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1. Introduction

The phenomenon of control means ”making a sys-
tem capable of acting as desired”. It dates back to
Ancient Egypt. The first known control tools are
water clocks, Although it is not known when and
by whom water clocks were first invented, the first
example was found in tomb of Pharaoh Amen-
hotep I, in 1500s BC. These mechanisms, known
to have been designed by Vitrivius and Ktesibos
in 325 BC and called clepsydra (water thief) were
used by the Greeks to adjust speaking times in
assemblies and courts.

Control, in the modern sense, begins with Watt’s
steam engine, in 1789. Until the 1870s, hundreds
of regulators (governors) were patented worldwide
using Watt’s principles. From then until today,
major seminal works in the field of control were
carried out by many famous scientists from var-
ious areas such that; Maxwell, Vyshnegradski,
Routh, Lyapunov, Hurwitz, Sickels, McFarlane,

Farcot, Minorsky, Nyquist, Bode, Bellman, Pon-
tryagyn, Kalman etc [1]. For more detail about
historical development of control theory see [2].

One of the most powerful techniques of modern
control is H∞ control. H∞ control is a very use-
ful tool for large-scale multivariable problems to
numerically measure the performance, sensitivity
and durability of closed loop (feedback) system
controllers. Its primary aim is to reduce mod-
eling inaccuracies and account for unquantified
disturbances, such as environmental factors, in-
ner uncertainties, and noise, by transforming an
optimization problem into a sensitivity problem
involving the H∞-norm. Here, H∞ refers to ”the
space encompassing all bounded analytic matrix-
valued functions within the open right-half com-
plex plane.” This concept was initially introduced
by Zames in 1981 [3] and has since found appli-
cations across numerous works utilizing various
control theory techniques [4–9]. For more com-
prehensive information, please refer to [10].
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Boyd, Balakrishnan and Kamamba (1988) pre-
sented the Bisection algorithms, which is an im-
portant tool in control theory [11, 12]. In this
field, the energy associated with each state of the
system is characterized by Hankel singular values,
whereas eigenvalues indicate the stability of a sys-
tem. Making a link between the stability of the
system and the energy of its states is the basic
idea underlying the bisection method. This en-
tails connecting the imaginary eigenvalues of the
associated Hamiltonian matrix, designated as Mγ

in Eq.(12), with the singular values of the transfer
matrix evaluated along the imaginary axis. The
technique is applied in numerous works [13,14].
In high-level control problems which contain large
number of variables and parameters, researches
confront many difficulties and complexity. To
cope with these adverse conditions, researchers
try to create some alternative methods to con-
vert these high-level problems into far smaller di-
mensional models which can be solved more eas-
ily, without losing structural characteristic of the
original problems. These kinds of methods are
called model order reductions [15–18]. One of the
methods is balanced truncation approach. Bal-
anced truncation approach means, to find appro-
priate balanced realization and truncate this real-
ization preserving the structural characteristic of
the original problems.
Let µ > 0 be a parameter, a dynamical system
which contains some state component derivatives
with µ coefficients is called a singular perturba-
tion model. Singular perturbation models are rep-
resented by following set of equations,

ẋ1 = A11x1 + A12x2 + B1u (1)
µẋ2 = A21x1 + A22x2 + B2u (2)

y = C1x1 + C2x2 + Du (3)

here x1, x2 are called slow and fast variables, re-
spectively, Eq.(1), Eq.(2) are called slow (power-
ful) and fast(weak) subsystems, respectively and
µ is called perturbation parameter.
Analysis of these system types is done by sin-
gular perturbation theory. Singular perturbation
theory means to investigate behavior of solutions
of the system Eq.(2) for an interval 0 ≤ t ≤ T
(or 0 ≤ t < +∞ ). The basic idea of singular
perturbation method is to protect the slow(low-
frequency) part ( Eq.(1)) while neglecting the
fast(high-frequency) ( Eq.(1)). When considered
from this point of view the method can be as-
sociated with a dominant mode state. In other
words, it is process of examining solutions of the

given system for µ = 0 [18,19]. µ-parameter may
correspond to different concepts depending on the
structure of the system. For example, it repre-
sents machine reactance or transients in voltage
regulators in power systems, actuators in indus-
trial control, enzymes in biochemical models and
fast neutrons in nuclear reactor models.
The extended-balanced singular perturbation
method represents a hybrid approach that com-
bines the principles of both balanced truncation
and singular perturbation methods. It begins by
reducing the model order through the applica-
tion of balanced truncation. Subsequently, the
norm of the transfer function for the reduced
model is determined using the singular perturba-
tion method.
This paper organized into six sections. A num-
ber of basic definitions and notations which will
be used next chapters are given in Section 2.
In Section 3, general information about bisection
method is told and algorithm of the method is
given. In Section 4, extended-balanced singu-
lar perturbation method is told and its algorithm
summarize as a table with the error bounds. A
numerical example is solved by both methods and
tolerances are computed in Section 5. Finally, in
Section 6, the results are compared and discussed.

2. Preliminaries

Let’s examine the linear dynamic system;

ẋ = Ax + Bu

y = Cx + Du (4)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈
Rp×m. Transfer matrix (or function) of the sys-
tem Eq. (4) is defined as;

G(s) = C(sI − A)−1B + D (5)

Let λj(M), σj(M) denote the jth eigenvalue
and jth singular value of a matrix M respec-
tively, where σj(M) =

√
λj (MMT ).A is stable if

Re (λj(A)) < 0 for all j. If A is stable H∞-norm
of the transfer matrix G(s) is given as follows;

∥G∥∞ = sup
Re s>0

σmax(G(s)) = sup
ω∈R

σmax(G(iω))

(6)
where supω∈R denotes least upper bound for all
real frequencies ω.

Let J2n×2n =
[

0n In

−In 0n

]
be a skew-symmetric

matrix where 0n, In are n-dimensional zero and
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identity matrices, respectively. H2n×2n is called
a Hamiltonian matrix, if HJ is symmetric, such
that (HJ)T = HJ . The definition confirms that
the distinctive block structure form of Hamilton-
ian matrices is as follows;

H =
[

H11 H12
H21 −HT

11

]
, where H12 and H21 are

symmetric. For the system Eq.(4) the matrices
WC(t) and WO(t) are called controllable and ob-
servable Grammians, respectively, defined as fol-
lows;

WC(t) =
∫ t

0
eAτ BBT eAT τ dτ

WO(t) =
∫ t

0
eAT τ CT CeAτ dτ (7)

which satisfy the Lyapunov equations as follows;

AT WO + WOA + CT C = 0
AWC + WCAT + BBT = 0 (8)

and singular values of WC(t)WO(t) are called Han-
kel singular values of the system Eq.(4) which
describes the energy of each state of the system
Eq.(4) and are denoted as σHj for j = 1, 2, . . .

Any positive definite matrix M can be expressed
in the form of

M = LLT (9)

where L is a lower triangular matrix. The expres-
sion Eq.(9) and the matrix L are called Cholesky
factorization and Cholesky factor of M , respec-
tively. Let M ∈ Rm×n and rank(M) = r =
min(m, n), the expression

M = UΣV T (10)

is called singular value decomposition of the ma-
trix M . Here U and V are orthogonal matrices
of type of m × m and n × n, respectively, that
is, UT U = Im, V T V = In and Σ is a half-diagonal
matrix which contains singular values (σ1, . . . , σr)
of the matrix M . Singular value decomposition
can be formulated clearly as follows for a matrix
M ,

M = UΣV T = [ u1 | u2 | · · · | um ]︸ ︷︷ ︸
u(m×m)

×



σ1 0 . . . 0 0 . . . 0

0 . . . 0 0 0 . . . 0
... 0 σr

. . . . . . . . . ...
...

... . . . 0 . . . . . . ...
0 0 . . . . . . 0 . . . 0


︸ ︷︷ ︸

Σ(m×n)


vT

1
vT

2
...

vT
n


︸ ︷︷ ︸
V T (n×n)

.

(11)

3. Bisection method

Let γ > 0 related Hamiltonian matrix Mγ for sys-
tem Eq. (4) is given as follows;

Mγ =
[

A 0
0 −AT

]
+

[
B 0
0 −CT

]
×[

−D γI
γI −DT

] −1 [
C 0
0 BT

]
=

[
A − BR−1DT C −γBR−1BT

γCT S−1C −AT + CT DR−1BT

]
(12)

where R = DT D − γ2I and S = DDT − γ2I.
For special case

D = 0, Mγ =
[

A 1
γ BBT

− 1
γ CT C −AT

]
.

Prior to initiating the bisection algorithm, it is es-
sential to establish clear lower (γlb) and upper (γb)
bounds. While one option is to set γlb = 0 and
γub to a sufficiently large value before proceed-
ing with the bisection protocol, this approach can
be time-consuming and inefficient. To streamline
this process and determine suitable bounds, we
can leverage Hankel singular values, as derived
by Enns [20] and Glover [21], which are outlined
below:

γlb = max
{

σmax(D),
√

Tr (WCWO) /n

}
γub = σmax(D) + 2

√
nTr (WCWO) (13)

or alternative formulas;

γlb = max {σmax(D), σH1}

γub = σmax(D) + 2
n∑

j=1
σHi (14)

here, σHi s represents the Hankel singular values,
while WO and WC stand for the observability and
controllability Grammians of the system Eq.(4)
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Assuming A is stable and ε > 0 is the error mar-
gin for system Eq.(4), the bisection algorithm is
outlined as follows:
Step 1. Determine the lower and upper bounds
for the bisection algorithm, where

γlb = max {σmax(D), σH1}

γub = σmax(D) + 2
n∑

j=1
σHi

Step 2. Set γ = (γlb + γub) /2
If γub − γlb < ε

2 , end.
Step 3. Calculate Mγ .
Step 4. Check eigenvalues of Mγ . If there exists
a purely imaginary eigenvalue set γlb = γ. Else
set γub = γ.

4. Extended balanced singular
perturbation method

The extended balanced singular perturbation
method, as introduced in the Introduction, com-
bines the principles of both balanced truncation
and singular perturbation methods, as described
below.
Suppose we have an asymptotically stable, min-
imal realization of the system Eq.(4) as defined
in equation Eq.(5). The algorithm for the bal-
anced truncation approach is implemented using
the following MATLAB commands:
Step 1. Find controllable and observable Gram-
mians WC and WO of the given system through
the Lyapunov equtions with the MATLAB com-
mands

Wc=gram(sys,’c’)
Wo=gram(sys, ’o’).

Step 2. Find the Cholesky factors LC and LO of
WC and WO, respectively, such that

WC = LCLT
C

WO = LOLT
O

with the MATLAB commands
Lc = chol(Wc,′ lower′)
Lo = chol(Wo,′ lower′).

Step 3. Find the singular value decomposition
of LT

OLC such that
LT

OLC = UΣV T

with the MATLAB command
[U, S, V ] = svd(Lo ’ *Lc).

Step 4. Make the transformation T = LCV Σ−1/2

and obtain coefficient matrices of balanced system
by similarity transformation as follows,

Ã = T −1AT, B̃ = T −1B, C̃ = CT, D̃ = D

where G̃(s) =
[

Ã | B̃

−C̄ | D̃

]
and find control-

lable and observable Grammians of the balanced
system W̃C and W̃0 respectively which are given
as below,

W̃C = T −1WCT −T

W̃O = T T WOT

here W̃C = W̃O = Σ = diag (σ1, σ1, . . . , σn).

Let G̃(s) =

 Ã | B̃
− − −
C̃ | D̃

 be the balanced sys-

tem obtained by balanced truncation approach,
the algorithm of singular perturbation method is
given as follows;
Step 1. Separate the balanced system G̃(s) = Ã | B̃

− − −
C̃ | D̃

 ⇔
[

Σ1 0
0 Σ2

]
into two subsys-

tem as slow(powerful ) and fast(weak). Choose
A11 as coefficient matrix of the slow part where
A11, Σ1 ∈ Rr×r, for r ≪ n. Rearrange the matri-
ces Ã, B̃, C̃, D̃ in block matrix form as seen below,

Ã =
[

A11 A12
A21 A22

]
, B̃ =

[
B1
B2

]
C̃ =

[
C1 C2

]
, D̃ = D

add perturbation parameter µ and rewrite G̃(s)
as the followings,

[
ẋ1

µẋ2

]
=

[
A11 A12
A21 A22

] [
x1
x2

]
+

[
B1
B2

]
u

y =
[

C1 C2
] [

x1
x2

]
+ Du.

Step 2. Eliminate the fast(weak) part µ = 0 and
find the system as;

ẋ1 = A11x1 + A12x2 + B1u

0 = A21x1 + A22x2 + B2u

y = C1x1 + C2x2 + Du

and weak variable as,
x2 = −A22

−1A21x1 − A22
−1B2u.

Step 3. Substitute x2 to the other equations to
get the final version of the system which denoted
by Gf (s) as is below

Gf (s) =

 Af | Bf

− − −
Cf | Df

 =
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Table 1. Algorithm of extended balanced singular perturbation method step by step.

Balanced Truncation Approach Singular Perturbation Method
Step 1. Find Grammians of the original sys-

tem (WC , WO)
Separate the balanced system G̃(s)
into two parts as; strong and weak

Step 2. Find Cholesky factors of Grammi-
ans (LC , LO)

Eliminate the weak part taking µ =
0 and find weak variable x2

Step 3. Find singular value decomposition
of LT

OLC = UΣV T
Substitute x2 in other equations, get
the final version of the system Gf (s)

Step 4. Make the transformation T =
LCV Σ−1/2 and find the balanced
system G̃(s)

Obtain the H∞-norm of ∥Gf (s)∥∞

Error Analysis Compute actual and theoretical infinity error bounds and apply the er-
ror tolerance criterion which says actual bound must be less than or
equal to theoretical bound

 A11 − A12A22
−1A21 | B1 − A12A22

−1B2
− − − − − − − − − − − − − − − − −
C1 − C2A−1

22 A21 | D − C2A22
−1B2


Step 4. Obtain the H∞-norm of ∥Gf (s)∥∞ in
MATLAB.
The algorithm of extended balanced singular per-
turbation method is summarized in Table 1 as
follows.
To analyze the error tolerance first we define mod-
elling error transfer function as follows;

Er = [G(s) − Gf (s)] (15)

then, we have a criterion about sufficiency of error
tolerance which is based on comparison of two er-
ror bounds called actual infinity error bound and
theoretical infinity error bound defined in [22,23]
given as below;

• Actual infinity error bound: ∥Er∥∞ =
∥[G(s) − Gf (s)]∥∞

• Theoretical infinity error bound:
2

∑n
i=r+1 σi

• The criterion:

∥Er∥∞ ≤ 2
n∑

i=r+1
σi

5. Application to a numerical example

Example 1. The system two-input, twelve-state,
two-output model of an automobile gas turbine
[24].

For more detail and examples see [25]. Consider
the system Eq.(4) with the coefficient matrices
given as follows:
When employing the bisection method for this
problem, we obtain the values presented in Ta-
ble 2. The first and the last columns in the ta-
ble pertain to number of iteration that denoted
as Itr briefly and verifying the presence of purely

imaginary eigenvalues that denoted as Eig briefly,
respectively.

Table 2. Related values of Example 2.

Itr γlb γub γ Eig
1 3.0368 36.4417 19.7397 no
2 3.0368 19.7397 11.3881 yes
3 11.3881 19.7397 15.5637 no
4 11.3881 15.5637 13.4759 yes
5 13.4759 15.5637 14.5198 no
6 13.4759 14.5198 13.9979 no
7 13.4759 13.9979 13.7369 yes
8 13.7369 13.9979 13.8674 no
9 13.7369 13.8674 13.8022 no
10 13.7369 13.8022 13.7695 no
11 13.7369 13.7695 13.7532 no
12 13.7369 13.7532 13.7450 no
13 13.7369 13.7450 13.7410 no
14 13.7369 13.7410 13.7389 no
15 13.7369 13.7389 13.7379 yes
16 13.7379 13.7389 13.7384 yes
17 13.7384 13.7389 13.7387 yes
18 13.7387 13.7389 13.7388 no
19 13.7387 13.7388 13.7388 yes
20 13.7388 13.7388 13.7388

After 20 iterations γub and γlb are so close, the
all next iterations will be automatically assigned
the same value by MATLAB and error margin
ε is also will be satisfied. Thus, H∞ norm of
transfer function of the given problem found as
∥G(s)∥∞ ≈ 13.7388. Now, if we apply balanced
truncation approach algorithm step by step finally
we get

G̃ (s) =

 Ã | B̃
− − − − −−

C̃ | D̃

 where;

and Hankel singular values of the original system
as,

σ (G) = (7.1833 1.4904 0.9279 0.5876 0.4633
0.2368 0.1613 0.0936 0.0006 0 0 0) .
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A =



0 1 0 0 0 0 0 0 0 0 0 0
−0.202 −1.15 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 −2.36 −13.6 −12.8 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1.62 −9.4 −9.15 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −188 −111.6 −116.4 −20.8


B =

[
0 1.0439 0 0 −1.794 0 0 1.0439 0 0 0 −1.794
0 4.1486 0 0 2.6775 0 0 4.1486 0 0 0 2.6775

]T

C =
[

0.264 0.806 −1.42 −15 0 0 0 0 0 0 0 0
0 0 0 0 0 4.9 2.12 1.95 9.35 25.8 7.14 0

]
D = 0

Ã =



-0.1647 0.0185 0.1116 -0.0528 -0.4698 0.2334 0.0559 -0.0336 0.0179 -0.0049 -0.0001 0

-0.0071 -0.8293 -0.2913 0.3813 0.2261 -0.0513 -0.7095 -1.6433 0.0079 -0.0065 0.0008 -0.0003

-0.0605 0.6599 -0.1368 0.1909 1.9093 -0.6958 0.0074 0.3709 -0.0453 0.0129 0.0001 0

-0.0676 -0.2951 -0.1328 -0.1111 0.0156 0.2976 0.3495 0.4641 0.0339 -0.0075 -0.0005 0.0001

-0.4673 -0.3296 -1.3820 -1.3904 -5.8806 3.7574 1.4509 -1.1650 0.4207 -0.1141 -0.0018 0.0004

0.2332 0.0786 0.4107 0.5352 3.7468 -2.6771 -2.2760 1.6069 -0.3983 0.1083 0.0016 -0.0004

-0.0103 0.7485 -0.3240 0.0251 -0.4105 1.6010 -1.2640 -2.6186 -0.0926 0.0100 0.0033 -0.0010

0.0416 1.6502 -0.7122 0.3698 1.9050 -1.8933 -4.2162 -11.6604 0.3158 -0.1526 0.0113 -0.0035

-0.0144 -0.0545 0.0096 -0.0499 -0.3612 0.3313 0.1843 0.9343 -6.2677 3.6203 0.0367 -0.0080

-0.0032 -0.0197 0.0056 -0.0128 -0.0838 0.0753 0.0693 0.3210 -3.5719 -13.7547 -0.0809 0.0128

-0.0002 0 -0.0002 -0.0005 -0.0042 0.0040 -0.0004 0.0010 -0.0948 -0.5578 -0.2477 0.1440

0 -0.0001 0.0001 0.0001 0.0011 -0.0011 0.0005 0.0011 0.0177 0.0725 0.1343 -0.9059


B̃ =

[
-0.4823 1.4882 -0.5001 0.0220 -0.5164 0.2995 -0.6184 -1.3307 0.0274 0.0129 -0.0003 0.0002

-1.4609 -0.5073 -0.0613 -0.3607 -2.2765 1.0855 0.1595 0.6417 -0.0796 -0.0200 -0.0008 0.0002

]T

C̃ =
[

-0.5368 1.4993 0.0399 -0.3178 -0.8139 0.3740 0.6374 1.3230 0.0181 -0.0010 -0.0008 0.0002

-1.4417 -0.4735 0.5023 -0.1721 -2.1879 1.0621 0.0399 -0.6574 0.0823 -0.0238 -0.0001 0

]
D̃ = 0

It is seen clearly in the Figure 1 the first three
Hankel singular values are much greater than the
others so we choose r = 6 and apply extended bal-
anced singular perturbation method. First sep-
arate the balanced system G̃(s) into two parts
as slow(powerful) and fast(weak) and rewrite the
system for perturbation parameter µ = 0 as is
given below;

ẋ1 = A11x1 + A12x2 + B1u

0 = A21x1 + A22x2 + B2

y = C1x1 + C2x2 + Du

where;

A11 =



−0.1647 0.0185 0.1116 −0.0528 −0.4698 0.2334
−0.0071 −0.8293 −0.2913 0.3813 0.2261 −0.0513
−0.0605 0.6599 −0.1368 0.1909 1.9093 −0.6958
−0.0676 −0.2951 −0.1328 −0.1111 0.0156 0.2976
−0.4673 −0.3296 −1.3820 −1.3904 −5.8806 3.7574

0.2332 0.0786 0.4107 0.5352 3.7468 −2.6771



A12 =



0.0559 −0.0336 0.0179 −0.0049 −0.0001 0
−0.7095 −1.6433 0.0079 −0.0065 0.0008 −0.0003

0.0074 0.3709 −0.0453 0.0129 0.0001 0
0.3495 0.4641 0.0339 −0.0075 −0.0005 0.0001
1.4509 −1.1650 0.4207 −0.1141 −0.0018 0.0004

−2.2760 1.6069 −0.3983 0.1083 0.0016 −0.0004



A21 =



−0.0103 0.7485 −0.3240 0.0251 −0.4105 1.6010
0.0416 1.6502 −0.7122 0.3698 1.9050 −1.8933

−0.0144 −0.0545 0.0096 −0.0499 −0.3612 0.3313
−0.0032 −0.0197 0.0056 −0.0128 −0.0838 0.0753
−0.0002 0 −0.0002 −0.0005 −0.0042 0.0040

0 −0.0001 0.0001 0.0001 0.0011 −0.0011


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Figure 1. Hankel singular values of the original system.

A22 =



−1.2640 −2.6186 −0.0926 0.0100 0.0033 −0.0010
−4.2162 −11.6604 0.3158 −0.1526 0.0113 −0.0035

0.1843 0.9343 −6.2677 3.6203 0.0367 −0.0080
0.0693 0.3210 −3.5719 −13.7547 −0.0809 0.0128

−0.0004 0.0010 −0.0948 −0.5578 −0.2477 0.1440
0.0005 0.0011 0.0177 0.0725 0.1343 −0.9059



B1 =



−0.4823 −1.4609
1.4882 −0.5073

−0.5001 −0.0613
0.0220 −0.3607

−0.5164 −2.2765
0.2995 1.0855


B2 =



−0.6184 0.1595
−1.3307 0.6417

0.0274 −0.0796
0.0129 −0.0200

−0.0003 −0.0008
0.0002 0.0002



C1 =
[

−0.5368 1.4993 0.0399 −0.3178 −0.8139 0.3740
−1.4417 −0.4735 0.5023 −0.1721 −2.1879 1.0621

]

C2 =
[

0.6374 1.3230 0.0181 −0.0010 −0.0008 0.0002
0.0399 −0.6574 0.0823 −0.0238 −0.0001 0

]
D = 0

and from the second equation find weak vari-
able as, x2 = −A22

−1A21x1 − A22
−1B2u.

Continue from Step3 make necessary algebraic
matrix operations and finally get, Gf (s) = Af | Bf

−− −− −−
Cf | Df

 where;

Af =



−0.1690 0.0951 0.0784 −0.0663 −0.6557 0.6759
−0.0058 −1.1996 −0.1312 0.3503 0.2631 −0.5240
−0.0513 0.5609 −0.0938 0.2259 2.3058 −1.5693
−0.0772 −0.0122 −0.2554 −0.1296 −0.3903 1.3889
−0.5873 1.7458 −2.2822 −1.7701 −11.0375 15.9797

0.4156 −3.1167 1.7961 1.1096 11.5963 −21.3316



Bf =



−0.5472 −1.4593
1.7922 −0.6034

−0.4144 −0.0472
−0.2146 −0.3261
−2.2766 −2.2466

3.0081 1.0291


Cf =



−0.5419 −1.4612
1.8765 −0.2345

−0.1233 0.3985
−0.3049 −0.2438
−1.0190 −3.0315

1.1786 2.9523



T

Df =
[

−0.3115 0.0807
−0.2056 −0.0223

]

Obtain the H∞-norm in MATLAB as
∥Gf (s)∥∞ = 13.7413 which is so close to the H∞−
norm of the original system ∥G(s)∥∞ = 13.7388.
Let’s now assess the error tolerance between the
original system and the reduced-order balanced
model using both actual and theoretical infinity
error bounds, as outlined below.

∥Er∥∞ = ∥[G(s) − Gf (s)]∥∞ = 0.3774

and for r = 6 and n = 12,

2
n∑

i=r+1
σi =2(0.1613 + 0.0936 + 0.0006

+ 0 + 0 + 0) = 0.5110
It is obvious that ∥Er∥∞ ≤ 2

∑n
i=r+1 σi thus we

can say that error tolerance is in a satisfied level.

6. Conclusion

In this research, we applied both the bisection
method and the extended-balanced singular per-
turbation method to analyze a linear dynamic sys-
tem with the parameter D set to 0 . Our goal was
to compute the H∞− norm of its transfer func-
tion. We conducted a numerical experiment us-
ing both methods and performed a detailed error
analysis. The outcomes of our investigation re-
vealed that the bisection method performed sat-
isfactorily, with error tolerances falling within an
acceptable range after a certain number of itera-
tions. Similarly, the extended-balanced singular
perturbation method demonstrated satisfactory
performance, as the error tolerances met the crite-
ria for investigating the accuracy of the reduced-
order models. According to the H∞-norms com-
puted by methods, we conclude that bisection
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method is a slightly accurate than extended-
balanced singular perturbation method. Utilizing
bisection and extended balanced singular pertur-
bation methods, the research not only provides
detailed algorithms and error analysis but also
demonstrates practical application through a nu-
merical example involving an automotive gas tur-
bine model, enhancing the precision and reliabil-
ity of H∞-norm computations in real-world sys-
tems.
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