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1. Introduction

We are interested in the convex nonlinear pro-
gramming problem subject to inequality con-
straints, as follows

min {f(x) | x ∈ S} , (1)

where S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m} , f
and gi, i = 1, ...,m are real-valued functions
defined on IRn, and where the functions f and
gi, i = 1, ...,m are continuously differentiable.
The problem (1) is solved in particular by the
augmented Lagrangian methods. The method-
ology of this method consists of solving a sub-
problem, that is, minimizing an augmented La-
grangian function (this is an unconstrained opti-
mization problem), in this way, a primal solution
is obtained. Subsequently the Lagrange multipli-
ers are estimated. Some augmented Lagrangian

algorithms known in the literature are: exponen-
tial Lagrangian [1], Log-sigmoid Lagrangian [2],
nonlinear rescaling principle [3] and [4].

These augmented Lagrangian algorithms are
called nonquadratic augmented Lagrangian algo-
rithms, these algorithms are often C2 if the ob-
jective and constraints are also twice continuously
differentiable.

The quadratic augmented Lagrangian is differen-
tiable only once [5]. The hyperbolic augmented
Lagrangian algorithm (HALA) also solves the
problem (1), see [6], HALA is a nonquadratic
augmented Lagrangian. Adilson Elias Xavier in-
troduces the hyperbolic penalty function (HPF)
in [7] and the dislocation hyperbolic penalty func-
tion (DHPF) in [8]. With this last function, we
are going to propose our algorithm called disloca-
tion hyperbolic augmented Lagrangian algorithm
(DHALA).

*Corresponding Author

147

http://creativecommons.org/licenses/by/4.0/


148 L.M. Ramirez, N. Maculan, A.E. Xavier, V.L. Xavier / IJOCTA, Vol.14, No.2, pp.147-155 (2024)

This algorithm has two interesting characteristics:
the function DPF is continuously differentiable
unlike the classic quadratic penalty function, see
for example [5], and the rule for updating its mul-
tipliers naturally generates a kind of safeguards
for them.

This does not occur with other augmented La-
grangian type algorithms, i.e., to bound the mul-
tipliers, these algorithms have to generate a pro-
jection on a box, thus limiting the multipliers
(see [9]). The main contributions of our work are:

• We introduce the dislocation hyper-
bolic augmented Lagrangian algorithm
(DHALA), to solve the convex optimiza-
tion problem with constraints. We guar-
antee that the sequence generated by
DHALA converges to a Karush-Kuhn-
Tucker (KKT) point. With this new
approach, we notice that our algorithm
DHALA converges to the solution in less
time when compared to HALA (see the
computational illustration of this work).

• This algorithm is based on the dislocation
hyperbolic augmented Lagrangian func-
tion (DHALF). This function belongs to
class C∞ if the involved functions f(x)
and gi(x), i = 1, ...,m, do too.

The paper is organized as follows: Section 2
presents some basic definitions; Section 3 intro-
duces the algorithm DHALA and assurance its
convergence; Section 4 presents computational il-
lustrations of our theoretical results; Section 5
presents some conclusions of our work, and dis-
cusses idea for future work.

2. Basic results

Throughout this paper, we are interested in
studying the following optimization problem:

(P ) x∗ ∈ X∗ = argmin{f(x) | x ∈ S},
where

S = {x ∈ IRn | gi(x) ≥ 0, i = 1, ...,m},
is the convex feasible set of the problem (P)
and where the function f : IRn → IR is con-
vex, gi : IRn → IR, i = 1, ...,m, are concave
functions, assuming that f, gi are continuously
differentiable in that way, (P) is a convex opti-
mization problem. Let us consider the following
assumptions:

C1. The optimal set X∗ is nonempty, closed,
bounded and, consequently, compact.

C2. Slater constraint qualification holds, i.e.,

there exists x̂ ∈ S which satisfies gi(x̂) > 0, i =
1, ...,m.

The Lagrangian function of the problem (P), L :
IRn × IRm

+ → IR, is defined as

L(x, λ) = f(x)−
m∑
i=1

λigi(x),

where, λi ≥ 0, i = 1, ...,m, are the Lagrange
multipliers. We know that due to assumption
C2, the following results will occur: there exists
λ∗ = (λ∗

1, ..., λ
∗
m) such that the KKT conditions

hold true, i.e.,

∇xL(x
∗, λ∗) = ∇f(x∗)−

m∑
i=1

λ∗
i∇gi(x

∗) = 0,

λ∗
i gi(x

∗) = 0, i = 1, ...,m,

gi(x
∗) ≥ 0, i = 1, ...,m,

λ∗
i ≥ 0, i = 1, ...,m.

Moreover, the set of optimal Lagrange multipliers
λ∗ is denoted by

Λ∗ =

{
λ ∈ IRm

+ | ∇f(x∗)−
m∑
i=1

λi∇gi(x
∗) = 0,

x∗ ∈ X∗
}
,

which is a bounded set (and hence compact set)
due to C2. The dual function Φ : IRm

+ → IR, is
defined as follows

Φ(λ) = inf
x∈IRn

L(x, λ), (2)

and the dual problem consists of finding

(D) λ ∈ Λ∗ = argmax{Φ(λ) | λ ∈ IRm
+}.

2.1. Hyperbolic and dislocation
hyperbolic penalty function

The hyperbolic penalty algorithm (HPA) is meant
to solve the problem (P). HPA adopts the HPF
as

P (y, λ, τ) = −λy +

√
(λy)2 + τ2, (3)

where P : IR×IR+×IR++ → IR. HPF is originally
proposed in [7] and studied in [10]. This function
is a smoothing of the exact penalty function stud-
ied by Zangwill [11]. HPF is used in HALA. On
the other hand, in [8], DHPF is proposed and de-
fined as follows:

p(gi(x), λi, τ) = −λigi(x) +
√

(λigi(x))
2 + τ2 − τ,

(4)
for i = 1, ...,m, where p : IR × IR+ × IR++ → IR.
Using (4), we will introduce DHALA in the next
section.
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3. Dislocation hyperbolic augmented
Lagrangian algorithm

In this section, the are going to consider func-
tion (4) to define DHALF of problem (P) by
lH : IRn × IRm

++ × IR++ → IR,

lH(x, λ, τ) = f(x) +
m∑
i=1

p(gi(x), λi, τ)

= f(x)+

m∑
i=1

(
−λigi(x) +

√
(λigi(x))

2 + τ2 − τ

)
,

(5)
where τ > 0 is the penalty parameter. Note that
this function belongs to class C∞ if the involved
functions f(x) and gi(x), i = 1, ...,m, do too. We
can rewrite (5) as follows:

lH(x, λ, τ)

= f(x)−
m∑
i=1

τ

λigi(x)

τ
−

√(
λigi(x)

τ

)2

+ 1 + 1


(6)

= f(x)−
m∑
i=1

τ h

(
λigi(x)

τ

)
,

where the function h : IR → IR, is defined as

h(t) = t−
√

t2 + 1 + 1,

with h ∈ C∞. Henceforth, we will call the h func-
tion the dislocation hyperbolic function. Some
properties of h are:

(H1) h(0) = 0 and h′(0) = 1.

(H2) h is increasing, i.e.,

h′(t) = 1− t√
t2 + 1

> 0, ∀t ∈ IR,

where 0 < h′(t) < 2.
(H3) The h function is strictly concave, i.e.,

h′′(t) =
−1

(t2 + 1)
3
2

< 0, ∀t ∈ IR.

By (H2), we get that 0 < h′(t) < 2, which is also
a characteristic similar to log-sigmoid Lagrangian
(LST), see [2]. Now we present DHALA to solve
the convex nonlinear programming problem (P).

Algorithm DHALA:

Step 1. Let k := 0. Take initial values λ0 =
(λ0

1, ..., λ
0
m) ∈ IRm

++ and τ ∈ IR++.
Step 2. Solve the unconstrained minimization

problem:

xk+1 ∈ argminx∈IRn lH(x, λk, τ)

= argminx∈IRn

{
f(x)−

m∑
i=1

τh

(
λigi(x)

τ

)}
.

Step 3. Update the Lagrange multipliers:

λk+1
i = λk

i h
′
(
λk
i gi(x

k+1)

τ

)
, i = 1, ...,m. (7)

Step 4. If the pair (xk+1, λk+1) satisfies the stop-
ping criteria, then stop.

Step 5. k := k + 1. Go to Step 2.

The methodology of our algorithm is as follows:
in Step 2, we solve a subproblem that is uncon-
strained; in Step 3, the new Lagrange multipliers
are estimated and in Step 4, a stop condition is
considered. The only difference between (3) and
(4) is the term −τ. The word “dislocation” in our
algorithm comes specifically from this term. Let
us consider the following assumption:

C3. For every τ > 0 and λ ∈ IRm
++, the level

set
M = {x ∈ IRn | lH(x, λ, τ) ≤ α} ,

is bounded for every α < ∞.

The Assumption C3 can be verified when the
function f is strongly convex. The strong convex-
ity assumption for f is also studied in [5] and [12].

Remark 1. From (7) and (H2) we note the fol-
lowing:

λk+1
i = λk

i h
′
(
λk
i gi(x

k+1)

τ

)

= λk
i

1− λk
i gi(x

k+1)√
(λk

i gi(x
k+1))2 + τ2

 , i = 1, ...,m.

On the other hand, byC3, there exists xk+1 ∈ IRn

such that

lH(xk+1, λk, τ) = minx∈IRn lH(x, λk, τ),

∇xlH(xk+1, λk, τ) = 0 holds, i.e.,

∇f(xk+1)−
m∑
i=1

λk
i h

′
(
λk
i gi(x

k+1)

τ

)
∇gi(x

k+1) = 0.

(8)

Substituting (7) in (8), we have

∇xlH(xk+1, λk, τ) = ∇f(xk+1)−
m∑
i=1

λk+1
i ∇gi(x

k+1),

= ∇xL(x
k+1, λk+1) = 0, (9)

for any τ > 0. We observe that xk+1 and λk+1

satisfy ∇xL(x
k+1, λk+1) = 0, showing that xk+1

is the minimizer of L(x, λk+1), i.e.,

Φ(λk+1) = L(xk+1, λk+1) = min
x∈IRn

L(x, λk+1)

with
λk+1 ∈ IRm

++,
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which follows that

Φ(λk+1) = f(xk+1)−
m∑
i=1

λk+1
i gi(x

k+1). (10)

From (10), we obtain −g(xk+1)

=
(
−g1(x

k+1), · · · ,−gm(xk+1)
)T

∈ ∂Φ(λk+1),

where ∂Φ(v) = {−v : v ∈ ∂(−Φ)(λ)} is the sub-
differential of Φ(v) at v = λk+1. In the following
remark, we analyze what happens with Lagrange
multipliers depending on the type of restriction.
Let us define the following sets of indices

I0 = {i ∈ {1, ...,m} | gi(x) = 0} ,
I− = {i ∈ {1, ...,m} | gi(x) < 0} ,
I+ = {i ∈ {1, ...,m} | gi(x) > 0} .

Remark 2. Let {λk} be a sequence generated by
DHALA such that λk

i > 0, i = 1, ...,m and let
τ > 0 fixed. Let us consider the following cases:

(c1) If i ∈ I0, then at the k-th iteration
we have gi(x

k+1) = 0. Then, from (7)

and (H1), we get λk+1
i = λk

i . Thus,(
λk
i − λk+1

i

)
gi(x

k+1) = 0, ∀i ∈ I0.

(c2) If i ∈ I+, then at the k-th iteration we
have gi(x

k+1) > 0. Then, from (H3), we
have

λk
i gi(x

k+1)

τ
> 0, i = 1, ...,m,

λk
i h

′(0) < λk
i h

′
(
λk
i gi(x

k+1)

τ

)
, i = 1, ...,m.

It follows from (7) and (H1) that

λk
i > λk+1

i . Thus,(
λk
i − λk+1

i

)
gi(x

k+1) > 0, ∀i ∈ I+.

(c3) If i ∈ I−, then at the k-th iteration
we have gi(x

k+1) < 0. Then, from (7)
and following a similar approach to case
(c2), we can obtain λk

i < λk+1
i . Thus,(

λk
i − λk+1

i

)
gi(x

k+1) > 0, ∀i ∈ I−.

From the three previous cases, we can note that
we have the following(

λk
i − λk+1

i

)
gi(x

k+1) ≥ 0, i = 1, ...,m. (11)

3.1. Convergence esult

We are going to guarantee the convergence of
DHALA. This section is mainly based on [3] and
[6]. In the following result, we will demonstrate
the positivity of the updated Lagrange multipli-
ers.

Proposition 1. Let{
λk = (λk

1, ..., λ
k
m) | k = 1, 2, ...

}
⊂ IRm.

If λk ∈ IRm
++, then λk+1 ∈ IRm

++.

Proof. We can easily obtain the following, by
making λk

i > 0, i = 1, ...,m. Thus, from (H2), we
have

0 < λk
i h

′
(
λk
i gi(x

k+1)

τk

)
< 2λk

i , i = 1, ...,m,

from the inequality above and (7), we obtain

λk+1
i > 0, i = 1, ...,m.

Remark 3. From C3 and Proposition 1, we con-
clude that DHALA is well defined.

From Proposition 1, we get

0 < λk+1
i < 2λk

i , i = 1, ...,m, (12)

see Proposition 3.2.1 of [6]. Since we have (12),
(H1), (H2) and (H3), we can see that DHF has
similar properties to the Log-Sigmoid transfor-
mation (LST), see Section 3 of [2] and Section
3 of [13].

Theorem 1. Let {λk} be a sequence generated
by DHALA. The sequence {Φ(λk)} is monotone
nondecreasing for all k ∈ IN.

Proof. From the concavity of Φ(·) and since
−g(xk+1) ∈ ∂Φ(λk+1), we have

Φ(λk+1)− Φ(λk) ≥
m∑
i=1

(
gi(x

k+1)
)(

λk
i − λk+1

i

)
.

(13)

From Remark 1, it follows

λk
i − λk+1

i =

(
λk
i

)2
gi(x

k+1)√(
λk
i gi(x

k+1)
)2

+ τ2
, i = 1, ...,m.

(14)

Then, expression (14) is replaced on the right side
of inequality (13), and we get

Φ(λk+1)−Φ(λk) ≥
m∑
i=1

 (
λk
i gi(x

k+1)
)2√(

λk
i gi(x

k+1)
)2

+ τ2

 ≥ 0.

(15)

Thus, Φ(λk+1) ≥ Φ(λk).

Proposition 2. The sequence of dual objective
function values {Φ(λk)} is bounded and monotone
nondecreasing, hence it converges.

Proof. By Theorem 1, we obtain Φ(λk+1) ≥
Φ(λk), then {Φ(λk)} is a nondecreasing sequence
for all k ∈ IN and considering the weak duality
theorem, we obtain Φ(λk) ≤ Φ(λk+1) ≤ f∗, ∀k,
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i.e., {Φ(λk)} is bounded from above by the opti-
mal value. Then {Φ(λk)} is convergent.

Proposition 3. The sequence {λk} generated by
the DHALA is bounded.

Proof. From C2, we know that Λ∗ is nonempty
and compact. So, one level set of Φ(·) is compact.
Then all level sets are compact, see Corollary 8.7.1
of [14]. From Proposition 2, we obtain in partic-
ular that λk ∈ Γ = {λ ∈ IRm

+ | Φ(λ0) ≤ Φ(λ)} for

all k ∈ IN. Hence, {λk} is a bounded sequence.

The following result is important to ensure the
complementarity condition.

Lemma 1. Let d > 0 and a sequence {ak} ⊂ IR+.
If

lim
k→∞

(
ak/

√
ak + d

)
= 0, then lim

k→∞
ak = 0.

Proof. See, pag. 19, Lemma 3.2.1 of [6].

The following result is similar to Proposition 4.3
of [3] and letter (c) of the Lemma 3.2 of [1], also
see [6].

Theorem 2. Let the sequences {xk} and {λk} be
generated by DHALA. Then,

lim
k→∞

(
λk
i gi(x

k)
)
= 0, i = 1, ...,m. (16)

Proof. Let be τ > 0 be fixed. Since Φ(·), is
concave and −gi(x

k+1) ∈ ∂Φ(λk+1) we have

Φ(λk) ≤ Φ(λk+1)+

m∑
i=1

(
−gi(x

k+1)
)(

λk
i − λk+1

i

)
.

Considering the inequality above and the Remark
2, we obtain

0 ≤
m∑
i=1

(
λk
i − λk+1

i

)
gi(x

k+1) ≤ Φ(λk+1)−Φ(λk).

(17)

On the other hand, by (7), we have

λk+1
i = λk

i h
′
(
λk
i gi(x

k+1)

τ

)
, i = 1, ...,m.

In the expression above, we subtract λk
i , i =

1, ...,m, and perform some operations, as follows
for all i = 1, ...,m :

λk+1
i − λk

i = λk
i h

′
(
λk
i gi(x

k+1)

τ

)
− λk

i ,

λk+1
i − λk

i = λk
i

(
h′
(
λk
i gi(x

k+1)

τ

)
− 1

)
,

λk
i − λk+1

i = λk
i

(
1− h′

(
λk
i gi(x

k+1)

τ

))
. (18)

Replacing (18) in (17), we have

0 ≤
m∑
i=1

(
λk
i

(
1− h′

(
λk
i gi(x

k+1)

τ

)))
gi(x

k+1)

≤ Φ(λk+1)− Φ(λk).

Rewriting the above:

0 ≤
m∑
i=1

(
1− h′

(
λk
i gi(x

k+1)

τ

))(
λk
i gi(x

k+1)
)

≤ Φ(λk+1)− Φ(λk). (19)

Let us verify that the series in (19) is convergent:

0 ≤
∞∑
k=1

m∑
i=1

(
1− h′

(
λk
i gi(x

k+1)

τ

))(
λk
i gi(x

k+1)
)

≤
∞∑
k=1

(
Φ(λk+1)− Φ(λk)

)
.

We notice that
∑∞

k=1

(
Φ(λk+1)− Φ(λk)

)
is a con-

vergent series (i.e., the partial sum is bounded
above), so it follows:

0 ≤
∞∑
k=1

m∑
i=1

(
1− h′

(
λk
i gi(x

k+1)

τ

))(
λk
i gi(x

k+1)
)

≤ lim
k→∞

(
Φ(λk)− Φ(λ1)

)
≤ f∗ − Φ(λ1) < ∞.

Therefore, for the test of comparison, we obtain

lim
k→∞

m∑
i=1

(
1− h′

(
λk
i gi(x

k+1)

τ

))(
λk
i gi(x

k+1)
)

= 0. (20)

We note that each term in the summation (20) is
nonnegative, thus

lim
k→∞

(
1− h′

(
λk
i gi(x

k+1)

τ

))(
λk
i gi(x

k+1)
)
= 0,

(21)
∀i = 1, ...,m.

Now, let us prove (16) similar the proof by con-
tradiction. What follows is similar argument to
Proposition 4.3 of [3]. Suppose that there exists
a subsequence (for any fixed i) U ⊂ {1, 2, ...} and
an ϵ > 0 such that

| λk
i gi(x

k+1) | ≥ ϵ > 0, ∀k ∈ U. (22)

Then from (21), we obtain{
1− h′

(
λk
i gi(x

k+1)

τ

)}
U

→ 0,

so, {
h′
(
λk
i gi(x

k+1)

τ

)}
U

→ 1.
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Since we have (H1), we obtain{
λk
i gi(x

k+1)

τ

}
U

→ 0,

thus, {
λk
i gi(x

k+1)
}
U
→ 0. (23)

We see that (23) contradicts the expression (22).
So, we get

lim
k→∞

(
λk
i gi(x

k+1)
)
= 0, i = 1, ...,m. (24)

Because Φ(·) is a concave function and from Re-
mark 2, we get

Φ(λk+1)− Φ(λk)

≥
m∑
i=1

(
gi(x

k+1)
)(

λk
i − λk+1

i

)
≥ 0. (25)

From Proposition 2 we know that {Φ(λk)} is con-
vergent, so it follows:
limk→∞

{
Φ(λk+1)− Φ(λk)

}
= 0, and from (25)

we obtain

lim
k→∞

m∑
i=1

(
gi(x

k+1)
)(

λk
i − λk+1

i

)
= 0. (26)

Since
(
gi(x

k+1)
) (

λk
i − λk+1

i

)
≥ 0 from (26) and

(24), it follows that

lim
k→∞

(
λk+1
i gi(x

k+1)
)
= 0, i = 1, ...,m. (27)

Let us consider the last assumption:

C4. The whole sequence to be
{
xk

}
is con-

vergent to x̃, where x̃ is assumed a feasible point,
i.e., gi(x̃) ≥ 0, i = 1, ...,m.

A similar assumption to C4 can also be seen
in [15]. Finally, we ensure that the subsequence
generated by the algorithm DHALA converges to
a KKT point.

Theorem 3. The convex problem (P) satisfies
C1, C2, C3 and C4. Let sequences {xk} and
{λk} be generated by DHALA. Then, any limit
point of a subsequence {xk} and {λk} is an opti-
mal solution Lagrange multiplier pair for the prob-
lem (P).

Proof. Let τ > 0 be fixed. By hypothesis,
we have that limk→∞ xk = x̄ and limk→∞ λk =
λ̄. Henceforth, we can consider the following
convergent subsequences limk→∞ xk = x̄ and
limk→∞ λk = λ̄ with k ∈ K2 ⊂ IN.

In a previous result, we ensure feasibility, i.e.,
gi(x̄) ≥ 0, i = 1, ...,m. From Proposition

1, we obtain, limk→∞ λk
i = λ̄i ≥ 0, i =

1, ...,m. Passsing the limit in (27), we have
limk→∞

(
λk
i gi(x

k)
)
= λ̄igi(x̄) = 0, ∀i = 1, ...,m.

Moreover, passing the limit in (9), we obtain

∇xL(x̄, λ̄) = ∇f(x̄)−
m∑
i=1

λ̄i∇gi(x̄) = 0.

Thus, (x̄, λ̄) satisfies the KKT conditions for all
i = 1, ...,m, and (x̄, λ̄) is a KKT point. Thus x̄ is
optimal for the problem (P) and λ̄ is a Lagrange
multiplier.

4. Computational illustration

In this section, we are going to use the algorithms
HALA and DHALA to solve the same problems.
After obtaining the results, we will observe and
comment the differences between these two algo-
rithms.

The computational results presented below were
obtained with a preliminary Fortran implemen-
tation for HALA and DHALA. The program was
compiled with the GNU Fortran compiler ver-
sion 4:7.4.0-1ubuntu2.3. The numerical Experi-
ments were conducted on a Notebook with op-
erating system Ubuntu 18.04.5, CPU i7-3632QM
and 8GB RAM. The unconstrained minimiza-
tion tasks were carried out by means of a Quasi-
Newton algorithm employing the BFGS updat-
ing formula, with the function VA13 from HSL
library [16]. The algorithm stops when the solu-
tion is viable (feasible) and the absolute value of
the difference between two consecutives solutions
is less than 10−7.
For a better understanding of our work, we are
going to present the algorithm HALA (for more
details see [6]) below:

Algorithm HALA

Step 1. Let k := 0. Take initial values λ0 =
(λ0

1, ..., λ
0
m) ∈ IRm

++ and τ ∈ IR++.
Step 2. Solve the unconstrained minimization

problem:

xk+1 ∈ argminx∈IRn LH(x, λk, τ)

= argminx∈IRn

{
f(x) +

m∑
i=1

P (gi(x), λi, τ)

}
.

Step 3. Update the Lagrange multipliers:

λk+1
i = λk

i

1− λk
i gi(x

k+1)√
(λk

i gi(x
k+1))2 + τ2

 , (28)

∀ i = 1, ...,m.
Step 4. If the pair (xk+1, λk+1) satisfies the stop-

ping criteria, then stop.
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Step 5. k := k + 1. Go to Step 2.

4.1. Test problems

The problems can be found in the book [17].

Problem 1. Problem 11 (HS11) of [17].

min
x∈IR2

f(x) = (x1 − 5)2 + x22 − 25

s.t. g1(x) = −x21 + x2 ≥ 0.

Starting with x0 = (4.9, 0.1) (not feasible)
and f(x0) = −24.98. The minimum value is
f(x∗) = −8.498464223.

Problem 2. Problem 66 (HS66) of [17].

min
x∈IR3

f(x) = 0.2x3 − 0.8x1

s.t. g1(x) = x2 − ex1 ≥ 0,

g2(x) = x3 − ex2 ≥ 0,

g3(x) = x1 ≥ 0,

g4(x) = x2 ≥ 0,

g5(x) = x3 ≥ 0,

g6(x) = 100− x1 ≥ 0,

g7(x) = 100− x2 ≥ 0,

g8(x) = 10− x3 ≥ 0.

Starting with x0 = (0, 1.05, 2.9) (feasible) and
f(x0) = 0.58. The minimum value is f(x∗) =
0.5181632741 and the optimal solution is
x∗ = (0.1841264879, 1.202167873, 3.327322322).

4.2. Results

Table 1 presents the time used by the algorithm
to converge. Both algorithms use 5 iterations to
solve problem HS11 and 12 iterations to solve
problem HS66.

Table 1. Comparison of HALA and
DHALA (time in seconds)

Problem τ HALA DHALA
HS11 0.10E-01 0.000336 0.000226
HS66 0.10E-02 0.001239 0.000759

• Example 1
• HALA:

x∗ = (0.123477247E + 01,
0.152466328E + 01),

λ∗ = 0.304888381E + 01,

f(x∗) = −0.849846350E + 01.

• DHALA:
x∗ = (0.123477247E+01, 0.152466328E+
01),

λ∗ = 0.304888381E + 01,

f(x∗) = −0.849846350E + 01.

• Example 2
• HALA:

x∗ = (0.184127435E+00, 0.120216896E+
01, 0.332732602E + 01),

λ∗ = (0.665503228E+00, 0.199999462E+
00, 0.147229064E−05, 0.345744295E−
07, 0.451311477E−08, 0.501818042E−
11, 0.512143031E−11, 0.112318220E−
08),

f(x∗) = 0.518163256E + 00.

• DHALA:
x∗ = (0.184127436E+00, 0.120216896E+
01, 0.332732603E + 01),

λ∗ = (0.665502922E+00, 0.199999546E+
00, 0.147229063E−05, 0.345744284E−
07, 0.451311477E−08, 0.501818042E−
11, 0.512254052E−11, 0.112318220E−
08),

f(x∗) = 0.518163257E + 00.

5. Conclusions

In this work, we observed that the convergence
of DHALA is similar to the convergence of
HALA. The computational illustrations show that
DHALA solves the problems in less time when
compared to HALA. Additionally both DHALA
and HALA solve the same problems in the same
number of iterations (see, Table 1). Our algo-
rithms DHALA and HALA converge to the exact
solution within the precision of the computer. A
limitation of our algorithm is that parameter τ is
fixed, despite this limitation, our algorithm con-
verges. For future work, we plan the convergence
theory of our algorithm to address multiobjec-
tive optimization problems, subsequently apply-
ing this expanded framework to the problem in-
vestigated in [18]. We are also interested in doing
a complexity analysis for our algorithm, similar
to work [19]. We also have the interest of solving
the subproblem generated by DHALA, with the
Quasi Newton algorithm studied in [20].
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