (3) 

where ˆ ˆˆ ˆ,  ,   ,  a a a b b b c c c d d d         

and ˆ ˆˆ ˆ,  ,  ,  a b c d  are the estimation of uncertain 

parameters ,  ,    and  a b c d , alternatively with 

ˆˆ,  ˆˆ  a d  ,  na a b b c c d d        . 
 

Proof of theorem 1.  Using systems of Eq. (2) 

and (3), the closed-loop system is given by the 

following:                      
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Corollary 1. The asymptotic stabilization of the 

hyperchaotic system (1) at its equilibrium point 

0 (0,  0,  0,  0)E   is accomplished, if the closed-

loop dynamic (4) is such that: 
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Corollary 2.  The uncertain parameters are 

estimated from the system parameters in the 

following sense:            
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Proof of theorem 1.  Let us construct a quadratic 

Lyapunov error function candidate as follows:                                 
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and  0.5 ,  1,  2,   8iiA a i   . It is easy to 

see that A  is a positive definite matrix (PDM) 

and henceforth,     ,  V X t P t  is a positive 

definite function. According to the Lyapunov 

stability theory [1], the closed-loop system (4) is 

asymptotically stable if the time derivative of (5) 

becomes negative.  The time derivative of the 

Lyapunov error function (5) is given by the 

following:   
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Now based on Eq. (6), the update law ˆˆ,  ,a b  

ˆˆ  and  c d  for the parameter estimation is 

developed as under:  
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With this choice of controller (3) and the 

parameters estimation updated law (7) that yields 

the following:   

          
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Thus,   ,  V X t P  is negative semi-definite 

function. This proves that the closed-loop (4) is 

locally stable. Since   ,  V X t P  is negative 

semi-definite function and we cannot 

immediately conclude that the origin is 

asymptotically stable. To achieve asymptotic 

stability, we proceed as follows. 

The states trajectories of the hyperchaotic 

(chaotic) systems and vectors of the uncertain 

positive parameters are always bounded [18]. 

Thus, from Eq. (3) and Eq. (4),   4t R  and 

ˆ ˆˆ ˆ,  ,    and  a b c d  respectively, are also bounded. 

Therefore, if,  min A  is the minimum 

eigenvalue of PDM A , then, by the Barbalat’s 

lemma [19]:  

 

       

  

   

2

min

0 0

0

 

                             ,   

                             = 0 0

t t
T

t

A X t dt X t AX t dt

V X t P dt

V V t

 

 

 

 


           

This confirms that:     for  l 1,  2,  3, 4im 0  ,
t

iX t


 . 

Thus, the hyperchaotic system (1) is stabilized 

asymptotically. 

3.3. Numerical simulations 

In this sub-section of the paper, the Mathematica 

10v software is used to provide the numerical 

simulations to verify the efficiency and 

performances of the proposed adaptive control 

approach. The parameters of the hyperchaotic 

system [8] are set as 

20, 35, 3  and  10a b c d    , with initial 

condition being taken as 

         0 ,  0 ,  0 ,  0 1 1 1 1
T T

x y z w    , so 

that the hyperchaotic system (1) can exhibit 

chaotic behavior. The following external 

disturbances are applied to the hyperchaotic 

system (1). 

       

       

1 2

3 4

0.01sin 20 ,  0.02cos 15 ,  

0.05sin 10 ,  0.05sin 30

D t t D t t

D t t D t t

  

  
. 

 

 

The time histories of the controlled (red lines) 

and uncontrolled states trajectories (blue lines) 

are depicted in Figures 1 to 4. These figures 

illustrate that the state trajectories of the 

controlled system converged to its equilibrium 

point  0 0,  0,  0,  0E   at the origin under the 

synthesized control action (3), while the 

uncontrolled state trajectories are completely 

different than the controlled state trajectories.  

 

 
Figure 1. Time series of the state variable x[t] 

(time in seconds) 

 

 
Figure 2. Time series of the state variable y[t] 

(time in seconds) 

 

The initial values of the estimated parameters are 

chosen as:    ˆˆ 0 ,  25 400 , a b    ˆ 0 2c    and 

 ˆ 50d  . The simulation results are 

demonstrated in Figures 5-6. It is clear that the 

estimations ˆ ˆˆ ˆ,  ,    and   a b c d  of the unknown 

parameters,  20 0.1 20 ,a sin t   

 35 0.1cos 30 ,b t   3 0.05 sin 50c t   and 

 10 0.05 50d cos t   converged to the true 

values of 20, 35, 3  and  10 a b c d     

alternatively, as time goes to infinity under the 

updated law (7). 
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Figure 3.Time series of the state variable z[t]  

(time in seconds) 

 

 
Figure 4. Time series of the state variable w[t] 

                                       (time in seconds) 

 

 
       Figure 5. Time series of the updated vector (a & b)  

(time in seconds)      
 

   
     Figure 6. Time series of the updated vector  (c & d)   

(time in seconds) 

 

 

In order to discuss the asymptotic stability of the 

closed-loop system at the origin, the time series 

of the derivatives of the Lyapunov error function 

has been plotted in Figure 6. One can notice that 

the investigated controllers are robust against the 

external disturbance, which is helpful in certain 

physical and engineering applications. 

 

 
     Figure 7. Time series of   ,V E t P  (time in seconds) 

 

4. Complete synchronization scheme for      

two identical hyperchaotic systems 

4.1.  Problem statement 

In order to observe the complete synchronization 

behavior of hyperchaotic system (1), let us 

assume that the hyperchaotic system (1) with 

subscript 1 as the master system and is described 

as below: 

 

 

 

 

 

 

 

 

 

   

 

   

 

1 1

1 1

1 1

1 1

1 1

2

1

1 1

Master  system

0 0

1 0 1

0 0 0

0 0 0

01 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1

i

x t x ta a

y t y tb

cz t z t

dw t w t

x t z t
D t

x t

y t w t

    
    
         
    
       

  
   
   
  
  
    

    (9) 

where,         4
1 1 1 1,  ,  ,  

T
x t y t z t w t R     are the 

state vectors, ,  ,   and    a b c d  are the uncertain 

parameters of the master hyperchaotic system (9), 

and  iD t  is the external disturbance presents in 

the master system. 

We define the slave system with subscript 2 to 

be the identical hyperchaotic system with the 

same parameters values as hyperchaotic system 

(1) and is described as follows: 
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 

 

 

 

 

 

 

 

 

   

 

   

   

2 2

2 2

2 2

2 2

2 2

2

2

2 2

Slave  system

0 0

1 0 1

0 0 0

0 0 0

01 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1

i

x t x ta a

y t y tb

cz t z t

dw t w t

x t z t
d t t

x t

y t w t

    
    
         
    
       

  
   
    
  
  
    



 (10) 

where         4
2 2 2 2,  ,  ,  

T
x t y t z t w t R     are the 

state vectors, ,  ,   and    a b c d  are the uncertain 

parameters of the slave hyperchaotic system (10), 

and  ,  1,  2,  3,  4,id t i   is the external 

disturbance presents in the slave system. The 

control input is described as; 

          4
1 2 3 4,  ,  ,  

T
t t t t t R       . 

The main objective of this section is to design 

the controllers   4t R  and update laws such 

that the controllers   4t R  force the slave 

hyperchaotic system to synchronize with the 

master hyperchaotic system for different initial 

conditions in the presence of the external 

disturbances and despite the fact that the 

parameters of both systems are unknown. 

4.2. Adaptive controller design 

Theorem 2.  The hyperchaotic systems (9) and 

(10) can be synchronized asymptotically for 

different initial conditions with the following 

adaptive control law:  

 

 

 

 

 

 

 

 

       

   

       

   

1 1

2 2

3 3

4 4

1 1 2 2

2 2

1 2

1 1 2 2

ˆ ˆ1 0 0

ˆ 2 0 1
     (11)

ˆ0 0 1 0

ˆ0 0 1

01 0 0 0

0 10 0 0

0 0 10 0

0 0 0 1

i i

a at e t

t e tb

t e tc

t e td

x t z t x t z t

x t x t

y t w t y t w t

D t d t









     
    
       

    
    
        

  
    
  
   
  
    

 

where ˆ ˆˆ ˆ,  ,  ,  a b c d  are the estimated values of the 

uncertain parameters ,  ,    and   ,a b c d  

alternatively with  ˆ,a a a 
 

ˆ,b b b   

ˆ c c c   and ˆd d d   with ˆ,a a  ˆ ,b b   

ˆˆ ,  c c d d     and      1 2 1e t x t x t  , 

     2 2 1e t y t y t  ,      3 2 1e t z t z t   and 

     4 2 1e t w t w t  . 

 
Definition 2.   The error dynamic E  of the 

master and slave systems synchronization scheme 

is given as follows:            

 

 

 

 

 

 

 

 

       

   

       

 

1 1

2 2

3 3

4 4

1 1 2 2

2 2

1 2

1 1 2 2

0 0

1 0 1
       (12)

0 0 1 0

0 0 0

01 0 0 0

0 10 0 0
      

0 0 10 0

0 0 0 1

     

e t e ta a

e t e tb
E

e t e t

e t e td

x t z t x t z t

x t x t

y t w t y t w t

t

    
    
      
    
    

       

  
   
  
    
  

   



      

Proof of theorem 2.   Using systems of Eq. (11) 

and (12), the closed-loop system is given by the 

following:   

   

 

 

 

 

1

2

3

4

1 0 0

1 0 0

0 0 1 0

0 0 1

a a e t

e tb
E

e tc

e td

    
   

   
    
   

      

       (13)  

          

Corollary 3.  The asymptotic synchronization is 

accomplished if: 

 

 

 

 

   

   

   

   

1 2 1

2 2 1

3 2 1

4 2 12

0

0
lim lim lim

0

0

t t t

e t x t x t

e t y t y t
E

e t z t z t

e t w t w t

  

   
              
    

 

 

Corollary 4.  The uncertain parameters are 

estimated from the system parameters in the 

sense of:  

   

   

ˆˆlim ,  lim

lim 0
ˆˆlim ,  lim

t t

t

t t

a a a b b b

P
c c c d d d

 



 

   


 
    



 

Let us construct a quadratic Lyapunov error 

function candidate as: 
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 

 
 
 
 

 
 
 
 

1 1

2 2

3 3

4 41
, 0

2

T
e t e t

e t e t

e t e t

e t e t
V E P A

a a

b b

c c

d d

    
    
    
    
    
    
     
    
    
    
    
         

           (14) 

where  0.5 ,  1,  2,   8iiA a i   . 

It is easy to see that A  is a PDM and 

henceforth  ,  V E P  is a positive definite 

function.  According to the Lyapunov stability 

theory, the closed-loop system (13) will be 

asymptotically stable if the time derivative of 

(14) becomes negative. Thus, the time derivative 

of the Lyapunov error function (14) is given as 

follows:            

        

       

      
      

      

1 2 1

2 2 2

3 3 3

4 4 4

,  

e t a e t e t

e t be t e t
V E P

e t ce t e t

e t de t e t

 
 
  
 
 
 
 
 
   

 

 

        

       

       

  

2 2 2 2

1 2 3 4

2 1 1

2

1 2 3

4

ˆ

,   (15)ˆ ˆ

ˆ

e t e t e t e t

a e t e t e t a

V E P
b e t e t b c e t c

d e t d

     
 
   
 

  
   

 
   
 

 

Now based on (15), the updated law 

ˆ ˆˆ ˆ,  ,    and  a b c d   for the parameters estimation is 

developed as under: 

         

      

   

 

   

2 1 1

1 2

2

3

2 4

ˆ

ˆ
ˆ

ˆ

ˆ

a e t e t e t

b e t e t
P

e tc

e t e t
d

      
   

       
      

            (16)                                  

with this choice of controller (11) and the 

parameters estimation updated law (16) that 

yields:  

              
   

   

2 2

1 2

2 2

3 4

,   0
e t e t

V E P
e t e t

 
   

   

    (17)  

Thus,  ,  V E P  is negative semi-definite 

function. This proves that the closed-loop (13) is 

locally stable. Since, 

         2

1 2 3 4,  ,  ,  e t e t e t e t L L     . 

Hence, from (13),        1 2 3 4,  ,  ,  e t e t e t e t    is 

bounded [17]. The states trajectories of 

hyperchaotic (chaotic) systems and vectors of the 

uncertain parameters are always bounded [18]. 

Thus, from (11) and (15),   4t R   and 

ˆ ˆˆ ˆ,  ,    and  a b c d , respectively are also bounded. 

Therefore, if, min ( )A  is the smallest eigenvalue 

of a PDM A , then, by the Barbalat’s lemma [19]:  

             

        

 

   

2

min

0 0

0

 

                             ,   

                             = 0 0 0

t t
T

t

A e t dt e t Ae t dt

V E P dt

V V

 

 

 

 


     

This confirms that: 

   

     for  l 1,  2,  3i , .0 4m  ,i
t

ie t


  

Thus, the two identical hyperchaotic systems (9) 

and (10) with uncertain parameters in the 

presence of the external disturbances are 

asymptotically synchronized. 

4.3. Numerical simulations and discussions 

In this sub-section of the paper, numerical 

simulations are presented to verify the efficiency 

of the proposed adaptive complete 

synchronization approach. The parameters of the 

hyperchaotic system [8] are chosen to be: 

20,  35,  3  and  10a b c d    , with initial 

conditions being taken as: 

         1 1 1 10 ,  0 ,  0 ,  0 1 2 3 2
T T

x y z w       

 and 

         2 2 2 20 ,  0 ,  0 ,  0 1 2 3 4
T T

x y z w     

respectively. The following external disturbances 

are applied to the master and slave systems 

respectively. 

       

       

1 2

3 4

0.02sin 10 ,  0.02cos 15 ,  

0.02sin 20 ,  0.01sin 20

D t t D t t

D t t D t t

 

  
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       

       

1 2

3 4

0.01cos 15 ,  0.01sin 10 ,  

0.02cos 10 ,  0.01sin 20

d t t d t t

d t t d t t

  

   
  

Figures 8-11, elaborate the time history of state 

vectors of the two identical hyperchaotic systems 

[8] to observe the asymptotic synchronization. 

These simulations results depict that the states of 

the slave hyperchaotic system converged to that 

of the master hyperchaotic system under the 

synthesized control action (11), while the 

unsynchronized states trajectories of the slave 

hyperchaotic system (red line) are completely 

different than the master states trajectories (blue 

line). The simulation results of asymptotic 

complete synchronization using adaptive control 

technique have good performances and confirm 

that the slave hyperchaotic system shows similar 

behavior (red and blue lines) to the identical 

master hyperchaotic system showing that the 

developed approach guarantees high security. 

 

     
   Figure 8. Time series of the synchronized states x1[t] & 

x2[t]     (time in seconds) 

 

 

 
     Figure 9. Time series of the synchronized states y1[t] & 

y2[t]    (time in seconds) 

 

 The initial values of the estimated parameters are 

chosen as:    ˆˆ 0 ,  25 200 , a b     ˆˆ 0 1,  50c d   

. The convergence of the estimated parameters to 

the true parameters is illustrated in Figs. 13-14. It 

is clear that the estimations  ˆ ˆˆ ˆ,  ,    and   a b c d  of the 

uncertain parameters,  20 0.01 cos 15 ,a t   

 35 0.05sin 10 ,b t    3 0.01 30c cos t   and 

 10 0.05cos 45d t   converged to the true values 

of ,  ,    and   a b c d  alternatively, as time goes to 

infinity under the updated law (16). 

 

 
     Figure 10. Time series of the synchronized states z1[t] & 

z2[t]    (time in seconds) 

   

 
      Figure 11. Time series of the synchronized states w1[t] 

& w2[t]  (time in seconds) 

 

 
Figure 12. Time series of the updated vectors (a & b)    

(time in seconds) 

 

The convergence of the error states for complete 

synchronization is depicted in Figure 13.  It is 

observed that the error states converged to the 

equilibrium point in the presence of external 

disturbances when the controller are switched on 

at 6 seconds. This indicates the smooth and fast 

convergence rates to the equilibrium point. Thus, 
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it is being confirmed that the proposed control 

approach is robust against the external 

disturbances and parameters mismatches. 
 

 
Figure 13. Time series of the updated vectors (c & d) 

(time in seconds) 

 

 
Figure 14. Time series of the synchronized error states  

(time in seconds)   

 

To confirm the asymptotic stability, the time 

series of the derivative of the Lyapunov function 

(16) is illustrated in Figure 15.    

        

 

Figure 15. Time series of   ,V E t P (time in seconds)                                                                          

5. Conclusion 

In this paper, the stabilization and 

synchronization schemes for a hyperchaotic 

system have been investigated based on a 

technique derived from adaptive control theory. 

There are two main objectives that the authors 

have achieved in this paper. Firstly, based on the 

Lyapunov stability theory and using the adaptive 

control technique, a class of adaptive control 

functions were designed that guaranteed the 

asymptotic stability of the closed-loop system for 

chaos stabilization with the estimation of fully 

uncertain parameters. Secondly, based on the 

Lyapunov stability theory, adaptive control 

functions were designed to synchronize two 

identical hyperchaotic systems in the presence of 

external disturbances. Accordingly, suitable 

updated laws were designed to estimate the fully 

uncertain parameters.  The simulations results 

show that the synchronization error states 

converged to zero and the parameter estimates 

converged to the true values. The proposed 

approach relaxes the calculation of the Lyapunov 

exponents for asymptotic stability of the closed-

loop system both for chaos stabilization and 

synchronization. These characteristics give 

advantages to the proposed approach. 

We believe that the results of this research 

work should be beneficial and could be employed 

in the field of hybrid image encryption, secure 

communications and genetic networks. 
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