
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.14, No.2, pp.99-112 (2024)

http://doi.org/10.11121/ijocta.1468

RESEARCH ARTICLE

Some results regarding observability and initial state reconstruction
for time-fractional systems

Hamza Ben Brahima, Fatima-Zahrae El Alaouia, Khalid Zguaidb*

aTSI Team, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
bLRST Laboratory, The Higher School of Education and Training of Agadir (ESEFA), Ibn Zohr University,
Agadir, Morocco
brahim.hamzaben@edu.umi.ac.ma, f.elalaoui@umi.ac.ma, zguaid.khalid@gmail.com

ARTICLE INFO ABSTRACT

Article History:
Received 11 October 2023
Accepted 24 January 2024
Available Online 21 March 2024
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1. Introduction

Over the past two decades, fractional differential
systems have been widely used in the mathemati-
cal modeling of real phenomena such as diffusion,
fluid mechanics, and viscoelasticity [1, 2]. These
applications have motivated many researchers in
the field of differential systems to study frac-
tional differential systems with different fractional
derivatives. In many processes or phenomena
with long-range temporal cumulative memory ef-
fects and/or long-range spatial interactions, nu-
merical and theoretical results have also shown
that fractional differential systems offer more ad-
vantages than integer-order systems. Recently,
the theory of fractional differential systems has
become an important research topic in the field
of evolutionary systems [3–5].

In this paper, we consider Ω as a bounded re-
gion in Rn whose boundary is sufficiently smooth

∂Ω, and ε ∈]1, 2[ . From now on, we denote
Q = Ω×]0, T ] and Σ = ∂Ω×]0, T ] and we con-
sider the following fractional system on the finite
interval ]0, T ]:



RLDε
0+Θ(x, t) = AΘ(x, t) in Q,

lim
t→0+

I2−ε
0+

Θ(x, t) = Θ0(x) in Ω,

lim
t→0+

∂

∂t
I2−ε
0+

Θ(x, t) = Θ1(x) in Ω,

Θ(ξ, t) = 0 on Σ,

(1)

where RLDε
0+ is the Riemann-Liouville fractional

order derivative, A is a second order, linear, differ-
ential operator, and Iε

0+ is the Riemann–Liouville
fractional integral of order ε. The Riemann-
Liouville fractional derivative is one of the most
important extensions of ordinary integer order
derivatives. Differential equations with this type
of fractional derivative require special forms of
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initial conditions. The study of distributed sys-
tems involves analyzing and designing these sys-
tems based on their mathematical models, includ-
ing tasks such as determining system stability and
observability, as well as designing control and ob-
server algorithms to ensure the system behaves
as desired. Fractional calculus provides a power-
ful tool for analyzing and designing fractional dis-
tributed systems, as it allows for a more complete
and accurate description of the system’s behavior.

In recent years, the observability of fractional
equations has received considerable attention.
Observability refers to the ability to determine
an initial state on the basis of its inputs and out-
puts, and is a crucial concept in the analysis of
control systems. In general, the observability of
fractional equations in abstract spaces comprises
two cases: exact observability and approximate
observability. When studying the exact observ-
ability of fractional systems in abstract spaces,
we assume that the observability operator has a
bounded inverse operator. Approximate observ-
ability, as opposed to exact observability, is better
suited to describing natural phenomena. Previ-
ous research has extensively studied observability
in classical systems, including integer-order dis-
tributed parameter systems. For instance, Wang
[6] discussed observability in such systems, while
Goodson and Klein [7] established observability
criteria for simple systems, such as the wave equa-
tion and heat equation. More recent studies have
examined observability through regional analy-
sis. For example, Bourray, Boutoulout, and El
Alaoui [8, 9] studied the regional boundary ob-
servability and the regional gradient observabil-
ity for distributed parameter systems of integer
order, while [10] developed regional enlarged ob-
servability for integer-order linear parabolic sys-
tems. For time-fractional distributed parameter
systems with Riemann-Liouville fractional deriv-
ative, [11] developed the regional gradient ob-
servability. Zguaid, El Alaoui, and Boutoulout
[12] studied the observability of a class of lin-
ear time-fractional diffusion systems with Caputo
derivative of order 0 < ε < 1. Additionally,
other definitions of observability have been pro-
posed in the literature, such as the fractional ob-
servability Gramian and matrix, studied by the
authors in [13]. They also derived controlla-
bility and observability conditions for fractional
continuous-time linear systems based on Gramian
matrices. Furthermore, [14] explored regional ob-
servability for Hadamard-Caputo time fractional
distributed parameter systems, and in [15], the
pseudo-state representation was used to construct
Luenberger-like observers for estimating various

variables. For a deeper understanding of ob-
servability for classical and fractional systems we
refer the reader to the literature [16–28]. Ac-
cording to the academic literature, the observ-
ability of linear systems has been widely stud-
ied, with multiple methods proposed for calcula-
tion. One such method is the Hilbert Uniqueness
Method (HUM). The HUM approach is based on
the principles of Hilbert space theory and can be
extended to time-fractional distributed systems.
Using HUM, observability can be determined by
converting the reconstruction problem into a sol-
vency one [29]. There are many articles that dis-
cuss the applications of the HUM approach, and
we refer the reader to [30–34].

Inspired by the above-mentioned articles, the
aim of this work is to study the observability
of Riemann-Liouville time-fractional system (1).
Our contribution consists of giving several char-
acterizations for the exact and approximate ob-
servability of the linear system under considera-
tion. We present a method for reconstructing the
initial state in the desired region. In addition, we
provide some simple numerical simulations that
support our theoretical results.

This work is structured as follows: The first
section provides an overview of the mathemati-
cal and conceptual foundations that will be used
throughout the work. The second section focuses
on the definitions and observability characteris-
tics of fractional linear-time distributed systems
with a Riemann-Liouville type derivative of or-
der 1 < ε < 2, including exact and approximate
observability. In the third section, we introduce
the concept of fractional Green’s formula with or-
der 1 < ε < 2, and apply the HUM approach
to determine the initial state of the system. To
validate the effectiveness of the HUM approach,
we present some examples and conclude with a
numerical simulation.

2. Considered system and preliminaries

In this section, we give some definitions of
fractional derivatives and integrals of Riemann-
Liouville and Caputo types with an order of dif-
ferentiation between 1 and 2. In addition, we in-
troduce the essential concepts related to the the-
ory of the cosine family, which will be used in
this work. Moreover, we define the two-parameter
Mittag-Leffler function, which has many impor-
tant applications in fractional calculus. Let X be
a Hilbert space with the norm ∥.∥X.
We begin by outlining the definitions and key
properties of fractional integrals and derivatives
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of Riemann-Liouville and Caputo types with or-
der ε in the interval ]1, 2[.

Definition 1. [35] Let us consider Q ∈
L1(]a, b[;X).We define the left-sided fractional in-
tegral of ζ with order ε ∈]1, 2[ by the following
from:

Iε
a+Q(t) =

1

Γ(ε)

∫ t

a
(t− s)ε−1Q(s)ds, a < t ≤ b.

Where Γ(ε) =

∫ +∞

0
θε−1e−θdθ, is the Gamma

function.

We define AC([a, b];X) := {φ : [a, b] →
X , φ is absolutely continuous}.

Definition 2. [35] Let us consider ζ ∈
AC([a, b];X) then:

(1) The left-sided Riemann–Liouville frac-
tional derivative of order ε ∈]1, 2[ of a
function ζ is defined by:

RLDε
a+Q(t) =

1

Γ(2− ε)

d2

dt2

∫ t

a
(t− s)1−εQ(s)ds,

for a < t ≤ b.
(2) The right-sided Caputo fractional deriva-

tive of order ε ∈]1, 2[ of a function ζ is
defined by:

CDε
b−Q(t) =

1

Γ(2− ε)

∫ b

t
(s− t)1−ε d

2

ds2
Q(s)ds,

for a ≤ t < b.

Next, we will explore the key concepts of cosine
family theory that are relevant to this work. For
the rest of this paper, the adjoint of any operator
P , is denoted by P ∗.

Definition 3. [36] A one parameter family
(W(t))t∈R of bounded linear operators mapping
the Banach space X into itself is called a strongly
continuous cosine family if and only if:

(1) W(0) = I, where I is the identity function
of X.

(2) W(t+s)+W(t−s) = 2W(t)W(s),∀(t, s) ∈
R2.

(3) The map η 7→ W(t)η, is continuous in t
for each fixed point η ∈ X.

The sine family (U(t))t∈R associated with the
strongly continuous cosine family (W(t))t∈R is de-
fined by:

U(t)η =

∫ t

0
W(s)ηds, η ∈ X, t ∈ R.

The infinitesimal generator of the cosine family
(W(t))t∈R, which we denote A, is defined by:

Aη =
d2

dt2
W(0)η, ∀η ∈ D(A).

Where D(A) =
{
η ∈ X : W(t)η ∈ C2(R,X)

}
.

This infinitesimal generator A is a closed, densely-
defined operator in X.
We have the following proposition

Proposition 1. [37] Let A be the infinitesimal
generator of a strongly continuous cosine family
of bounded linear operators (W(t))t∈R on X, we
have:

W(t) =

+∞∑
n=0

Ant2n

2n!
, ∀t ∈ R.

For more details about strongly continuous cosine
and sine families, we refer the reader to [38,39].

The two-parameter Mittag-Leffler function, which
plays an important role in this work, is given in
the coming definition.

Definition 4. [40] The two parameter Mittag-
Leffler function is defined as:

Ep,ζ(u) =
+∞∑
j=0

uj

Γ(jp+ ζ)
; p, ζ > 0; u ∈ C.

For more details, we refer to [41] .

Throughout this paper, we maintain the assump-
tion that X := L2(Ω), and that the family of linear
operators (W(t))t∈R is uniformly bounded. This
means that there exists a constant G ≥ 1, such
that for any t in the real numbers (t ∈ R), the
norm of the operator W(t) in the space of all
linear and bounded operators from X to itself is
bounded by G.

In addition, we define the operator A : D(A) ⊂
X −→ X as the infinitesimal generator of the co-
sine family of uniformly bounded linear operators
(W(t))t∈R on the space X is defined as follows:

AΘ(x, t) =
n∑

h,k=1

∂

∂xd

[
σhk(x)

∂Θ(x, t)

∂xk

]
+σ0Θ(x, t),

(2)
∀x ∈ Ω, ∀t ∈]0, T ], where the coefficients σhk are
in C1(Ω), with 1 ≤ h ≤ n and 1 ≤ k ≤ n, and σ0
is in C1(Ω), such that:
σhk = σkh, 1 ≤ h ≤ n, 1 ≤ k ≤ n,

∃B > 0, ∀ ς ∈ Rn,

n∑
h,k=1

σdk(x)ςhςk ≥ B∥ς∥2,

(3)

for ς = (ς1, ς2, . . . , ςn) ∈ Rn and ∥ς∥2 =
n∑

i=1

ς2i .
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We consider the system (1) augmented by the fol-
lowing output functional:

ϖ(t) = CΘ(., t), ∀t ∈]0, T ]. (4)

Where C is a linear, possibly unbounded, opera-
tor called the observation operator with dense do-
main in X and range in O, where O is a Hilbert
space (observation space).

Next, we give the definition of the mild solution
for the system (1).

Definition 5. [42] For any t ∈ ]0, T ] and 1 <
ε < 2, a function Θ(., .) ∈ C(]0, T ];X), is said to
be a mild solution of the system (1) if it satisfies:

Θ(x, t) =Mq(t)Θ0(x) +Rq(t)Θ1(x), q =
ε

2
. (5)

for all t ∈]0, T ], x ∈ Ω.

Where

Mq(t) =
d

dt
tq−1Pq(t), t ∈]0, T ],

Rq(t) = tq−1Pq(t) =

∫ t

0
Mq(s)ds, t ∈]0, T ],

Pq(t) =

∫ ∞

0
qθSq(θ)W(tqθ)dθ, t ∈]0, T ],

and

Sq(ρ) =
1

q
ρ
−1− 1

q ξq(ρ
−1
q ), ρ ∈]0,+∞[,

ξq(ρ) =
1

π

∞∑
k=1

(−1)n−1(ρ)−nq−1Γ(nq + 1)

n!
sin(nπq),

for all ρ ∈]0,+∞[.

Note that Sq(.) is the Mainardi’s Wright-type
function, which is defined on ]0,+∞[ and satis-
fies:

• Sq(ρ) ≥ 0, ρ ∈]0,+∞[.

•
∫ +∞

0
ρnSq(ρ)dρ =

Γ(n+ 1)

Γ(1 + nq)
.

The measurement functional (4) can also be writ-
ten as:

ϖ(t) = Jε(t)

(
Θ0

Θ1

)
, ∀t ∈]0, T ], (6)

where Jε : X2 −→ L2(]0, T ];O) is called the ob-
servability operator, and it’s defined by:

Jε(t)

(
Θ0

Θ1

)
= CMq(t)Θ0 + CRq(t)Θ1.

Note that the operator Jε is bounded if C is
bounded, and it plays an important role in the
characterization of observability.

The objective is to determine the initial state
of a system from the output function (4). To
achieve this, the adjoint of Jε must be calculated

which is not always defined when C is unbounded.
This calculation will later aid in defining and un-
derstanding the characteristics of observability.
Then, we consider the following definition.

Definition 6. [43] We say that the operator C is
an admissible observation operator, respectively,
for Mq and Rq, if:

• ∃N1, such that:

∀z ∈ D(A),

∫ T

0
∥CMq(t)z∥2Odt ≤ N1∥z∥2X,

and

• ∃N2, such that:

∀z ∈ D(A),

∫ T

0
∥CRq(t)z∥2Odt ≤ N2∥z∥2X.

Remark 1. The admissibility condition for Mq

and Rq is always satisfied in the case where C is
bounded. Therefore, a bounded observation oper-
ator C is an admissible one.

Throughout this paper, we suppose that C is an
admissible observation operator. Then, the ad-
joint operator of Jε is given as follows:

Jε
∗ : L2(]0, T ];O) −→ X2

Y 7−→

(∫ T
0 M∗

q (t)C
∗Y(t)dt∫ T

0 R∗
q(t)C

∗Y(t)dt

)
.

(7)
Indeed:
Let us consider (y0, y1) ∈ X2, and Y ∈
L2(]0, T ];O), then:

〈
Jε(.)

(
y0
y1

)
,Y
〉

L2(]0,T ];O)

=

∫ T

0

〈
Jε(t)

(
y0
y1

)
,Y(t)

〉
O

dt

=

∫ T

0
⟨CMq(t)y0 + CRp(t)y1,Y(t)⟩O dt

=

∫ T

0

〈
y0,M

∗
q (t)C

∗Y(t)
〉
X
dt

+

∫ T

0

〈
y1, R

∗
q(t)C

∗Y(t)
〉
X
dt

=

〈(
y0
y1

)
,

(∫ T
0 M∗

q (t)C
∗Y(t)dt∫ T

0 R∗
q(t)C

∗Y(t)dt

)〉
X2

·

We extend the definitions of observability for hy-
perbolic systems to the fractional case ε ∈]1, 2[.
Consequently, we have the following definition:
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Definition 7. • The system (1) with (4) is
said to be exactly observable if:

Im (Jε
∗) = X2.

• The system (1) with (4) is said to be ap-
proximately observable if:

Im (Jε
∗) = X2.

We now present some useful properties regarding
the exact and approximate observablity. This first
proposition gives us many characterizations re-
garding the approximate observability of the sys-
tem (1).

Proposition 2. The following properties are
equivalent:

(1) The system (1) with (4) is approximately
observable .

(2) Ker (Jε) = {0}.
(3) Ker (Jε

∗Jε) = {0}.
(4) Im(Jε

∗Jε) = X2 .
(5) (JεJε

∗) is positive definite.

Proof. We show that 1 ⇔ 2, 2 ⇔ 3, 3 ⇔ 4, and
2 ⇔ 5.

• (1)⇔(2) We know that the space X2 is a
reflexive Banach space, then:

Im (Jε
∗) = X2 ⇔

[
Im (Jε

∗)
]⊥

=
[
X2
]⊥

⇔ Ker (Jε) = {0}.
• (2)⇔ (3)

i) First, let us show that: Ker(Jε
∗Jε) =

{0} ⇒ Ker(Jε) = {0}.
Let us consider y ∈ Ker(Jε), then:

Jε(t)y = 0 ⇒ Jε
∗Jε(t)y = 0

⇒ y ∈ Ker(Jε
∗Jε)

⇒ y = 0.

Then, we get: Ker(Jε) = {0}.
ii) Second, let us show that:

Ker(Jε) = {0} ⇒ Ker(Jε
∗Jε) =

{0}.
Let us consider y ∈ Ker(Jε

∗Jε), we
have:

⟨Jε∗Jε(.)y, y⟩X2 = ⟨Jε(.)y, Jε(.)y⟩L2(]0,T ];O)

= ∥Jε(.)y∥2L2(]0.T ];O).

We have Jε
∗Jε(.)y = 0, then,

Jε(.)y = 0, which implies that y ∈
Ker(Jε). Thus, y = 0.
Consequently Ker(Jε

∗Jε) = {0}.
• (3) ⇔ (4) This is a direct consequence
from the fact that:

Ker (Jε
∗Jε) =

[
Im (Jε

∗Jε)
]⊥

• (5)⇔ (2) If Jε
∗Jε is positive definite.

Then:

⟨Jε∗Jεu, u⟩ ≥ 0, ∀u ∈ X2,

and

⟨Jε∗Jεu, u⟩ = 0 ⇒ u = 0, ∀u ∈ X2·
We have

⟨Jε∗Jεu, u⟩X = ⟨Jε∗u, Jε∗u⟩L2(]0,T ];O)

= ∥Jε(.)u∥2L2(0,T ;O) ≥ 0,∀u ∈ X2.

On the other hand

[⟨Jε∗Jεu, u⟩X = 0 =⇒ u = 0]

⇔
[
∥Jε(.)u∥2L2(]0,T ];O) = 0 =⇒ u = 0

]
⇔ [Jεu = 0 =⇒ u = 0]

⇔ Ker(Jε) = {0}·
This completes the proof. □

In this next proposition, we shed light on some
characterizations regarding the exact observabil-
ity of the systeme (1).

Proposition 3. The mentioned statements are
equivalent:

(1) The system (1) with (4) is exactly observ-
able.

(2) ∃M > 0, such that:

∥z∥X2 ≤M∥Jε(.)z∥L2(]0,T ],O), ∀z ∈ X2.

(3) The operator JεJε
∗ is coercive .

(4) Im(Jε
∗) is closed and Ker(Jε) = {0}.

Before proving the main proposition, we recall the
following lemma:

Lemma 1. [44] Let F , G and H be three reflex-
ive Banach spaces. Let us consider N ∈ L(F ;H)
and T ∈ L(G;H). The mentioned statements are
equivalent:

(1) Im(N ) ⊂ Im(T ),
(2) ∃M > 0, such that:

∥N ∗z∗∥F∗ ≤M∥T ∗z∗∥G∗ , ∀z∗ ∈ H∗·

Now, we give the proof of the proposition (3).

Proof. We show that 1 ⇔ 2, 2 ⇔ 3 and 1 ⇔ 4.

• 1 ⇔ 2 This is a direct application of
Lemma (1) with:

• F = H = X2.
• G = L2(]0, T ];O).
• N = IdX2 .
• T = Jε

∗.
Where IdX2 is the identity function of X2.

• 3 ⇔ 2 If Jε
∗Jε is coercive, then there ex-

ists M > 0 such that ∀(z0, z1) ∈ X2〈
Jε

∗Jε

(
z0
z1

)
,

(
z0
z1

)〉
X2

≥ M

∥∥∥∥(z0z1
)∥∥∥∥2

X2
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⇔
∥∥∥∥Jε(.)(z0z1

)∥∥∥∥2
L2(]0,T ];O)

≥ M

∥∥∥∥(z0z1
)∥∥∥∥2

X2

⇔
∥∥∥∥Jε(.)(z0z1

)∥∥∥∥
L2(]0,T ];O)

≥
√
M

∥∥∥∥(z0z1
)∥∥∥∥

X2

.

• 1 ⇔ 4
(1) 1 ⇒ 4

Since system (1) with (4) is exactly
observable it also approximately ob-
servable . Then,

Im (Jε
∗) = X2 and Im (Jε

∗) = X2.

Then Im(Jε
∗) is closed. By using

the proposition (2) we get Ker (Jε) =
{0}.
Thus, Im(Jε

∗) is closed and
Ker (Jε) = {0}.

(2) 4 ⇒ 1
We have Ker (Jε) = {0}, Hence, by
using the proposition (2), we get

Im (Jε
∗) = X2, this, together with

the fact that Im(Jε
∗) is closed, we

obtain Im (Jε
∗) = X2.

This completes the proof. □

We give the following proposition.

Proposition 4. If the system (1) with (4) exactly

observable then the application (Jε
∗Jε)

−1 is con-
tinuous .

Proof. We know that a linear operator B is in-
vertible and of continuous inverse if and only if:

∃m > 0, such that m∥z∥ ≤ ∥Bz∥, (8)

see [44].

If the system (1) with (4) exactly observable,
then:

∃m > 0, such that, ∀(z0, z1) ∈ X2,〈
Jε

∗Jε

(
z0
z1

)
,

(
z0
z1

)〉
X2

≥ m

∥∥∥∥(z0z1
)∥∥∥∥2

X2

=⇒ ∃m > 0, such that, ∀(z0, z1) ∈ X2,

m

∥∥∥∥(z0z1
)∥∥∥∥2

X2

≤
∥∥∥∥Jε∗Jε(.)(z0z1

)∥∥∥∥
L2(0,T ;O)

∥∥∥∥(z0z1
)∥∥∥∥

X2

=⇒ ∃m > 0, such that, ∀(z0, z1) ∈ X2,

m

∥∥∥∥(z0z1
)∥∥∥∥

X2

≤
∥∥∥∥Jε∗Jε(.)(z0z1

)∥∥∥∥
L2(0,T ;O)

=⇒ (Jε
∗Jε)

−1 is continus.

This completes the proof. □

By the conditions 3, it is well known that A is
symmetric and −A is uniformly elliptic. In this

case, it is well known that −A has a set of eigen-
values (λj)j≥1, such that:

0 < λ1 < λ2 < λ3 < λ4 < · · ·λj+1 < · · · → +∞.
Each eigenvalue λj corresponds with rj eigenfunc-
tions {φjk}1≤k≤rj , where rj ∈ N∗ is the mul-
tiplicity of λj , such that Aφjk = λjφjk and
φjk ∈ D(A), ∀j ∈ N∗ and 1 ≤ k ≤ rj . In addition,
the set {φjk} j≥1

1≤rj≤j
form an orthogonal basis of

X, [45].
We give the following proposition.

Proposition 5. Let us consider Θ0,Θ1 ∈ X and
t ∈]0, T ], we have:

1. Rq(t)Θ1(x) =
+∞∑
j=1

rj∑
k=1

t2q−1E2q,2q

(
λjt

2q
)

× ⟨Θ1, φjk⟩X φjk(x).

2. Mq(t)Θ0(x) =

+∞∑
j=1

rj∑
k=1

t2q−2E2q,2q−1(λjt
2q)

× ⟨Θ0, φjk⟩X φjk(x).

Proof. Let us consider Θ0,Θ1 ∈ X and t ∈
]0, T ]. From (1), we can write the cosine family
(W(t))t≥0 in the following form:

W(t)Θ0(x) =
+∞∑
n=0

+∞∑
j=1

rj∑
k=1

t2nλnj
2n!

⟨Θ0, φjk⟩X φjk(x).

Thus,

1. Rq(t)Θ1(x)

= tq−1

∫ ∞

0
qθSq(θ)U(t

qθ)Θ1(x)dθ

= tq−1

∫ ∞

0
qθSq(θ)

∫ tqθ

0
W(s)Θ1(x)dsdθ

= tq−1

∫ ∞

0

+∞∑
j=1

rj∑
k=1

+∞∑
n=0

(tqθ)2n+1λnj
2n!(2n+ 1)

× qθSq(θ) ⟨Θ1, φjk⟩X φjk(x)dθ

= tq−1
+∞∑
j=1

rj∑
k=1

+∞∑
n=0

⟨Θ1, φjk⟩X φjk(x)

×
∫ ∞

0
qθSq(θ)

λnj (t
qθ)2n+1

2n!(2n+ 1)
dθ

= tq−1
+∞∑
j=1

rj∑
k=1

+∞∑
n=0

⟨Θ1, φjk⟩X φjk(x)

×
qλnj (t

q)2n+1

(2n+ 1)!

∫ ∞

0
Sq(θ)θ

2n+2dθ
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= tq−1
+∞∑
j=1

rj∑
k=1

+∞∑
n=0

⟨Θ1, φjk⟩X φjk(x)

×
qλnj (t

q)2n+1

(2n+ 1)!
× Γ(1 + 2n+ 2)

Γ(1 + q(2n+ 2))

= t2q−1
+∞∑
j=1

rj∑
k=1

⟨Θ1, φjk⟩X φjk(x)

×
+∞∑
n=0

(λjt
2q)n

Γ(2q + 2qn)

=
+∞∑
j=1

rj∑
k=1

t2q−1E2q,2q

(
λjt

2q
)

× ⟨Θ1, φjk⟩X φjk(x).

And,

2. Mq(t)Θ0(x) =
+∞∑
j=1

rj∑
k=1

⟨Θ0, φjk⟩X φjk(x)

× d

dt
t2q−1E2q,2q

(
λjt

2q
)

=
+∞∑
j=1

rj∑
k=1

⟨Θ0, φjk⟩X φjk(x)

×
+∞∑
n=0

(2qn+ 2q − 1)λnj t
2qn+2q−2

Γ(2q + 2qn)

=

+∞∑
j=1

rj∑
k=1

⟨Θ0, φjk⟩X φjk(x)

×
+∞∑
n=0

λnj t
2qn+2q−2

Γ(2qn+ 2q − 1)

=

+∞∑
j=1

rj∑
k=1

t2q−2E2q,2q−1(λjt
2q)

× ⟨Θ0, φjk⟩X φjk(x).

This completes the proof. □

3. The steps of HUM approach

In this section, we give an approach that allows
the reconstruction of the initial state. First, we
will give a new version of Green’s fractional for-
mula, which is of major importance in the field of
control theory [29].

Proposition 6. ( Fractional Green’s formula of
order 1 < α < 2. )

For any ψ ∈ C∞(Ω× [0, T ]), we have:∫ T

0

∫
Ω

(
RLDα

0+Θ(x, t) +AΘ(x, t)
)
ψ(x, t)dxdt

=

∫ T

0

∫
Ω
(CDα

T−ψ(x, t) +A∗ψ(x, t))Θ(x, t)dxdt

−
∫
Ω
I2−α
0+

Θ(x, T )
∂

∂t
ψ(x, T )dx

+

∫
Ω

∂

∂t
I2−α
0+

Θ(x, T )ψ(x, T )dx

+

∫
Ω

lim
t→0+

I2−α
0+

Θ(x, t)
∂

∂t
ψ(x, 0)dx

−
∫
Ω

lim
t→0+

∂

∂t
I2−α
0+

Θ(x, t)ψ(x, 0)dx

+

∫ T

0

∫
∂Ω

(
Θ(ξ, t)

∂ψ(ξ, t)

∂νA∗
− ψ(ξ, t)

∂Θ(ξ, t)

∂νA

)
dξdt.

Proof. For any ψ ∈ C∞(Ω× [0, T ]), we have:∫ T

0

∫
Ω

(
RLDα

0+Θ(x, t) +AΘ(x, t)
)
ψ(x, t)dxdt

=

∫ T

0

∫
Ω

(
RLDα

0+Θ(x, t)
)
ψ(x, t)dxdt

+

∫ T

0

∫
Ω
(AΘ(x, t))ψ(x, t)dxdt,

(9)
Now, we recall the two useful properties. The first
one is the fractional integration by parts formula,
see [46],∫ T

0

RLDα
0+Θ(t)ψ(t)dt =

∫ T

0

CDα
T−ψ(t)Θ(t)dt

−
[
I2−α
0+

Θ(t)
d

dt
ψ(t)− d

dt
I2−α
0+

Θ(t)ψ(t)

]T
0

=

∫ T

0

CDα
T−ψ(t))Θ(t)dt− I2−α

0+
Θ(T )

d

dt
ψ(T )

+
d

dt
I2−α
0+

Θ(T )ψ(T ) + lim
t→0

I2−α
0+

Θ(t)
d

dt
ψ(0)

− lim
t→0

d

dt
I2−α
0+

Θ(t)ψ(0).

(10)

The second property is,∫
Ω
AΘ(x, t)ψ(x, t)dx =

∫
Ω
Θ(x, t)A∗ψ(x, t)dx

+

∫
∂Ω

Θ(ξ, t)
∂ψ(ξ, t)

∂νA∗
dξ −

∫
∂Ω
ψ(ξ, t)

∂Θ(ξ, t)

∂νA
dξ,

(11)
and it can be found in [47].

Using (10) and (11), we obtain:
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∫ T

0

∫
Ω

(
RLDα

0+Θ(x, t) +AΘ(x, t)
)
ψ(x, t)dxdt

=

∫ T

0

∫
Ω
(CDα

T−ψ(x, t) +A∗ψ(x, t))Θ(x, t)dxdt

+

∫ T

0

∫
∂Ω

(
Θ(ξ, t)

∂ψ(ξ, t)

∂νA∗
− ψ(ξ, t)

∂Θ(ξ, t)

∂νA

)
dξdt

−
∫
Ω
lim
t→T

I2−α
0+

Θ(x, t)
∂

∂t
ψ(x, t)dx

+

∫
Ω
lim
t→T

∂

∂t
I2−α
0+

Θ(x, t)ψ(x, t)dx

+

∫
Ω

lim
t→0+

I2−α
0+

Θ(x, t)
∂

∂t
ψ(x, t)dx

−
∫
Ω

lim
t→0+

∂

∂t
I2−α
0+

Θ(x, t)ψ(x, t)dx.

Thus, we finally get that:∫ T

0

∫
Ω

(
RLDα

0+Θ(x, t) +AΘ(x, t)
)
ψ(x, t)dxdt

=

∫ T

0

∫
Ω
(CDα

T−ψ(x, t) +A∗ψ(x, t))Θ(x, t)dxdt

−
∫
Ω
I2−α
0+

Θ(x, T )
∂

∂t
ψ(x, T )dx

+

∫
Ω

∂

∂t
I2−α
0+

Θ(x, T )ψ(x, T )dx

+

∫
Ω

lim
t→0+

I2−α
0+

Θ(x, t)
∂

∂t
ψ(x, 0)dx

−
∫
Ω

lim
t→0+

∂

∂t
I2−α
0+

Θ(x, t)ψ(x, 0)dx

+

∫ T

0

∫
∂Ω

(
Θ(ξ, t)

∂ψ(ξ, t)

∂νA∗
− ψ(ξ, t)

∂Θ(ξ, t)

∂νA

)
dξdt.

This completes the proof. □

Let us now present the steps of the method that
we use in order to reconstruct the initial state.
This method is an extension of the Hilbert unique-
ness method (HUM) presented by Lions in [29].

For any (β0, β1) ∈ X× X. Consider the system:

RLDε
0+β(x, t) = Aβ(x, t) in Q,

lim
t→0+

I2−ε
0+

β(x, t) = β0(x) in Ω,

lim
t→0+

d

dt
I2−ε
0+

β(x, t) = β1(x) in Ω,

β(ξ, t) = 0 on Σ,

(12)

which has a unique mild solution:

φ(x, t) =Mq(t)β0(x) +Rq(t)β1(x). (13)

We introduce the semi-norm on X2 :

∥ · ∥S⨿ : X2 −→ R+

(β0, β1) 7−→ ∥(β0, β1)∥S⨿
=

√∫ T

0
∥Cβ(x, t)∥2Odt.

(14)
We then have the following results:

Lemma 2. If the system (12) together with the
output equation (4) is approximately observable
then the semi-norm ∥ · ∥S⨿ becomes a norm .

Proof. We need to show that: ∀ (β0, β1) ∈ X2, we
have:

∥ (β0, β1) ∥S⨿ = 0 ⇒ β0 = β1 = 0.

Let us consider (β0, β1) ∈ X2, then:

∥(β0, β1)∥2S⨿
= 0 ⇔

∫ T

0
∥Cβ(x, t)∥2Odt = 0

⇔ ∥Cβ(x, t)∥O = 0, ∀t ∈]0, T ]
⇔ Cβ(x, t) = 0, ∀t ∈]0, T ]

⇔ Jε(t)

(
β0
β1

)
= 0, ∀t ∈]0, T ]

⇔
(
β0
β1

)
∈ Ker(Jε),

using the fact that (1) with (4) is approximately
observable, we get that:

β0 = β1 = 0.

This completes the proof.

□

We define the retrograded system of (12) as fol-
lows:

CDε
T−ψ(x, t) = A∗ψ(x, t)− C∗Cβ(x, t) inQ,

ψ(x, T ) = 0,
∂

∂t
ψ(x, T ) = 0 in Ω,

ψ(ξ, t) = 0 on Σ,

(15)
which has a unique mild solution in C (]0, T ];X) ,
see: [48].

ψ(x, t) = −
∫ T

t
(τ − t)q−1P ∗

q (τ − t)C∗Cβ(x, τ)dτ,

(16)
where

P ∗
q (t) =

∫ ∞

0
qySq(y)U

∗(tqy)dy.

We now present a new alternative result that
plays an important role in solving the reconstruc-
tion problem.
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Proposition 7. The mild solution ψ of system
(15) satisfies:

1. ψ(x, 0) = −
∫ T

0
R∗

q(τ)C
∗Cβ(x, τ)dτ.

2.
∂

∂t
ψ(x, 0) =

∫ T

0
M∗

q (τ)C
∗Cβ(x, τ)dτ.

(17)

Proof. 1) Let ψ a mild solution of system (15),
then:

ψ(x, t) = −
∫ T

t
(τ − t)q−1P ∗

q (τ − t)C∗Cβ(x, τ)dτ.

Thus, if t = 0, we obtain:

ψ(x, 0) = −
∫ T

0
(τ)q−1P ∗

q (τ)C
∗Cβ(x, τ)dτ,

= −
∫ T

0
R∗

q(τ)C
∗Cβ(x, τ)dτ.

2) Using equation (16), we obtain:

∂

∂t
ψ(x, t)

=
∂

∂t

[
−
∫ T

t
(τ − t)q−1P ∗

q (τ − t)C∗Cβ(x, τ)dτ

]
=

[
−
∫ T

t

∂

∂t
((τ − t)q−1P ∗

q (τ − t))C∗Cβ(x, τ)dτ

]
− lim

τ−→T
Rq(τ − t)C∗Cβ(x, τ)

∂

∂t
(T )

+ lim
τ−→t

Rq(τ − t)C∗Cβ(x, τ)
∂

∂t
(t)

=

∫ T

t
M∗

q (τ − t))C∗Cβ(x, τ)dτ,

thus, if t = 0, we obtain:

∂

∂t
ψ(x, 0) =

∫ T

0
M∗

q (τ)C
∗Cβ(x, τ)dτ.

This completes the proof. □

If (β0, β1) is chosen such that Cβ(., t) = ϖ(t) in
Ω, then, by using the fractional Green’s formula,
the following system can be seen as the adjoint
system of(1) with (4).

CDε
T−Υ(x, t) = A∗Υ(x, t)− C∗ϖ(., t) in Q,

Υ(x, T ) = 0,
∂

∂t
Υ(x, T ) = 0 in Ω,

Υ(ξ, t) = 0 on Σ.

(18)
We define the mapping:

Λ : X2 −→ X2

(β0, β1) −→ Λ (β0, β1) =

(
∂

∂t
ψ(x, 0),−ψ(x, 0)

)
.

(19)

Then, the problem of reconstruction is reduced to
solve the following equation:

Λ (β0, β1) =

(
∂

∂t
Υ(x, 0),−Υ(x, 0)

)
. (20)

We then have the following theorem.

Theorem 1. If the system (12) is approximately
observable, then the equation (20) has a unique
solution which corresponds with the initial state
in Ω.

Proof. We need to prove that Λ is coercive: (i.e)
∃ C > 0, such that

⟨Λ (β0, β1) , (β0, β1)⟩X2 ≥ C ∥(β0, β1)∥2X2 . (21)

Then:

⟨Λ (β0, β1) , (β0, β1)⟩X2

=

〈(
∂

∂t
Υ(x, 0),−Υ(x, 0)

)
, (β0, β1)

〉
X2

=

〈∫ T

0
M∗

q (τ)C
∗Cβ(τ)dτ, β0

〉
X

+

〈∫ T

0
R∗

q(τ)C
∗Cβ(τ)dτ, β1

〉
X

=

∫ T

0
⟨Cβ(τ),Cβ(τ)⟩O dτ

= ∥(β0, β1)∥2X2 .

This completes the proof. □

4. Numerical approach

In this section, we present an approach that gives
the initial state in cases where pointwise and zonal
sensors are used. Let Ω be an open bounded sub-
set on Rn, we consider the abstract time-fractional
system:

RLDε
0+β(x, t) = Aβ(x, t) in Q,

lim
t→0+

I2−ε
0+

β(x, t) = β0(x) in Ω,

lim
t→0+

∂

∂t
I2−ε
0+

β(x, t) = β1(x) in Ω,

β(ξ, t) = 0 on Σ,

(22)

for simplicity, we can safely assume that the eigen-
values of −A are of multiplicity equal to 1, even-
though this is not always the case. The reason
behind this consideration is to work with a sin-
gle iterator in the index of the eigenfunctions in
order to simplify the mathematical expressions,
which is always possible since we can always find
a possible rearrangement of the eigenvalues and
eigenfunctions which makes this possible. Note
that in the new arrangement, many eigenvalues
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will have the same value. We denote the eigenval-
ues of −A by λj , for every j ∈ N∗, and the corre-
sponding normalized eigenfunctions by φj(x), for
every j ∈ N∗.

Hence, the system (22) has a unique mild
solution given by the following formula:

β(x, t) =
+∞∑
j=1

t2q−2 ⟨β0(.), φj⟩XE2q,2q−1

(
λjt

2q
)

+ t2q−1 ⟨β1(.), φj⟩XE2q,2q

(
λjt

2q
)
φj(x).

The adjoint system of (22) is written as:
CDε

T−Υ(x, t) = AΥ(x, t)− C∗ϖ(t) in Q,

Υ(x, T ) = 0,
∂

∂t
Υ(x, T ) = 0 in Ω,

Υ(ξ, t) = 0 on Σ.

(23)

Hence, by using (17) and proposition (5) , we get:

1. −Υ(x, 0) =

∫ T

0
Rq(t)C

∗ϖ(t)dt

=

∫ T

0

+∞∑
j=1

t2q−1E2q,2q

(
λjt

2q
)

× ⟨C∗ϖ(t), φj⟩X φj(x)dt,

2.
∂

∂t
Υ(x, 0) =

∫ T

0
Mq(t)C

∗ϖ(t)dt

=

∫ T

0

+∞∑
j=1

t2q−2E2q,2q−1(λjt
2q)

× ⟨C∗ϖ(t), φj⟩X φj(x)dt.

For any (β0, β1) ∈ X2, we also have:

⟨Λ (β0, β1) , (β0, β1)⟩X2 =

∫ T

0
∥Cβ(x, t)∥2Odt,

(24)
by using the expression of β(., .), we obtain:∫ T

0
∥Cβ(x, t)∥2Odt =

+∞∑
j,i=1

∫ T

0
t4q−4E2q,2q−1

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× Cφj(x)Cφi(x) ⟨β0, φj⟩X ⟨β0, φi⟩X

+

∫ T

0
t4q−3E2q,2q−1

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dtCφj(x)

× Cφi(x) ⟨β1, φj⟩X ⟨β0, φi⟩X

+

∫ T

0
t4q−3E2q,2q

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dtCφj(x)

× Cφi(x) ⟨β0, φj⟩X ⟨β1, φi⟩X

+

∫ T

0
t4q−2E2q,2q

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dtCφj(x)

× Cφi(x) ⟨β1, φj⟩X ⟨β1, φi⟩X .
(25)

Then, the problem (24) can be approached by the
linear systems:

N∑
j=1

(
Ai,j Bi,j

Ci,j Di,j

)(
βj0
βj1

)
=

(
Υi

1(x, 0)
Υi

0(x, 0)

)
, (26)

for i=1,2,3,. . .,N . Where:

•Ai,j =

∫ T

0
t4q−4E2q,2q−1

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× Cφj(x)Cφi(x).

•Bi,j =

∫ T

0
t4q−3E2q,2q−1

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dt

× Cφj(x)Cφi(x).

• Ci,j =

∫ T

0
t4q−3E2q,2q

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× Cφj(x)Cφi(x).

•Di,j =

∫ T

0
t4q−2E2q,2q

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dt

× Cφj(x)Cφi(x).

• βj0 = ⟨β0, φj⟩X .

• βj1 = ⟨β1, φj⟩X.
•Υi

0(x, 0) = ⟨−Υ(., 0), φi⟩X .

•Υi
1(x, 0) =

〈
∂

∂t
Υ(., 0), φi

〉
X

.

In the case where the output function is given by
a pointwise sensor ϖ(t) = β(b, t), where b ∈ Ω.
Then, we get:

•Υ(x, 0) = −
+∞∑
j=1

∫ T

0
t2q−1E2q,2q

(
λjt

2q
)
β(b, t)dt

× φj(b)φj(x).

• ∂

∂t
Υ(x, 0) =

+∞∑
j=1

∫ T

0
t2q−2E2q,2q−1

(
λjt

2q
)
β(b, t)dt

× φj(b)φj(x).

And

•Ai,j =

∫ T

0
t4q−4E2q,2q−1

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× φj(b)φi(b).

•Bi,j =

∫ T

0
t4q−3E2q,2q−1

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dt

× φj(b)φi(b).

• Ci,j =

∫ T

0
t4q−3E2q,2q

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× φj(b)φi(b).

•Di,j =

∫ T

0
t4q−2E2q,2q

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dt

× φj(b)φi(b).
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In the case where the output function is given
by a zonal sensor (g,D), where g(x) = χD(x) is
the spatial distribution of the sensor and D is the
spatial domain of g. Then, we get:

•Υ(x, 0) = −
+∞∑
j=1

∫ T

0
t2q−1E2q,2q

(
λjt

2q
)
ϖ(t)dt

× ⟨g(.), φj(.)⟩L2(D) φj(x).

• ∂

∂t
Υ(x, 0) =

+∞∑
j=1

∫ T

0
t2q−2E2q,2q−1(λjt

2q)ϖ(t)dt

× ⟨g(.), φj⟩L2(D) φj(x).

Where:

• Ai,j =

∫ T

0
t4q−4E2q,2q−1

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× ⟨g, φj(.)⟩L2(D) ⟨g, φi(.)⟩L2(D) .

• Bi,j =

∫ T

0
t4q−3E2q,2q−1

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dt

× ⟨g, φj(.)⟩L2(D) ⟨g, φi(.)⟩L2(D) .

• Ci,j =

∫ T

0
t4q−3E2q,2q

(
λjt

2q
)
E2q,2q−1

(
λit

2q
)
dt

× ⟨g, φj(.)⟩L2(D) ⟨g, φi(.)⟩L2(D) .

• Di,j =

∫ T

0
t4q−2E2q,2q

(
λjt

2q
)
E2q,2q

(
λit

2q
)
dt

⟨g, φj(.)⟩L2(D) ⟨g, φi(.)⟩L2(D) .

5. Simulations

In this section, we present two numerical simu-
lations illustrating the previous results, to make
it easier to understand, let’s focus on the one-
dimensional case. Throughout this section, we

work with we consider A = ∆ =
∂2

∂x2
to be the

Laplace operator with a domain:

D(∆) = {σ ∈ H0
1 (Ω) , ∆σ ∈ L2(Ω)}

= H2(Ω) ∩H1
0 (Ω).

The operator ∆ in this case generates a uni-
formly bounded strongly continuous cosine family
{W(t)}t≥0. It is well known that −∆ has a dis-
crete spectrum and its eigenvalues are λj for every
j ∈ N∗, with the corresponding normalized eigen-
vectors φj(x) for every j ∈ N∗.

Example 1. Consider the abstract time-
fractional system:

RLD
3
2

0+
Θ(x, t) = ∆Θ(x, t) in Q,

lim
t→0+

D
1
2

0+
Θ(x, t) = Θ0(x) =

1

2
× x(1− x) in Ω,

lim
t→0+

∂

∂t
D

1
2

0+
Θ(x, t) = Θ1(x) in Ω,

Θ(ξ, t) = 0 on Σ.

(27)

where Q = ]0, 1[×]0, 3],Σ = {0, 1}×]0, 3].

The output function is given by a pointwise sen-
sor ϖ(t) = Θ(0.09, t), ∀t ∈]0, 3]. According to the
numerical algorithm, we obtain the figure (1).
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The initial state

The reconstructed intitial state

Sensors location

Figure 1. The initial state is repre-
sented by a continuous line, while the
reconstructed initial state is shown as
a dashed line within the interval ]0, 1[.

In figure (1), the starting state of the system is
established with a reconstruction error of ∥Θ0 −
β0∥L2(]0,1[) = 3.5 × 10−3, and it can be observed
that the starting state is close to the estimated
starting state in the interval ]0.1[.

Example 2. Consider the abstract time-
fractional system:

RLD
3
2

0+
Θ(x, t) = ∆Θ(x, t) in Q,

lim
t→0+

I
1
2

0+
Θ(x, t) = Θ0(x) = η × x(1− x) in Ω,

limt→0+
∂

∂t
I

1
2

0+
Θ(x, t) = Θ1(x) in Ω,

Θ(ξ, t) = 0 on Σ.

(28)
where Q = ]0, 1[×]0, 6],Σ = {0, 1}×]0, 3]. In this
example, we utilize a zonal sensor (g,D) where
D =

]
1
4 ,

1
2

[
is the spatial domain and g(x) =

χD(x) is the spatial distribution of the sensor.
The performance of the sensor is measured by
the function ϖ(t) = ⟨g, β⟩L2(D) . The numerical
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process requires the selection of η to ensure that
Θ0(x) has a suitable magnitude. As a result, we
can see the outcome displayed in figure (2).
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The reconstructed intitial state

Sensors location

Figure 2. The starting state (con-
tinous line ) and the reconstructed
starting state ( dashed line ) in ]0,1[.

As depicted in Figure (2), the actual initial state
is nearly equivalent to the estimated initial state
in ]0.1[. The error in the reconstruction is ∥Θ0 −
β0∥L2(]0,1[) = 3.2× 10−3.

The figures (1) and (2) clearly demonstrate the ef-
fectiveness of the approach being considered (i.e.
the HUM method and numerical algorithm are
suited to solving reconstruction problems).

6. Conclusion

In this article, we have discussed some charac-
terizations concerning the exact and approximate
observability of the time-fractional system un-
der consideration. We focused on the steps of
the Hilbert uniqueness method to globally recon-
struct the initial state for a specific class of lin-
ear time-fractional systems, where the Riemann-
Liouville derivative has an order of ε in the in-
terval ]1, 2[. The difficulty of this process lies in
transforming the reconstruction problem into a
solvability issue of equation (20), which requires
precision in finding its solution. Numerical meth-
ods must therefore be employed. To demonstrate
the effectiveness of this method, two successful
numerical examples were presented at the end of
the study.
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