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 This paper studies the assignment problem of multi product assembly jobs  to days. 

The problem aims to minimize the amount of overtime while avoiding assembly 

delays for jobs that can be fragmented into smaller sub-tasks. When sequence-

dependent setup times are negligible, the problem considered transforms into the 

bin packing problem with restricted item fragmentation where jobs represent items 

and days stand for bins. We present a mixed integer programming model of the 

problem by extending earlier formulations in the literature. Computational 

experiments show that the mathematical model obtained optimal solutions for 

majority of instances tested within reasonable computation times. 
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1. Introduction 

This study is inspired from a practical production 

scheduling problem encountered in a construction 

machinery manufacturing company. The company 

deals with intricate product assemblies including 

multiple sub-assembly groups and multi-level product 

trees. The intricate nature of these product structures, 

characterized by a multitude of sub-assembly groups 

and their corresponding multi-level trees, presents a 

significant challenge in effectively planning and 

managing material resources. Furthermore, the 

characteristics of the work centers vary depending on 

whether job setup times are dependent on the job 

sequence. 

In operational research literature, scheduling and 

assignment problems are extensively studied [1-3]. 

When the objective is to determine only the production 

day for each job, without considering sequence 

dependent setup times, the problem aligns with the bin 

packing problem (BPP). Using this insight, we tackled 

the complex real-world problem using a BPP-based 

solution approach. 

The BPP is one of the most extensively studied 

combinatorial optimization problems in the literature. 

The BPP, which is known to be NP-hard, involves 

packing a set of items into the minimum number of bins 

of fixed size where each item has a known size and each 

bin has a known capacity. The BPP has many practical 

applications, such as packing items in a warehouse or 

shipping containers, assigning tasks on a set of 

machines and allocating resources in cloud computing. 

Furthermore, the BPP has theoretical implications, as it 

is related to other problems such as the knapsack 

problem, the cutting stock problem, and the vehicle 

routing problem [4]. 

The BPP has been subject to a detailed scrutiny for 

several decades, resulting in various solution 

approaches to solve the problem under different 

objectives and constraints. A variety of heuristics have 

been developed to find good-quality solutions in a 

reasonable amount of time. These methods include 

heuristics such as first-fit, next-fit, best-fit and worst-

fit, and metaheuristics such as genetic algorithms, 

simulated annealing and tabu search. Despite extensive 

research on the issue, there are still many remaining 

challenges due to its practical importance, making it a 

currently active topic in optimization. 

The BPP and its variants have been extensively studied 

in the literature. Table 1 provides a summary of various 

BPP studies. The table categorizes these studies 

according to their objectives, constraints, and solution 

methods employed. This overview offers a 
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Table 1. Summary of the literature on the BPP. 

Study 
Objective  Constraints 

Solution Method 
B F C N L M O C F B K I 

Eilon and Christofides [5]  +           +  Zero-one programming mode, 

heuristic 

Jansen [6] +        +     Asymptotic approximation 

Loh et al. [7]     +      +   Weight annealing 

Khanafer et al. [8] +        +     Dual-feasible functions 

Data-dependent dual-feasible 

functions 

Crainic et al. [9] +  +         +  Heuristic, lower bounds 

Elhedhli et al. [10] +        +     Branch-and-price algorithm 

Fleszar and 

Charalambous [11] 

+           +  Heuristic 

Khanafer et al. [21]    +       +   Column-generation methods, 

Heuristic, tabu search 

Casazza and Ceselli [14]  +         +   Exact algorithms, heuristics 

Dokeroglu and Cosar [17]   +        +   Genetic algorithm 

LeCun et al. [15]  +         +   Approximation algorithms 

Arbib and Marinelli [20]      +     +   MIP 

Byholm and Porres [16]   +         +   Approximation and metaheuristic 

algorithms 

Casazza [18]    +       +  +  Branch-and-price algorithm 

Bertazzi et al. [12] +         +    Worst-case analysis 

Ekici [13] +        + +    Heuristic 

Ekici [19]    +      + +  +  Heuristic, lower bounds 

This study       +    + + + MIP 

Objectives: B: number of bins, F: number of fragmentations, C: cost, N: number of conflicts, L: load of bin, M: makespan, 

O: over capacity usage. 

Constraints: C: conflict items, F: fragmentable items, B: number of bins, K: variable bin capacity, I: item-bin conflict. 

comprehensive, yet not exhaustive, view of the 

diversity in approaches and strategies utilized within 

the BPP.  

One of the primary objectives of the BPP is to minimize 

the number of bins used. Minimizing the number of 

bins leads to better space utilization, further cost 

savings, improved operational efficiency and enhanced 

sustainability. Apart from this, the studies also consider 

minimizing the total cost of packing items, the 

makespan and over capacity usage as well.   

The constraints have a significant impact on the 

combinatorial nature of the problem. In BPPs, items 

that should not be placed in the same bin are referred to 

as conflicted items. This constraint is particularly 

critical in real-life scenarios such as chemical material 

transportation or storage. Several papers focused on 

conflicted items [6, 8]. These studies developed several 

mathematical models and metaheuristics to provide 

solutions while ensuring that conflicted items are 

assigned to different bins [10, 13, 19]. In BPPs, bins 

may have a fixed or variable capacity each may have 

different costs associated with its usage.  In this regard, 

several studies used heterogenous bins [5, 9, 11, 18, 

19]. 

Loh et al. [7] studied the one-dimensional BPP and 

proposed a weight annealing heuristic. Khanafer et al. 

[8] developed lower bounds for the BPP with conflicts. 

Crainic et al. [9] considered the variable cost and size 

BPP and developed lower bounds and heuristics. 

Elhedhli et al. [10] proposed a branch-and-price 

algorithm for the BPP with conflicts. Fleszar and 

Charalambous [11] developed bin-oriented heuristics 

for one-dimensional BPP by packing one bin at a time. 

Khanafer et al. [21] studied the min-conflict packing 

problem as well as the bi-objective version of the 

problem. Dokeroglu and Cosar [17] proposed a set of 

robust and scalable hybrid parallel algorithms to solve 

the BPP. Arbib and Marinelli [20] addressed the one-

dimensional BPP to minimize completion time and 

lateness.  

The BPP with item fragmentation (BPPIF) involves 

efficiently packing items into a limited number of bins 

where items can be fragmented into multiple bins. The 

BPP objective is to minimize the total number of bins 

used. Unlike the classic BPP, where items are treated as 

indivisible units, this variation enables better fitting 

within the bins as it allows items to be divided into 

smaller fragments. Given a collection of items, each 

with a specific size and a known fragmentation 
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capacity, and a set of bins with fixed capacities, the 

BPPIF entails determining the optimal packing 

configuration that minimizes the number of bins 

required while adhering to the item fragmentation 

constraints.  

When all items are fragmentable with no additional 

consideration, the BPPIF transforms into a linear 

optimization problem [13]. However, this usually does 

not reflect the reality and there often exists special 

considerations or constraints regarding fragmentation. 

In real-life scenarios, item fragmentation may lead to 

additional costs for subsequent operations. In the 

literature, several studies focused on the BPPIF aiming 

to reduce the overall assignment cost [18, 19]. There 

are also studies that aim to minimize the number of 

fragmentations [12-16]. This objective is particularly 

important for the cases where item fragmentation 

incurs a cost [14]. Those studies often consider a given 

number of identical bins.  

Bertazzi et al. [12] investigated a few special splitting 

policies and developed the worst-case performance 

bounds. Ekici [13] introduced mathematical models 

and a column generation-based heuristic for the BPPIF. 

Casazza and Ceselli [14] studied the BPPIF and 

developed mathematical formulation and algorithms 

and greedy heuristics. LeCun et al. [15] investigated the 

complexity of the problem considered and proposed a 

constant factor approximation algorithm. Byholm and 

Porres [16] suggested performance improving 

operators for the heuristic algorithms introduced earlier 

in the literature. Casazza [18] considered BPPIF with 

heterogenous bins and developed a branch-and-price 

algorithm. Furthermore, due to the characteristics of the 

items to be packed, some items may not be 

fragmentable during the packing process. In this 

respect, Ekici [13] and [19] investigated the BPPIF 

with conflicted items. Here, one cannot pack fragments 

of conflicted items into the same bin. The former 

assumes the identical bins, whereas the latter considers 

variable sized bins.  

This study investigates the BPPIF with additional side 

constraints so as to analyze the production scheduling 

problem with sequence independent setup times 

considered in a multi-product assembly environment. 

Here, items correspond to jobs and bins represent days 

in the production scheduling setting.  Our contribution 

is two-fold. First, we consider the additional side 

constraints, namely item-bin conflict and restricted 

item fragmentation. The former refers that items (jobs) 

cannot be packed into any given bin (day). The latter, 

on the other hand, represents an item can be fragmented 

at most once, and the fragmented parts must be packed 

into the bins representing two subsequent days. Second, 

we extended the mathematical formulation in the 

literature to consider the aforementioned side 

constraints and evaluated its performance in a real-life 

inspired extensive numerical study.  

The rest of the paper is organized as follows. In Section 

2, we define the problem. We introduce the 

mathematical model used to solve the BPPIF in Section 

3. We present the results of the computational study in 

Section 4. Concluding remarks are provided in Section 

5.  

2. Problem defitinion  

The problem is inspired from the production scheduling 

problem in a company that manufactures and assembles 

industrial machines. The main body of the machine, 

consisting of steel plates, is manufactured internally by 

the company, whereas the remaining materials are 

procured from multiple external suppliers. The 

machine parts manufactured by the company undergo a 

series of process including cutting and forming, 

machining, welding, painting, and assembly. 

Specifically, the items that require welding have a sub-

assembly product tree structure that can reach up to 

level seven.  

In the context of products comprised of multiple 

subcomponents, it is critical to ensure that all 

manufacturing processes for the subcomponents are 

completed prior to initiating the assembly process. 

Failure to do so, may result in disruptions in production. 

Given that each product has a distinct product structure 

and follows a unique routing sequence, it is 

challenging, yet crucial, to develop a planning strategy 

that guarantees the timely completion of all necessary 

operations for each product. 

The complexity of this planning problem arises from 

the diverse product structures and routing sequences. 

Each product necessitates a distinct set of operations 

and follows a unique sequence of steps. Creating the 

optimal plan to ensure all required operations are 

completed for each product is a major challenge. 

Figure 1 illustrates a multi-level product BOM and 

routings for sub-assembly items. Figure 1(b) presents 

the work centers responsible for processing all the parts 

required for Sub Assembly 3 body production, 

according to the product tree structure depicted in 

Figure 1(a). All parts must be processed at different 

work centers with different priorities. According to the 

product tree structure, Item 2 and Item 3 must be 

processed first at the same work center in order to 

produce Item 6 in sub-assembly group 3. Any delay in 

processing Item 2 and Item 3 directly affects the 

completion time of sub-assembly group 3. 

In the manufacturing company where this study is 

inspired, MRP program is used to determine the 

requirement dates of materials. The MRP program 

determines the latest requirement days of all materials 

by performing backward date calculations by 

considering the demand date of the product on a daily 

basis. Because all materials have pre-determined 

routings set in the MRP program, all jobs for each work 

centers are also determined on a daily basis when 

materials latest requirement dates are calculated.
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(a) (b) 

 

Figure 1. (a): Multi-level product BOM, (b): routings for sub-assembly items. 

 

The MRP program does not consider the finite 

capacities of work centers and specific manufacturing 

conditions of jobs when determining the latest 

requirement dates. Backward calculation approach 

often results in unrealistic scenarios in production 

planning. For instance, a work center that operates only 

one shift per day may be loaded jobs with a total 

duration of two shifts.  

Although knowing the deadlines of jobs is a necessity 

for an effective plan, it is not sufficient. In a work 

center, similar to the examples given earlier, there are 

two main challenges that can arise: exceeding the 

capacity of the work center and the unavailability of 

materials at the required time due to the involved nature 

of the sub-assembly products. These issues are 

typically addressed by resorting to overtime work. 

To put it simply, when the workload surpasses the 

capacity of the work center or when the materials 

needed for production are not available, the solution 

often involves employing overtime work. Inevitably, 

this leads to additional hours of work beyond the 

regular schedule to compensate for the increased 

workload or to catch up on delayed tasks caused by 

material unavailability. By using overtime work 

strategically, these challenges can be effectively 

addressed and the smooth operation of the work center 

can be maintained. 

In the company, when an overtime decision is made for 

a working day shift, three hours of overtime should be 

done as standard even if the total workload requirement 

is less than three hours. As such, this leads to additional 

costs for the company. In particular, the cost of 

overtime is fixed, i.e., when an overtime decision is 

made a fixed cost is incurred. This simply implies that 

it is cost-efficient to plan three hours of workload (full 

overtime capacity) if overtime is necessary.  

In order to achieve a more balanced and cost-effective 

planning, it is necessary to consider the deadlines of 

tasks and plan them based on the capacity of the work 

center on a daily basis. By considering the capacity 

constraints, it is possible to allocate resources more 

efficiently, avoid excessive workloads, and ensure that 

materials are available when needed. This type of 

planning facilitates minimizing overtime work and 

reduces additional costs for the company. 

We focus on a single work center and aim to determine 

the daily job assignments in there. The jobs do not have 

any sequence dependent setup costs, so the order in 

which the jobs are processed within a day does not have 

an impact on the total cost. Furthermore, it is allowed 

to leave at most one job unfinished during the day, 

which can be resumed in the following day. As such, 

this problem determines job-day assignments where the 

processing order of jobs within each day is not of 

interest.  Since items can be considered as jobs, bins can 

be considered as days, and some jobs may not need to 

start and end at the same day, the resulting problem can 

be modelled as the BPPIF. The jobs that have to be 

completed within a day are referred to as non-

fragmentable items. The remaining jobs are considered 

as fragmentable items whose processing operations 

must be completed at most one day after its starting day. 

As opposed to the common assumption adopted in the 

BPPIF literature, in our problem, each fragmentable job 

can be divided into at most two parts and fragmented 

parts can be packed into specific pair of bins, i.e., those 

referring to the subsequent days.  

The objective of the problem is to minimize the total 

overtime while allocating jobs to variable-size bins 

(i.e., days at which only normal work hours are used 

and days at which the sum of normal work hours and 

overtime are used) with limited capacities. As the due 

dates of jobs are known, the number of days (bins) for 

planning is fixed. Each non-fragmentable job must be 
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finished within one day, whereas each fragmentable job 

must be completed within either one day or two 

consecutive days. On any given day, only one job can 

be fragmented to the following day and the setup times 

between jobs are not sequence dependent. Also, we 

assume that processing time of a job cannot be longer 

then a working day capacity. 

Figure 2 illustrates a feasible solution of the problem. 

The figure shows that since the total processing times 

of the jobs assigned to the first day exceed the capacity 

of that day, including overtime, the amount of work 

time that exceeds the capacity is transferred to the 

second day. As such, the amount of work transferred 

from the first day is also considered while determining 

the capacity need for the second day. If the remaining 

capacity of normal shift hours is insufficient to meet the 

daily scheduled requirement, overtime is considered as 

an additional capacity. As the setup times are not 

sequence-dependent, the fragmented item and hence 

the capacity transferred to the next day will be 

determined following the due dates. Put in other words, 

the solution does not impose a sequence within a given 

day.  

 

Figure 2. Illustration of a feasible solution. 

 

3. Notation and mathematical model 

We model the problem as MIP that balances the 

capacity utilization of the bins and minimizes the 

number of overtime hours required to complete all the 

jobs. We formulated the MIP with three binary decision 

variables indicating whether a job is assigned to a 

particular bin, whether a job is fragmented and whether 

an overtime decision is made or not. Furthermore, a 

continuous decision variable represents the fragmented 

part of a job that will be transferred to the following 

day. 

The sets, parameters and decision variables are as 

follows.  

 

Sets 

𝑁 = {1, … , 𝑛}:  𝐽𝑜𝑏 𝑠𝑒𝑡 

𝑇 = {1, … , 𝑡}: 𝐷𝑎𝑦 𝑠𝑒𝑡 

𝐹: 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑏𝑙𝑒 𝑗𝑜𝑏𝑠 𝑠𝑒𝑡 (𝐹 ∈ 𝑁) 

�̅�: 𝑁𝑜𝑛 − 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑏𝑙𝑒 𝑗𝑜𝑏𝑠 𝑠𝑒𝑡 ( �̅� ∈ 𝑁) 

𝑁 = 𝐹 ∪ �̅�  

𝑎𝑖: 𝐽𝑜𝑏𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑎𝑦 𝑖 ∈ 𝑇  

�̅�𝑖: 𝐽𝑜𝑏𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑎𝑦 𝑖 ∈ 𝑇 

𝐴𝑗: 𝐷𝑎𝑦𝑠 𝑡ℎ𝑎𝑡 𝑗𝑜𝑏 𝑗 ∈ 𝑁 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜  

�̅�𝑗: 𝐷𝑎𝑦𝑠 𝑡ℎ𝑎𝑡 𝑗𝑜𝑏 𝑗 ∈ 𝑁 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 

 

Parameters 

𝑃𝑗 ∶ 𝑇ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝑁 

𝑑: 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑎𝑦 𝑠ℎ𝑖𝑓𝑡 

𝑜: 𝑂𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦  

 

Decision variables 

𝑥𝑗𝑖 =  {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝑁 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑑𝑎𝑦 𝑖 ∈ 𝑇 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

�̅�𝑗𝑖 = {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝑁 𝑖𝑠 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑡𝑜 𝑑𝑎𝑦 𝑖 ∈ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑦𝑖 = {
1, 𝑖𝑓 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑠 𝑚𝑎𝑑𝑒 𝑖𝑛 𝑑𝑎𝑦 𝑖 ∈ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑧𝑖: 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑡𝑜 𝑑𝑎𝑦 𝑖 ∈ 𝑇 

 

The mathematical model of the problem is as follows. 

 

Objective 

𝑀𝑖𝑛 ∑ 𝑦𝑖 ∗ 𝑜 

𝑡

𝑖=1

 

 

Constraints 

∑ �̅�𝑗1

𝑛

𝑗=1

= 0                                                                        (1) 

𝑧1 = 0                                                                                 (2) 
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∑ 𝑥𝑗𝑖 = 1

𝑖∈𝐴𝑗

                                                            𝑗 ∈ 𝑁 (3) 

∑ 𝑥𝑗𝑖 = 0

𝑖∈�̅�𝑗

                                                            𝑗 ∈ 𝑁 (4) 

∑ �̅�𝑗𝑖 ≤ 1

𝑖∈𝐴𝑗

                                                            𝑗 ∈ 𝐹 (5) 

∑ �̅�𝑗𝑖 = 0

𝑖∈�̅�𝑗

                                                            𝑗 ∈ 𝐹 (6) 

∑ �̅�𝑗𝑖 = 0                                                              𝑗 ∈ �̅� (7)

𝑡

𝑖=1

 

∑ �̅�𝑗𝑖 ≤ 1

𝑗∈𝑎𝑖

                                                    𝑖 ∈ 𝑇/{1} (8) 

∑ �̅�𝑗𝑖 = 0

𝑗∈�̅�𝑖

                                                    𝑖 ∈ 𝑇/{1} (9) 

𝑥𝑗𝑖  ≥ �̅�𝑗𝑖+1                                       𝑗 ∈ 𝑎𝑖 , 𝑖 ∈ 𝑇/{𝑡} (10) 

𝑧𝑖  ≤  ∑ �̅�𝑗𝑖 ∗ 𝑃𝑗

𝑛

𝑗=1

                                        𝑖 ∈ 𝑇/{1} (11) 

𝑧2 + 𝑦1 ∗ 𝑜 ≥  ∑ 𝑥𝑗1 ∗ 𝑃𝑗 − 𝑑

𝑛

𝑗=1

                                 (12) 

𝑦𝑡 ∗ 𝑜 ≥ 𝑧𝑡 + ∑ 𝑥𝑗𝑡 ∗ 𝑃𝑗 − 𝑑

𝑛

𝑗=1

                                   (13) 

 

𝑧(𝑖+1) + 𝑦𝑖 ∗ 𝑜 ≥ 𝑧𝑖 + ∑ 𝑥𝑗𝑖 ∗ 𝑃𝑗 − 𝑑

𝑛

𝑗=1

    𝑖 ∈ 𝑇/{1, 𝑡} 

                                                                    (14) 

𝑥𝑗𝑖 , �̅�𝑗𝑖 , 𝑦𝑖  ∈ {0,1}                                  𝑗 ∈ 𝑁, 𝑖 ∈ 𝑇 (15)  

𝑧𝑖 ≥ 0                                                                   𝑖 ∈ 𝑇  (16)  

 

In the model, objective function minimizes the total 

overtime. Constraints (1) and (2) ensure that a job 

cannot be fragmented before the first day of the 

planning horizon. Constraints (3) and (4) guarantee that 

jobs have to be assigned to only one day and they 

cannot be assigned to days that are later than their 

delivery dates. Constraints (5) and (6) state that if a job 

is fragmentable, it can be fragmented for the days that 

are earlier than its delivery dates. Constraints (7) 

guarantee that non-fragmentable jobs cannot be 

fragmented. Constraints (8) ensure that at most one job 

can be fragmented among all jobs for the day. 

Constraints (9) ensure that a job can not be fragmented 

for days to which it cannot be assigned. Constraints 

(10) state that a job can only be fragmented on the day 

after its original assigned day. Constraints (11) 

guarantee that the fragmented time of the day cannot be 

more than the processing time of the fragmented job. 

Constraints (12-14) ensure that the capacity of each day 

is not exceeded. The planning horizon can be separated 

into three sections by considering their special 

conditions while setting up the model. The first day 

cannot have an earlier day's remaining capacity 

requirement. Constraints (12) control the capacity of 

the first day of the planning horizon. The last day 

cannot have over capacity to transfer the next day. 

Constraints (13) control the last day of the planning 

horizon. Constraints (14) control the capacity of the 

remaining days over the planning horizon. Constraints 

(15) and (16) define the domain for decision variables. 

4. Numerical study 

This section presents the numerical study conducted to 

evaluate the performance of the MIP formulation on the 

BPPIF. The MIP model was solved using Gurobi 

Optimizer version 9.5.0.0rc5. A PC with a 16 GB RAM 

and Apple M1 processor was used to carry out all the 

experiments. We imposed a run time limit of 60 

seconds for the MIP model. 

4.1. Data generation 

We construct our experiment design based on average 

processing time (APT), fragmentable item ratio (FIR), 

job number (JN), and capacity ratio (CR) parameters. 

In our test instances, we aim to have a nearly equal 

number of jobs with the same due date. To do so, day 

numbers are calculated parametrically as follows:  

 

𝐷𝑁 =
𝐽𝑁 ∗ 𝐴𝑃𝑇 ∗ 𝐶𝑅

𝐷𝑇
 

where DN represents the day number, JN represents the 

job number, APT represents the average processing 

time, CR represents the capacity ratio and DT 

represents the day time which is the total time of normal 

shift time and over time per day. 

We generated the processing time of jobs randomly by 

using the uniform distribution with mean 40. The 

bounds of the uniform distribution is determined by the 

following equations.  

 

𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 = 𝐴𝑃𝑇 ∗ 𝐶𝑅 

𝑙𝑜𝑤𝐿𝑖𝑚𝑖𝑡 = 𝐴𝑃𝑇 ∗ (2 − 𝐶𝑅) 

 

In our experimental setup, we used the following set of 

parameters; JN∈{176, 352, 704, 1408}, FI∈{20%, 

40%, 60%} and CR∈{110%, 160%}. 

We employed a daytime duration of 704 minutes, with 

554 minutes designated as normal shift time and the 

remaining 150 minutes allocated for overtime. To 

ensure statistical robustness, we generated 10 samples 

for each instance class. This leads us to 240 test 

instances in total. The average values obtained from 

these samples were subsequently employed in 

analyzing results. Finally,  DN∈{11, 16, 22, 32, 44, 64, 

88, 128} are found implicitly based on parameters 

given above. 
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4.2. Results 

In this section, we present the computational results of 

our experiments. The results on the test instances show 

that the model yields optimal solutions for 90% of the 

240 test instances within a time limit of 60 seconds. In 

only 10% of the total instances, it fails to find the 

optimal solution within the given time limit. The 

maximum gap is found as %4 while the average gap 

found  as %3 in those instances that were not solved 

optimally. This result highlights the effectiveness of the 

proposed mathematical model in solving a significant 

portion of the test instances efficiently.  

Table 2 presents the average, minimum and maximum 

solution times for the instances based on each 

parameters. It can be observed from the table that as the 

number of jobs increases, the solution time of the model 

also increases. The relationship between the number of 

jobs and the solution time can be attributed to the 

computational complexity of the problem. As the 

number of jobs increases, the problem becomes more 

complex and requires additional computational 

resources to find the optimal solution. This increase in 

solution time is expected due to the combinatorial 

nature of the problem, where the number of possible 

solutions grow exponentially with the number of tasks. 

The effect of FI ratio, which indicates the percentage of 

jobs that are fragmentable can be also observed in the 

Table 2. It is well-known that the problem becomes 

trivial if there is no restriction on the item 

fragmentation. This indicates that one would expect to 

have faster computation as the ratio between 

fragmentable and nonfragmentable jobs approaches to 

1. The results show that, the average solution time 

decreases when the number of fragmentable jobs in the 

problem increases sufficiently. Yet, we cannot observe 

a similar trend in the maximum solution time statistics. 

 

Table 2. Solution times for parameters. 

Group Value AST Min Max 

JN 

176 0.020 0.002 0.100 

352 0.143 0.008 1.006 

704 2.501 0.033 18.073 

1408 6.633 0.142 56.255 

FI 

20% 0.762 0.002 12.710 

40% 2.788 0.002 42.831 

60% 1.877 0.002 56.255 

CR 
110% 4.060 0.020 56.255 

160% 0.052 0.002 0.190 

JN: Job number, FI: Fragmentable item ratio, CR: 

Capacity ratio, AST: Average solution time (seconds), 

Min: Minimum solution time (seconds), Max: Maximum 

solution time (seconds) 
 

The CR ratio, as mentioned before, has an effect on the 

randomly determined processing times for jobs. As the 

CR ratio increases, the average total processing time of 

jobs that must finish prior to any day decreases. This 

implies that, for lower CR ratio, the daily capacity 

becomes tighter as compared to that of higher CR ratio.  

As such, the problem inherently gets more difficult. In 

Table 2, it can be observed that solution times 

dramatically improve as CR ratio increases. 

Finally, the average solution times for DN with same 

CR are given in Table 3. CR have a direct impact on the 

calculation of DN. CR, in a way, indicates the 

underutilization of the workcenter each day. Therefore, 

for the same CR, the rate of utilization, i.e., daily 

capacity tigthness, remains steady.  

 

Table 3. Solution times of DN for same CR. 

DN CR AST Min Max 

16 160% 0.002 0.002 0.002 

32 160% 0.008 0.008 0.008 

64 160% 0.035 0.033 0.039 

128 160% 0.165 0.142 0.190 

11 110% 0.039 0.002 0.100 

22 110% 0.278 0.089 1.006 

44 110% 4.967 0.734 18.073 

88 110% 45.436 39.386 56.255 

DN: Day number, CR: Capacity ratio, AST: Avereage 

solution time (seconds), Min: Minimum solution time 

(seconds), Max: Maximum solution time (seconds) 

 

In Table 3, we report the impact of day number on the 

average, minimum and maximum solution time for the 

instances with the same underutilization level. As a 

result, we can see that DN has a negative impact on the 

average solution time. More specifically, the average 

solution time increases with greater DN values. This is 

not surprising because the number of binary variables 

used within the MIP model depends on DN. Therefore, 

greater DN values lead us to larger MIP models and this 

eventually increases the solution times.  

5. Conclusions and future research directions 

We have studied the assignment problem of multi 

product assembly jobs to the days. Considering the 

similarity of the problem with the BPPIF, we have 

proposed a MIP model. We have considered the 

additional constraint of item-bin conflict. An item can 

be fragmented at most once, and only to the following 

bin. Computational experiments have shown that the 

MIP model obtained optimal solutions for majority of 

instances within reasonable computation times. Our 

results provide insights for researchers and 

practitioners in scheduling problems with due dates and 

overtime constraints. 

The proposed model can be used as a decision support 

tool in planning production assignments where 

sequence-dependent setup times can be ignored, and 

delivery times are of interest. The MIP model can be 

considered as a simple yet effective model for systems 

involving processes with less than 1000 job numbers.  

Several research directions could be considered for 

future work. The performance of the MIP model for the 

BPPIF could be examined further to minimize the 
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number of fragmented jobs. Despite extensive research 

on the BPPIF, several open problems and challenging 

variants still exist, including the BPPIF with uncertain 

item sizes, multiple criteria, and precedence relations. 

Furthermore, developing efficient algorithms, such as 

metaheuristics, for handling large-scale instances of the 

problem remains an active research area.  
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