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Abstract. We investigate the One-shot Optimization strategy introduced in this form by Hamdi and
Griewank for the applicability and efficiency to identify parameters in models of the earth’s climate
system. Parameters of a box model of the North Atlantic Thermohaline Circulation are optimized
with respect to the fit of model output to data given by another model of intermediate complexity.
Since the model is run into a steady state by a pseudo time-stepping, efficient techniques are necessary
to avoid extensive recomputations or storing when using gradient-based local optimization algorithms.
The One-shot approach simultaneously updates state, adjoint and parameter values. For the required
partial derivatives, the algorithmic/automatic differentiation tool TAF was used. Numerical results
are compared to results obtained by the BFGS and L-BFGS quasi-Newton method.

Keywords: Algorithmic differentiation; bounded retardation; climate model; fixed point iteration;
parameter identification.

AMS Classification: 49M29; 90C30; 90C53; 92-08

1. Introduction

Parameter optimization is an important task in
all kinds of climate models or models that simu-
late parts of the climate system, as for example
ocean or atmospheric models. Still, some pro-
cesses are not well-known, some are too small-
scaled in time or space, and others are just be-
yond the scope of the model. All these processes
are parameterized, i.e. simplified model functions
(parameterizations) are used. These necessarily
include lots of – most of the time – only heuristi-
cally known parameters. A main task thus is to
calibrate the models by optimizing the parameter
w.r.t. data from measurements or other (more
complex) models.

Similar to many applications in engineering
applications of fluid mechanics, also in geophysi-
cal flows (e.g. ocean models) an optimization is
at first performed for steady states of the equa-
tions before proceeding to transient problems.
This means that only the stationary solution is
used in the cost or objective function to be min-
imized. Moreover (and this is the second point
where engineering and geophysical flow problems
are similar), the computation of steady states is
often performed by running a transient model
into the steady state. This strategy is called
pseudo time-stepping, since the time variable
may be regarded as a kind of iteration counter.
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It is well known from optimal control of differ-
ential equations that the classical adjoint tech-
nique (that allows the representation of the gradi-
ent of the cost) leads to a huge amount of recom-
putations, storing or both. This problem looks
even more frustrating in the pseudo-time step-
ping context, since here only the final, numeri-
cally converged state is important for the cost.
Nevertheless a classical adjoint technique would
need all intermediate iterates.

If the number of parameters to be optimized
is small, a sensitivity equation approach is also
reasonable. On the discrete level this is compa-
rable to the application of the forward mode of
Automatic or Algorithmic Differentiation (AD).
Here, the sensitivity equation has the same tem-
poral integration direction (namely forward) as
the original pseudo time-stepping. But neverthe-
less it is worthwhile investigating how the two
(for a non-linear model) coupled iterations for
state and sensitivity are performed.

Griewank described in [1] the differences be-
tween two-phase (where the iteration for the state
is run to the steady state or fixed point first, and
then the sensitivity is computed) and piggy-back
approaches (where both iterations are combined
to one). Christianson in [2] proposed to perform
the sensitivity iteration with the converged state
instead of using its iterates. Giering, Kaminski
and Vossbeck in [3] used the so-called Full Ja-
cobian approach, where they directly used the
steady state equation and differentiated it to ob-
tain an equation for the gradient.

The approach used here is called One-shot ap-
proach, which was in this form developed by
Hamdi and Griewank, and can be seen as an ex-
tension of the piggy-back strategy aiming for op-
timality and feasibility simultaneously with the
so-called bounded retardation. That means that
the number of One-shot iterations shall not too
much exceed the number of fixed point itera-
tion steps that are necessary for the computa-
tion of feasible states itself. Theoretical results
were published in [4],[5], an engineering applica-

tion was presented by Özkaya and Gauger in [6].
The idea of simultaneous solution of state

equations and parameter correction is not new.
In [7], S. Ta’asn uses a pseudo-time embedding
for the state and adjoint state equations and the
design equation is solved as an additional bound-
ary condition. This still results in a differential
algebraic equation which requires some strategy
to solve the design equation alone.

In [8], the authors construct a system of only
ODEs which is solved by a time-stepping method

in the spirit of reduced SQP-methods. They de-
velop a preconditioner working on the whole sys-
tem of equations with state, costate and design
equations.

In the One-shot approach used here, the idea
is that for fixed parameters there is a given (not
necessarily (pseudo-) time-stepping) strategy to
solve the state equations. This strategy is as-
sumed to demand no or disallow any changes. In
each iteration step the update of the state is aug-
mented by an update of the adjoint state and a
kind of quasi-Newton step for the design correc-
tion with the distinctive feature that the required
preconditioner controls convergence of the whole
system. Here, the preconditioner is a squared
matrix of only the size of the number of param-
eters.

Since the assumptions in the theoretical anal-
ysis of the One-shot method are very strict and
the computation of the preconditioner seems at
first glance laborious and expensive, the intention
of this paper is to check the applicability of the
One-shot strategy for real world problems and
possibly propose simplifications. We compare nu-
merical results to the gradient based BFGS and
limited-memory BFGS (L-BFGS) methods. We
set aside the comparison to genetic or so-called
intelligent search algorithms, see e.g. [9], be-
cause the aim of the One-shot approach accord-
ing to the authors of [4] and [5] is to offer an
alternative to local gradient-based optimization
techniques. Genetic algorithms usually demand
a high number of function evaluations which we
want to avoid because of the costly computation
of steady states needed for the function evalua-
tion.

In this paper, we apply the One-shot approach
to a box model of the North Atlantic. This prob-
lem is different from the application in [6] in that
the parameters enter in a nonlinear fashion re-
sulting in so-called non-separable adjoints where
the adjoint is no longer only the sum of a term
on the state and a term on design.

The outline of this paper is the following. In
section 2 we recall the One-shot optimization
strategy according to [4] and [5]. We apply the
One-shot method to an example in earth system
modeling in section 3. There, we describe the
Rahmstorf 4-box-model, the optimization prob-
lem and present numerical results. Section 4
draws conclusions.

2. One-shot Optimization Strategy

In this section, we recall the One-shot optimiza-
tion strategy according to [4] and [5], its quintes-
sence and difference to conventional optimization
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methods, and we derive and explain the One-shot
iteration step. First of all, we describe the mathe-
matical problem behind the parameter optimiza-
tion problem.

2.1. Problem formulation

Parameters u of a model describing physical, bi-
ological, chemical or other real life phenomena
are usually determined by fitting model output
y = y(u) to observed data denoted by ydata. This
data can also be taken from other, more compre-
hensive models.

The fitting procedure then is a mathematical
optimization problem with a least-squares cost
functional with some regularization term

J(y, u) =
1

2
∥y−ydata∥22+

α

2
∥u−uguess∥22, α ∈ R+

0

under the constraint that model equations,
namely c(y, u) = 0, are fulfilled.

In climate modeling, model equations are usu-
ally partial and/or ordinary differential equations
solved by an iterative process.

The problem will become more difficult with
respect to uniqueness of minima and computa-
tion of derivative information, if the quantity to
be fit to data gdata is computed from a functional
g(y, u) such that J then is

J(y, u) =
1

2
∥g(y, u)− gdata∥22 +

α

2
∥u− uguess∥22.

In the finite dimensional case or the discretized
version, where y ∈ Y ⊂ Rn, u ∈ U ⊂ Rm and
g : Y × U → Rl, the cost function is the sum of
the squared differences

J(y, u) =
1

2

l∑
i=1

(gi(y, u)− gi,data)
2

+
α

2

m∑
i=1

(ui − ui,guess)
2.

Here, the objective function J is J : Y ×U → R,
y ∈ Y is the state, u ∈ U is the design or pa-
rameter vector to be optimized. With the help
of the regularization term α

2 ∥u−uguess∥22 param-
eters u are kept in an acceptable or presumed
range around parameter values uguess, where ele-
ments ui,guess can for example be taken as mean
values of some maximum and minimum values.
We assume J to be C2,1, which means twice con-
tinuously differentiable in y and once in u. We
further assume the Jacobian of c with respect to
y, denoted cy, to always be invertible, such that
with the mean value theorem, there exists only
one y∗ with c(y∗, u) = 0 for a fixed u.

2.2. One-shot iteration and its properties

In practice, finding an analytical solution for a
feasible state y∗ with c(y∗, u) = 0 is often impos-
sible. That is why usually an iterative method is
called upon.

For the One-shot strategy, we assume that
there is a given fixed point iteration, also called
model spin-up , which has already been found
reliable and successful in the search for the fea-
sible state y∗ for parameters u. Included step
size or preconditioner strategies can be carried
over and do not have influence on the One-shot
iteration. Thus, there is a given contraction,
(pseudo-) time-stepping strategy or fixed point
iteration G, where y∗ satisfies y∗ = G(y∗, u) =
limk→∞G(yk, u).

The fundamental idea of the One-shot ap-
proach is to reformulate the condition c(y, u) = 0
into the fixed point equation y = G(y, u). The
iteration function G : Y × U → Y is assumed to
be C2,1 with the contraction factor ρ < 1, i.e. for
a suitable inner product norm ∥ · ∥ we have for
Gy, denoting the Jacobian of G with respect to
y, that

∥Gy(y, u)∥ ≤ ρ < 1, ∀y ∈ Y. (1)

from which follows

∥G(y1, u)−G(y2, u)∥≤ρ∥y1 − y2∥,∀y1, y2 ∈ Y. (2)

With the contraction property of G we can infer
from the Banach fixed point theorem, for fixed
u, the sequence yk+1 = G(yk, u) converges to a
unique limit y∗ = y∗(u).

The assumptions on the model function c and
the contraction G are very strict and rarely ana-
lytically or even numerically provable. However,
we will see in our numerical example, that the
One-shot strategy even converges under weaker
assumptions on the contraction G. Here, in our
example of the 4-box-ocean-model only the Ciric
or quasi-contraction property, see [10], is fulfilled.
With the help of the fixed point reformulation,
the optimization problem can be written as

min
y,u

J(y, u) s.t. y = G(y, u). (P)

A conventional optimization strategy performs
the following steps:

In the outer loop do in the k-th iteration step:

• Perform a complete model spin-up (inner
loop) with parameter values uk and ob-
tain an admissible state yk = y∗(uk) =
liml→∞G(yl, uk).

• Compute the value of the cost function
J(yk, uk).

• Adjust model parameters obtaining uk+1.
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End the outer loop when a sufficient optimality
condition is satisfied.

Of course, adjusting the parameters demands fur-
ther full model spin-ups and/or expensive deriv-
ative information for whose computation again
full model spin-ups are necessary.

The main idea of the One-shot strategy is
to adjust model parameters already during the
model spin-up.

Using the method of Lagrange Multipliers, in
the finite dimensional case, the associated La-
grangian to problem (P) with the Lagrange mul-
tiplier or adjoint state ȳ ∈ Ȳ is

L(y, ȳ, u) = J(y, u) + ȳ⊤(G(y, u)− y)

= N(y, ȳ, u)− ȳ⊤y,

where we introduce the shifted Lagrangian N as

N(y, ȳ, u) := J(y, u) + ȳ⊤G(y, u).

A Karush-Kuhn-Tucker (KKT) point (y∗, ȳ∗, u∗)
fulfilling the first order necessary optimality con-
dition must satisfy

0 = ∂L
∂y =Ny(y

∗, ȳ∗, u∗)− ȳ∗⊤

=Jy(y
∗, u∗) + ȳ∗⊤Gy(y

∗, u∗)− ȳ∗⊤,

0 = ∂L
∂ȳ =G(y∗, u∗)− y∗,

0 = ∂L
∂u =Nu(y

∗, ȳ∗, u∗)

=Ju(y
∗, u∗) + ȳ∗⊤Gu(y

∗, u∗).


(3)

Motivated by this system of equations, the fol-
lowing coupled full step iteration, called One-shot
strategy according to the authors of [4], [5], to
reach a KKT point is derived:

Do in the k-th iteration step:

yk+1 = G(yk, uk),
ȳk+1 = Ny(yk, ȳk, uk)

⊤

uk+1 = uk −B−1
k Nu(yk, ȳk, uk)

 (4)

until there is (numerically) no change in
(yk, ȳk, uk).

Here, Bk is a design space preconditioner
which must be selected to be symmetric positive
definite. As mentioned above, we do not want to
introduce additional preconditioners for the up-
dates of y and ȳ, because of the assumption that
the model spin-up has already been found reliable
and successful in the search for steady states.

The contractivity (2) ensures that the first
equation in the coupled iteration step (4) con-
verges ρ-linearly for fixed u. Although the second
equation exhibits a certain time-lag, it converges
with the same asymptotic R-factor (see [11]). As
far as the convergence of the coupled iteration (4)
is concerned, the goal is to find Bk that ensures
that the spectral radius of the coupled iteration

(4) stays below 1 and as close as possible to ρ. In
subsection 2.3, we recall the formula of appropri-
ate preconditioners Bk according to the authors
of [4], [5].

Required derivatives and automatic
differentiation

For the One-shot update (4) and also later in
the computation of the preconditioners Bk, a
lot of derivative information is needed. The
costs for its calculation are small compared to
those of a conventional approach, because they
only depend on the previous iteration step value.
The storing/recomputation of intermediate par-

tial derivatives, as for example ∂y
∂u for the com-

putation of derivatives of J or N with respect to
u, is not necessary which is one of the main dif-
ferences and advantages compared to traditional
optimization techniques.

Applying a tool for automatic/algorithmic dif-
ferentiation (AD) can even more reduce costs and
most importantly, AD computes exact derivatives
without any approximation errors.

AD is a software technology to compute the de-
rivative of a function at costs of only a small mul-
tiple of the costs for the evaluation of the function
itself. With the help of source code transforma-
tion or operator overloading an AD tool provides
the user with a computer programme containing
the derivatives.

Those tools are for example TAF or ADiMat,
which use the source code transformation ap-
proach to generate Fortran orMatlab subrou-
tines to calculate function values and derivative
information in one call, see [12] and [13], or for
example ADOL-C using the operator overloading
concept in C/C++ codes, see [14].

Regarding the One-shot optimization strat-
egy, we need gradients (namely Jy, Ju) and
vector-Jacobian-products which can cheaply be
obtained with the reverse mode of AD. For the
calculation of the preconditioner B also second
derivatives and full Jacobians are needed which
are calculated via the application of the reverse
mode first and the forward mode afterwards. In
our testings, we apply the (commercial) AD tool
TAF for Fortran subroutines.

2.3. Preconditioner B and the doubly
augmented Lagrangian

In this section, we explain the choice of the pre-
conditioners Bk according to [4] and [5]. For the
sake of simplicity, we omit the iteration index k
using the notation B.

For the derivation of the preconditioner B, we
introduce the doubly augmented Lagrangian La
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La(y, ȳ, u) =
αL

2
∥G(y, u)− y∥2

+
βL
2
∥Ny(y, ȳ, u)

⊤ − ȳ∥2

+N(y, ȳ, u)− ȳ⊤y,

which is the Lagrangian of the original problem
augmented by the errors in primal and dual fea-
sibility. Here αL > 0 and βL > 0 are weighting
coefficients.

The authors of [4] prove that under certain
conditions on αL and βL (see below), stationary
points of problem (P) are also stationary points
of La and that La is an exact penalty function.
This leads to the idea to choose B as an approx-
imation to the Hessian of La, i.e. B ≈ ∇uuL

a.
In [4], it is proven that descent of the aug-

mented Lagrangian is provided for any precondi-
tioner B fulfilling

B ≽ B0 :=
1

σ
(αLG

⊤
uGu + βLN

⊤
yuNyu) (5)

i.e. B −B0 is positive semidefinite, and where

σ := 1− ρ−
(1 +

∥Nyy∥
2 βL)

2

αLβL(1− ρ)
. (6)

The authors of [4] propose to choose αL and βL
such that B−1

0 is as large as possible. Using (5)
we get

∥B0∥2 =
1

σ
∥αLG

⊤
uGu + βLN

⊤
yuNyu∥2

≤ 1

σ
(αL∥Gu∥22 + βL∥Nyu∥22).

Minimizing the right most formula as a function
of αL and βL and replacing σ with (6) yields:
Under the assumption that

√
αLβL(1 − ρ) >

1 + βL
2 ∥Nyy∥ holds and ∥Nyy∥ ̸= 0 we obtain

βL =
3√

∥Nyy∥2 + 3
∥Nyu∥2
∥Gu∥2 (1− ρ)2 +

∥Nyy∥
2

and

αL =
∥Nyu∥2βL(1 + ∥Nyy∥

2 βL)

∥Gu∥2(1− ∥Nyy∥
2 βL)

.

As mentioned above, we pursue to B ≈ ∇uuL
a.

It turns out that at a stationary point of La,
where primal and dual feasibility hold, the Hes-
sian of La, namely ∇uuL

a, is

∇uuL
a = αLG

⊤
uGu + βLN

⊤
yuNyu +Nuu.

As La is an exact penalty function, we have
∇uuL

a ≻ 0 in a neighbourhood of the constrained
optimization solution. Assuming that Nuu ≻ 0
implies that the preconditioner

B =
1

σ
(αLG

⊤
uGu + βLN

⊤
yuNyu +Nuu) (7)

fulfills (5) and thus the step ∆uk =
−B−1Nu(yk, ȳk, uk) of the coupled iteration (4)
yields descent on La.

2.3.1. BGFS update to avoid computation of
full Jacobians and 2nd order derivatives

In the calculation of the preconditioner B full
Jacobians and second derivatives are needed. On
the one hand, those can also be calculated by al-
gorithmic differentiation, but on the other hand,
a possibility to avoid this is the application of a
Low-Rank BFGS update to update the inverse
approximation Hk of Bk. In view of the relation
B ≈ ∇uuL

a, we use the following secant equation
in the update of Hk: Hk+1Rk = ∆uk, where

Rk := ∇uL
a(yk, ȳk, uk +∆uk)

−∇uL
a(yk, ȳk, uk).

Imposing to the step multiplier η to satisfy the
second Wolfe condition

∆uk
⊤∇uL

a(yk, ȳk, uk + η∆uk)

≥ c2∆uk
⊤∇uL

a(yk, ȳk, uk)

with c2 ∈ [0, 1], implies the necessary curvature
condition

Rk
⊤∆uk > 0. (8)

A simpler procedure could skip the update when-
ever (8) does not hold by either setting Hk+1 to
identity or to the last iterate Hk. Provided (8)
holds, we use

Hk+1 = (I − rk∆ukRk
⊤)Hk(I − rkRk∆uk

⊤)

+rk∆uk∆uk
⊤

with rk = 1
Rk

⊤∆uk
.

The weights αL, βL of La require norms of sec-
ond order derivatives. In [5], the authors propose
simpler approximations according to two differ-
ent approaches. In the first version then

αL =
2∥Nyy∥2
(1− ρ)2

and βL =
2

∥Nyy∥2
,

in the second approach

αL =
6∥Nyy∥2
(1− ρ)2

and βL =
6

∥Nyy∥2
.

∥Nyy∥2 can be computed via the power iteration.
For the BFGS update, the calculation of Rk re-

quires a pure design step (step with fixed primal
and dual variables y and ȳ respectively), which
might be computed at high costs. We will pay
attention to this fact in our numerical example.
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3. Application in Earth System
Modeling

To exemplify the benefit of the One-shot opti-
mization strategy in the case of climate research,
we present the application to a 4-box-model of
the Atlantic Thermohaline Circulation. The 4-
box-model described in [15] simulates the flow
rate of the Atlantic Ocean known as the ’con-
veyor belt’, carrying heat northward and hav-
ing a significant impact on climate in northwest-
ern Europe. Temperatures Ti and salinity dif-
ferences Si in four different boxes i = 1, ..., 4,
namely the southern, northern, tropical and the
deep Atlantic, are the characteristics inducing
the flow rate. The surface boxes exchange heat
and freshwater with the overlying atmosphere,
which causes a pressure-driven circulation, com-
pare figure 1.

Figure 1. Rahmstorf box model,
flow direction shown for m > 0.

In [16] a smooth coupling of the two possible
flow directions is proposed. The resulting time
dependent ODE system reads:

Ṫ1= λ1(T
∗
1 − T1) +

m+

V1
(T4 − T1) +

m−

V1
(T3 − T1)

Ṫ2= λ2(T
∗
2 − T2) +

m+

V2
(T3 − T2) +

m−

V2
(T4 − T2)

Ṫ3= λ3(T
∗
3 − T3) +

m+

V3
(T1 − T3) +

m−

V3
(T2 − T4)

Ṫ4=
m+

V4
(T2 − T4) +

m−

V4
(T1 − T4)

Ṡ1=
S0f1
V1

+ m+

V1
(S4 − S1) +

m−

V1
(S3 − S1)

Ṡ2= −S0f2
V2

+ m+

V2
(S3 − S2) +

m−

V2
(S4 − S2)

Ṡ3=
S0(f2−f1)

V3
+ m+

V3
(S1 − S3) +

m−

V3
(S2 − S4)

Ṡ4=
m+

V4
(S2 − S4) +

m−

V4
(S1 − S4)

where for some positive a, m+ = m
1−e−am almost

coincides with the meridional volume transport
or overturning

m = k(βm(S2 − S1)− αm(T2 − T1))

for positive m and is almost zero for negative
m. The term m− = −m

1−eam becomes almost zero

for positive m and −m for negative m. That
means the summands including m+ and m− are
activated or deactivated depending on the flow
direction. The deviation from the physically cor-
rect model becomes smaller the larger a is. Sev-
eral model parameters are involved, the most
important being the freshwater flux f1 contain-
ing atmospheric water vapor transport and wind-
driven oceanic transport; they are used to simu-
late global warming in the model and are chosen
in the interval [−0.2, 0.15]. T ∗

i , i = 1, 2, 3 are
so-called restoring temperatures, which can be
seen as counterparts of the three surface temper-
atures. Further model parameters are physical,
relaxation and coupling constants among which
there are well-known fixed parameters and those
which are tunable parameters. See [15] for an
explanation of the occurring constants, fixed pa-
rameters and tunable parameters.

3.1. The optimization problem

As mentioned in the introduction, in climate
modeling an optimization is at first performed
for steady states, which means in this exam-
ple for temperatures and salinities which do not
change in time anymore. Given fresh water fluxes
(f1,i)

l
i=1, corresponding to different warming sce-

narios, the aim is to fit the overturning val-
ues mi = m(y(f1,i), u) computed from station-
ary temperatures and salinities (T1, T2, S1, S2)i
obtained by the model spin-up for f1,i to data
md,i from a more complex model Climber2, see
[17]. u = (T ∗

1 , T
∗
2 , T

∗
3 ,Γ, k, a) are the control pa-

rameters. Here, Γ is a thermal coupling con-
stant in the computation of the thermal relax-
ation constants λi, i = 1, 2, 3. All other param-
eters occur in the model description of the pre-
vious subsection. Using notations from section
2, the state is y = (yi)

l
i=1 with yi = y(f1,i) =

(T1, T2, T3, T4, S1, S2, S3, S4)i.
If F (y, u) denotes the right-hand side of the

ODE system of the model, we get

min
y,u

J(y, u) :=
1

2
∥m(y(f1), u)−md∥22

+
α

2
∥u− uguess∥22,

s.t. 0 = F (y(f1,i), u), i = 1, ..., l.

The regularization term incorporates a prior
guess uguess for the parameters. The larger α the
more the parameters u are kept close to uguess.

The difficulty here is that m : R8l × R6 → Rl

is not injective. There are several combinations
of steady/feasible T1, T2, S1, S2 and the parame-
ter u(5) = k to compute the same overturning
m. The smaller α the more likely the different
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optimization strategies find completely different
optimal parameters with almost the same func-
tion values J(y∗, u∗).

In [15] the authors apply the Explicit Euler
time stepping with a fixed step size of one year,
i.e. ∆t = 1, to run the model into a steady state.
Otherwise, known model constants scaled on a
time span of one year must be adjusted. Thus G
defined in section 2 here represents one full Euler
step yk+1 = G(yk, u) = yk + F (yk, u) operating
on all freshwater fluxes f1,i together, i.e. for fixed

u we have G(·, u) : R8l → R8l.
In this example, contractivity of G is not given

in general, i.e. ρ in (1) exceeds 1 for several
steps. However, in average it is less than 1. Here,
for the explicit Euler sequence yk+1 = G(yk) =
yk+F (yk, u), the quasi-contraction property [10]

∥yk+1 − yk∥≤qmax{∥yk − yk−1∥, ∥yk+1 − yk−1∥}

for 0 ≤ q < 1 holds. In our testings, G converges
for fixed u but different starting values y0 to the
same stationary y∗.

3.2. Numerical results and discussion

In our numerical testing, we compare the two ver-
sions of the One-shot method, with full compu-
tation of the preconditioner B on the one hand
and BFGS update of B on the other hand, to
a traditional BFGS-quasi-Newton optimization
approach. Furthermore, we compare results to
values obtained by the Limited-memory BFGS
(L-BFGS) algorithm implemented by Zhu, Byrd,
Nocedal and Morales, see [18], version 3.0 from
2011, without and finally with box constraints
on the control parameters (L-BFGS-B) because
we find that computed optimal parameter values
of the BFGS and L-BFGS method are far away
from actual real world values. In the three differ-
ent BFGS approaches, for each parameter value
uk during the optimization process the box model
has to be run into a steady state. In our exam-
ple, that takes between 4,000 and 15,000 Euler
steps. Compared to more complex climate mod-
els, here the Euler time step evaluation is not ex-
pensive. However, during the optimization pro-
cess a large number of Explicit Euler time steps
will accumulate and for derivative calculation a
huge amount of recomputations, storing or both
is necessary. That becomes obvious in the calcu-
lation of derivatives using automatic differentia-
tion. Whereas for the BFGS method in the re-
verse mode it is necessary to store all Euler steps
until a steady state is reached, in the One-shot
method the required derivatives depend on the
current values only, i.e. on only one Euler step.

In our implementation we replaced ui = T ∗
i ,

i = 1, ..., 3, with ũi = Wi such that ui = ũi+ufix
where (ufix)

3
1 = (6.64, 2.68, 11.69), which are op-

timal values calculated in [15]. Wi, i = 1, ..., 3,
can be interpreted as warming trends. We chose
uguess = (0., 0., 0., 23., 25., 500) as starting pa-
rameters. Since only quasi-contraction is given,
we expect the contraction factor ρ to exceed 1 for
several iteration steps possibly resulting in arith-
metic exceptions. Therefore, we fix ρ close to 1,
namely ρ = 0.9.

For better initialization especially of the ad-
joint, we propose an update of only the state and
adjoint state for the first 500 iteration steps.

The One-shot-BFGS strategy demands a line-
search procedure, otherwise the method fails.
Here, we applied a simple strategy constantly
halfing the steplength until there is a reduction
in the costfunction with the resulting step.

We perform our numerical testings on a SUN-
W-Ultra-SPARC-IIIi CPU 1.3GHz machine.

3.2.1. Influence of rare update of weighting
coefficients of the preconditioners Bk

on the optimization

In the first version, we calculate precondition-
ers Bk defined in (7) in every iteration includ-
ing all first and second order derivatives. Also
the weighting coefficients αL, βL and σ are ad-
justed. We find, that the weights do not change
significantly from iteration to iteration. As one
can see in Table 1, an update performed only
after several time-steps does not significantly in-
fluence the optimization but the computational
time needed. Therefore, we prefer the version
with a calculation of αL, βL and σ every 1,000
iterations.

3.2.2. Effect of the weighting factor α on the
numerical results

In the following, our attention is drawn on the
effect of the weighting factor α in front of the
penalty term ∥u − uguess∥. For the last parame-
ter a we chose the additional factor 0.01, because
a is of higher dimension than the other parame-
ters and can vary more. Here in the example of
the 4-box-model, without any regularization, i.e.
α = 0, the One-shot method and the L-BFGS
method without constraints do not converge or
fail. The BFGS method and the L-BFGS with
box constraints terminate with parameter values
u∗ where ∥Ju(y(u∗), u∗)∥ still is very large, but
the algorithms cannot find descent directions.

We recall from section 3.1 that the considered
optimization problem has several local minima
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Table 1. Effect on the optimization of rare update of the weights αL, βL and σ for α = 0.1.
We compare the values of the cost functional, the weighted data fit, the number of iterations
and the computational time in minutes.

update of weights of B J(y∗, u∗) data fit # iterations comp.time
every 10,000 iterations 14.544 0.399 1,185,500 5.085
every 1,000 iterations 14.544 0.399 1,182,053 5.067
every iteration 14.544 0.399 1,181,701 10.045

which might be of the same quality regarding
the data fit, even though the obtained model pa-
rameters are completely different. The larger the
weighting factor α the less the obtained parame-
ters vary.

In our testings with α > 0, we compare the
optimal value of the cost function, the data fit
weighted to the number of observations, the num-
ber of iteration steps, the number of needed Eu-
ler steps, and the computational time in minutes.
Furthermore, we take a look at the quality of op-
timality, which means for the One-shot strategies
the norm of L(y,ȳ,u)(y

∗, ȳ∗, u∗) and for the BFGS
methods the norm of Ju(y(u

∗), u∗). The numer-
ical results are collected in tables 2 and 3 and
illustrated in figures 2 and 3.

Not surprisingly, one generally detects that the
smaller α the better the fit of data becomes.

We observe that for different α the qualities
of the methods vary. Especially for large fresh
water fluxes f1,i the outputs of the different opti-
mization strategies strongly differ. These are f1,i
for which the model switches the flow direction
of m during the model spin-up.

Comparing the original One-shot and the One-
shot-BFGS methods, the presumption that the
One-shot-BFGS strategy might be rather time
consuming due to the additional pure design
steps is confirmed. Here, in an example with
a very small number of parameters to be opti-
mized, the One-shot-BFGS approach is not rec-
ommended. However, in problems with a large
number of design variables, the One-shot-BFGS
approach might be an alternative. The computed
data fit can be regarded as equally good in this
example.

For α = 10 the strategies show almost no dif-
ference in their results, neither in the fit of the
data nor in the computed optimal parameters.
Concerning computational time and the number
of Euler steps, the original One-shot strategy per-
form best.

For α = 1 and α = 0.1 the One-shot strat-
egy shows difficulties in performance. We sus-
pect that here the balance between keeping pa-
rameters close to uguess and reducing the misfit
has a disadvantageous influence on the One-shot

method. However, also the BFGS method does
not perform well for α = 0.1.

For smaller α, we observe significant differ-
ences. The unconstrained BFGS strategies find
the best fit, but parameter values (u∗1, u

∗
2, u

∗
3)

which are not acceptable in this real world prob-
lem. L-BFGS-B computes similar results as the
One-shot method, but needs far more Euler steps
and therewith a much longer computational time.

We detect that the parameters computed by
the One-shot method stay in acceptable ranges
without any box constraints. Computed param-
eters are to some extend similar to those of the
L-BFGS-B method.

One main goal of the One-shot strategy was
to achieve so-called bounded retardation for the
speed of convergence compared to the number
of time-steps needed to run the model into a
steady state. Since the Explicit Euler time-
stepping does not show quick converge and ratios

θk =
∥yk+1−yk∥
∥yk−yk−1∥ even exceed 1 for several steps k,

one cannot expect the One-shot method to con-
verge very fast in this special example. The av-
erage value for θ in a pure model spin-up with
parameters taken from [15] is 0.992 and for the
One-shot strategy (α = 0.1) θ = 0.9999884.

Furthermore, the number of One-shot itera-
tion steps was intended to exceed the number
of Euler steps of a single model spin-up not too
much. Especially for parameter sets near the
computed solution, a model spin-up with fixed
parameters needs 12,000 to 15,000 Euler steps.
For α ∈ {10, 0.01, 0.001} where the One-shot
strategy shows good performance, the observed
number of iterations is about 10 to 40 times
larger than the number of Euler steps for one sin-
gle spin-up. Considering that the BFGS strate-
gies need at least about 30 optimization steps
requiring further function evaluations and model
spin-ups the factor is not very large. Even in
those cases, where the One-shot strategies does
not show quick convergence, the number of iter-
ations still is not too far away from the number
of Euler steps required by the BFGS strategies.
In applications, where the fixed point iteration G
is more expensive than the Euler time-stepping
applied in this example, the One-shot strategy
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Figure 2. Results of the optimization comparing the One-shot strategies with the BFGS-
quasi-Newton methods for α = 0.1 (left) and the differences to the Climber data (right).

Figure 3. Results of the optimization comparing the One-shot strategies with the BFGS-
quasi-Newton method for α = 0.001 (left) and the difference to the Climber data (right).

then might catch up with the needed computa-
tional time.

4. Conclusions

We have successfully applied the One-shot
method according to Hamdi and Griewank, [4],
[5], to a parameter optimization problem in ocean
modeling. We have analyzed its applicability
and find that the One-shot strategy presents a
promising approach to optimize models consum-
ing much time and calculational costs for their
spin-ups using (pseudo-)time stepping or a fixed
point iteration. Our numerical example was the
parameter optimization of the Rahmstorf 4-box-
model of the North Atlantic with steady states
achieved via an Explicit Euler spin-up. Opti-
mization results of the original One-shot strategy
and the One-shot-BFGS method with an BFGS
update of the preconditioner of the parameter
correction step are compared to a classical BFGS-
quasi-Newton method and the L-BFGS-method
with and without box constraints on the param-
eters.

We observed that the One-shot-BFGS strat-
egy does not show good performance in this ex-
ample with only 6 parameters. The original ver-
sion with full computation of the preconditioner
performs well for large and very small weighting
factors α in front of the penalty term. Further

analysis on why One-shot has difficulties in find-
ing optimal values for weights α ∈ {1, 0.1} can
be valuable.

We have found out that the One-shot method
can be applied even though contractivity is not
given in general and that fixing the contraction
factor ρ to a number close to 1 is adequate. Fur-
thermore, computation of the weights of B is not
mandatory in each iteration step.

Considering examples with more expensive
model spin-ups, the One-shot method might on
the one hand even gain (or at least catch up in
those examples with slow convergence) concern-
ing computational time and on the other hand
be the only applicable alternative for deriva-
tive based optimization methods, because deriva-
tives depend on one spin-up step only instead
of the whole spin-up, which is the main differ-
ence and advantage compared to standard meth-
ods. The application to earth system models in-
volving nonlinear PDEs and/or a higher spatial
resolution with computationally more expensive
model solvers and periodic solutions will be of
great interest for future investigations to demon-
strate the efficiency of the One-shot approach.
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Table 2. Results of the optimization comparing values of the cost functional, the weighted
data fit, the number of iterations of the optimization procedure, the number of needed Euler
steps, the quality of optimality (∥L(y,ȳ,u)(y

∗, ȳ∗, u∗)∥ for methods 1-2 and ∥Ju(y(u∗), u∗)∥ for
methods 3-5 respectively) and the computational time in minutes

Method J(y∗, u∗) data fit #iterations #Euler steps opt.cond. comp.time
α
=

10

1 25.810 0.539 254,859 254,859 2.0E-1 1,086
2 25.810 0.539 220,687 220,687 1.5E-1 1.864
3 25.809 0.539 41 761,661 2.5E-5 1.715
4 25.809 0.539 31 411,732 5.5E-4 1.351
5 25.809 0.539 39 540,946 2.2E-4 1.785

α
=

1

1 17.438 0.462 1,212,057 1,212,057 1.8E-1 5.155
2 17.434 0.462 1,101,992 1,101,992 1.3E-1 9.315
3 17.426 0.462 48 926,049 1.3E-4 2.084
4 17.426 0.462 46 653250 3.3E-4 2.142
5 17.426 0.462 53 1,194,483 3.2E00 3.938

α
=

0
.1

1 14.544 0.399 1,182,053 1,182,053 2.3E-1 5.067
2 14.469 0.398 3,122,016 3,122,016 1.3E-1 26.366
3 15.571 0.401 54 1,403,864 3.1E-1 2.878
4 14.417 0.393 71 1,250,796 2.6E-2 4.100
5 14.417 0.393 76 1,412,728 6.0E-4 4.657

α
=

0
.0
1

1 13.747 0.396 437,543 437,543 2.2E-1 1.917
2 13.786 0.396 344,463 344,463 7.0E-1 2.906
3 12.514 0.338 52 1,455,877 2.3E-1 3.137
4 fails
5 13.747 0.397 29 672,388 4.1E00 2.217

α
=

0
.0
01

1 12.232 0.352 150,410 150,410 1.4E-1 0.649
2 12.364 0.353 170,597 170,597 6.6E-1 1.442
3 11.411 0.331 64 2,134,827 5.9E-1 4.457
4 11.412 0.331 63 2,018,101 3.6E-1 6.233
5 12.257 0.352 77 2,928,986 4.2E00 9.078

Legend of Methods: 1 One-shot, 2 One-shot-BFGS, 3 BFGS, 4 L-BFGS, 5 L-BFGS-B
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