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1. Introduction

Differential systems of fractional order are found
to be useful models for a variety of physical, bi-
ological, and engineering challenges. As a re-
sult, they have gotten greater attention from
researchers in the last two decades. Fractional
derivatives are a stronger tool for illustrating
memory and hereditary features. As a result,
they’ve found widespread use in physics, elec-
trodynamics, economics, aerodynamics, control
theory, viscoelasticity, and heat conduction. In
recent years, significant advances in the theory
and applications of fractional systems have been
made, one can review the books [1–4]. The no-
tation of exact and approximate controllability is
useful in analysis and design control frameworks.
In [5] authors studied the existence and control-
lability of fractional integro-differential system of

order 1 < r < 2 via measure of noncompact-
ness using fixed point theory approach. In [6–13]
Anurag et al. studied the controllability of semi-
linear deterministic and stochastic systems of in-
tegral and fractional order with several impor-
tant extensions using different approaches. The
numerical model of numerous physical phenom-
ena, such as the movement of liquid through split
rocks, thermodynamics, and so on, is usually
Sobolev-type. (see [14–17]).

Another type of fractional order derivative intro-
duced by Hilfer [18] is the Caputo fractional and
Riemann-Liouville derivative. Several authors
have focused on the Hilfer fractional derivative in-
cluding [19–27] for the existence and controllabil-
ity of deterministic and stochastic fractional order
systems. Many academics have recently consid-
ered the exact and approximate controllability of
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systems characterized by impulsive functional in-
clusions, integro-differential equations, semilinear
functional equations, neutral functional differen-
tial equations, and evolution inclusions, to name
a few examples, see [23, 24, 27] and references in
that. In [28–34] Ravi et. al. studied the ex-
istence, uniqueness, controllability, and optimal
control of fractional differential control systems
and their real-life mathematical applications us-
ing various types of approaches.

Consider the following Sobolev-type Hilfer frac-
tional control system as below.

yD℘,ϖ
0+

[Lz(σ)] = Az(σ) +Bv(σ)

+ F (σ, z(σ), v(σ)), σ ∈ J = (0, c],
(1)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (2)

D℘,ϖ
0+

is the Hilfer fractional derivative, 0 ≤ ℘ ≤
1; 1

2 < ϖ < 1;is the Banach Space X with
∥ · ∥, and z(·) is the Banach Space X with ∥ · ∥.
The non densely defined closed linear operator
A : D(A) ⊆ X → X yields an integrated semi-
group {T (t)}t≥0 in Banach Space X with ∥ · ∥.
The function F : J × X × U → X is a purely
nonlinear function and B : X → U is a bounded
linear operator.

This article makes the following major contribu-
tions:

• Using two separate situations, investigate
the sufficient conditions for the approxi-
mate controllability of the suggested sys-
tems (1)-(2).

• In the first case, we assume that B = I
(where I is an identity operator) and in
the second case, we assume that B ̸= I.

• controllability results are achieved using
Gronwall’s inequality and the Cauchy se-
quence.

• Results are obtained with weaker con-
ditions (Lipschitz) on nonlinearity and
can be extended for the delay differential
equations.

• The suggested method is simple in terms
of hefty estimations as compared to stan-
dard ways such as the fixed point theory
approach.

• The results are advanced and weighted
enough as contribution in control differ-
ential equations.

We have divided this paper into the following sec-
tions: Section (1) provides a review of some es-
sential concepts and preparatory outcomes Sec-
tion (2). The main discussion of our manuscript

is presented in Section (3). Finally, in Section
(4), an application for drawing the theory of the
primary outcomes is discussed.

2. Preliminaries

Let the spaces of all continuous functions is de-
noted by C(J,X). Take η = ℘ + ϖ − ℘ϖ,
then (1 − η) = (1 − ℘)(1 − ϖ). We now define
C1−η(J,X) = {z : σ1−ηz(σ) ∈ C(J,X)} along
∥ · ∥η by ∥z∥C = sup{σ1−η∥z(σ)∥, σ ∈ J, η =
(℘ + ϖ − ℘ϖ)}. It is clear that C1−η(J,X) is a
Banach space.

The linear operators A : D(A) ⊂ X → X and
L : D(A) ⊂ X → X satisfies the properties dis-
cussed in A : D(A) ⊂ X → X. [17]:

(P1) A and L are closed linear operators.
(P2) D(L) ⊂ D(A) and L is bijective.
(P3) L−1 : X → D(L) is continuous.

Additionally, because (P1) and (P2), L−1 is
closed, by (P3) and from closed graph theorem,
we have the boundedness of AL−1 : X → X. De-
fine ||L−1|| = L̃1 and ∥L∥ = L̃2.

Introducing acquaint essential facts relevant to
fractional theory. (The readers can check [18,35]).

Definition 1. [3] “The left sided Riemann-
Liouville fractional integral of order ϖ having
lower limit c for F : [c,+∞) → R is presented
as

Jϖ
c+ F (ϱ) =

1

Γ(ϖ)

∫ ϱ

c

F (τ)

(ϱ− τ)1−ϖ
dτ, ϱ > c; ϖ > 0,

if the right side is pointwise determined on
[c,+∞), where Γ(·) denotes gamma function.”

Definition 2. [3] “The left-sided Riemann-
Liouville fractional derivative of order ϖ ∈ [k −
1, k), k ∈ X for F : [c,+∞) → R is given by

LDϖ
c+ F (ϱ) =

1

Γ(k −ϖ)

dk

dϱk

∫ ϱ

c

F (τ)

(ϱ− τ)ϖ+1−k
dτ,

ϱ > c, k − 1 < ϖ < k.”

Definition 3. [3] “The left-sided Hilfer frac-
tional derivative of order 0 ≤ ℘ ≤ 1 and 0 <
ϖ < 1 function of F (ϱ) is given by

D℘,ϖ
c+

F (ϱ) = (J
℘(1−ϖ)
c+

D(J
(1−℘)(1−ϖ)
d+

F ))(ϱ).”

Remark 1. [3] “

(i) Given ϖ = 0, 0 < ℘ < 1 also c = 0, the
Hilfer fractional derivative identical with
standard Riemann-Liouville fractional de-
rivative:

D0,ϖ
0+

F (ϱ) =
d

dϱ
J1−ϖ
0+

F (ϱ) = LDϖ
0+ F (ϱ).
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(ii) Given ϖ = 1, 0 < ℘ < 1 also c = 0, the
Hilfer fractional derivative identical with
standard Caputo derivative:

D1,ϖ
0+

F (ϱ) = J1−ϖ
0+

d

dϱ
F (ϱ) = cDϖ

0+ F (ϱ).”

Remark 2. We show the mild solution of (1)-
(2)in the following way using the Wright function
Mϖ(s).

Mϖ(s) =
∞∑
k=1

(−s)k−1

(k − 1)!Γ(1− kϖ)
, 0 < ϖ < 1, s ∈ C,

and satisfies∫ ∞

0
sζMϖ(s)ds =

Γ(1 + ζ)

Γ(1 +ϖζ)
, for s ≥ 0.

Lemma 1. There exists F : J×X×U → X such
that the system (1)-(2)is satisfied.

z(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
L−1Rϖ(σ)F (ζ, z(ζ), v(ζ))dζ

+

∫ σ

0
L−1Rϖ(σ)Bv(ζ)dζ, σ ∈ J,

where

P℘,ϖ(σ) = J
v(1−ϖ)
0+

(σ)ϖ−1Sϖ(σ);

Rϖ(σ) = σϖ−1Sϖ(σ);

Sϖ(σ) =

∫ ∞

0
ϖωMϖ(ω)S(σ

ϖω)dω.

Definition 4. ( [36]) A function z : [0, c] → X
is called the mild solution of (1)-(2) provided that
z(0) = z0 ∈ X and fulfills

z(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)Bv(ζ)dζ

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)

F (ζ, z(ζ), v(ζ))dζ, σ ∈ J, (3)

where

P℘,ϖ(σ) =

∫ ∞

0
ξϖ(ω)M(σϖω)dω,

Sϖ = ϖ

∫ ∞

0
ωξϖ(ω)M(σϖω)dω,

and for ω ∈ (0,∞)

ξϖ(ω) =
1

ϖ
ω−1− 1

ϖ zϖ(ω
− 1

ϖ ) ≥ 0,

zϖ(ω) =
1

π

∞∑
n=1

(−1)n−1σ−nϖ−1Γ(nϖ + 1)

n!
sin(nπϖ),

where ξϖ is a probability density function defined
on (0,∞), i.e,

ξϖ(ω) ≥ 0, ω ∈ (0,∞) also

∫ ∞

0
ξϖ(ω)dω = 1.

Lemma 2. ( [36]) “The operators P℘,ϖ and Sϖ

fulfills:

(i) For σ ≥ 0, P℘,ϖ and Sϖ are linear
and bounded, that is, for every z ∈ X,

∥P℘,ϖ(σ)z∥ ≤ Mση−1

Γ(℘(1−ϖ)+ϖ)∥z∥
and ∥Sϖ(σ)z∥ ≤ M

Γ(ϖ)∥z∥, where

P℘,ϖ(σ) = J
℘(1−ϖ)
0+

Rϖ(σ), Rϖ(σ) =

σϖ−1Sϖ(σ).
(ii) The operators {P℘,ϖ(σ)}σ≥0 and

{Sϖ(σ)}≥0 are strongly continuous.
(iii) For every z ∈ X, µ,ϖ ∈ (0, 1], one can

get

ASϖ(σ)z = A1−µSϖ(σ)A
µz, 0 ≤ σ ≤ c;

∥AµSϖ(σ)∥ ≤ ϖCµΓ(2− µ)

σϖµΓ(1 +ϖ(1− µ))
, 0 < σ ≤ c.”

Definition 5. [6] “The reachable set of (1)-(2)
is given by

Kc(F ) = {z(c) ∈ X : z(σ) represents mild solu-
tion of (1)-(2)}.
In case F ≡ 0, then the system (1)-(2) reduces
to the corresponding linear system. The reachable
set in this case is denoted by Kc(0).”

Definition 6. [6] “If Kc(F ) = X, then the semi-
linear control system is approximately controllable
on [0, c]. Here Kc(F ) represents the closure of

Kc(F ). It is clear that, if Kc(0) = X, then linear
system is approximately controllable.”

3. Controllability results

3.1. Controllability of semilinear system:
when B = I

The linear system has an approximate controlla-
bility is proven to reach from the semilinear sys-
tem under specified nonlinear term constraints in
this study. Clearly, X = U .

Let us consider the subsequent linear system

D℘,ϖ
0+

[Lw(σ)] = Aw(σ) + u(σ), σ ∈ J = (0, c],

(4)

J
(1−℘)(1−ϖ)
0+

w(0) = z0, (5)

and the semilinear system

D℘,ϖ
0+

[Lz(σ)] = Az(σ) + v(σ)

+ F (σ, z(σ), v(σ)), σ ∈ J, (6)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (7)
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We need to present the following assumptions to
prove the primary aim of this section, which is the
approximate controllability of (6)-(7):

Assumption 1. The linear system (4)-(5) is ap-
proximately controllable.

Assumption 2. F (σ, z(σ), v(σ)) is a nonlinear
function that, in z and v, satisfies the Lipschitz
condition.

∥F (σ, z, v)− F (σ,w, u)∥ ≤ l(∥z − w∥+ ∥v − u∥),
where l > 0, ∀ z, w ∈ X, σ ∈ [0, c].

Theorem 1. Under the assumptions (1)-(2), the
system (6)-(7) is approximately controllable pro-
vided that l < 1.

Proof. Assume that w(σ), along with the control
u, is the mild solution of (4)-(5). Assume that the
semilinear system of the following kind:

D℘,ϖ
0+

z(σ) = Az(σ) + F (σ, z(σ), v(σ))

+ u(σ)− F (σ,w(σ), v(σ)), (8)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (9)

Compare (6)-(7) and (8)-(9), the control function
v(σ) is chosen in such a way that

v(σ) = u(σ)− F (σ,w(σ), v(σ)). (10)

We consider for the given u(σ) and w(σ), there
exists v(ϱ) fulfilling (10) (We need to verify the
existence and uniqueness of v).

The mild solution of (4)-(5) is given by

w(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)u(ζ)dζ (11)

and for the system (8)-(9) is given by

z(σ)

= L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, z(ζ), v(ζ))dζ

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)u(ζ)dζ

−
∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, w(ζ), v(ζ))dζ

(12)

From (11) and (12), we get

w(σ)− z(σ) =

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)

{F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))}dζ
(13)

Applying norm on both sides, one can get

∥w(σ)− z(σ)∥X

≤
∫ σ

0
(σ − ζ)ϖ−1∥L−1Sϖ(σ − ζ)∥

∥F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))∥dζ

≤ ML̃1

Γ(ϖ)

∫ σ

0
(σ − ζ)ϖ−1

∥F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))∥dζ (14)

Using assumption (2), we get

∥w(σ)− z(σ)∥X ≤ ML̃1l

Γ(ϖ)

∫ σ

0
(σ − ζ)ϖ−1

∥w(ζ)− z(ζ)∥dζ
By referring the Gronwall’s inequality, w(σ) =
z(σ), ∀ σ ∈ [0, c]. As a result, the linear sys-
tem’s solution w along the control u is a semi-
linear system’s solution z along the control v, i.e.,
Kc(F ) ⊃ Kc(0). Because Kc(0) is dense in X (ac-
cording to assumption 1), Kc(F ) is dense in X as
well, implying that system (6)-(7) is approximate
controllable. The proof is finished.

We need to verify that there exists a v(σ) ∈ X
such that v(σ) = u(σ) − F (σ,w(σ), v(σ)), ∀ σ ∈
[0, c].

Assume that v0 ∈ X and vn+1 = u −
F (σ,w(σ), vn) : n = 0, 1, 2, .... Thus, one can
get

vn+1 − vn = F (σ,w(σ), vn−1)− F (σ,w(σ), vn).

Hence, by referring assumption (2),

∥vn+1 − vn∥X = l∥vn − vn−1∥X ≤ ln∥v1 − v0∥X .
(15)

When n → ∞ (since l < 1), the R.H.S of (15)goes
to zero. As a result, {vn} is a Cauchy sequence in
X that converges to v ∈ X.

Next,

∥u− vn+1 − F (σ,w(σ), v)∥X =

∥F (σ,w(σ), vn)− F (σ,w(σ), v)∥X
≤ l∥vn − v∥. (16)

Because, R.H.S of (16) approaches to zero when
n → ∞, one can obtain

F (σ,w(σ), v) = lim
n→∞

(u− vn+1) = u− v

⇒ v = u− F (σ,w(σ), v).

Now, we will show that v is unique. For prov-
ing it let v1 = u − F (σ,w(σ), v1) and v2 =
u − F (σ,w(σ), v2). Then using assumption (2),
we get

∥v2 − v1∥ = ∥F (σ,w(σ), v1)− F (σ,w(σ), v2)∥
≤ l∥v2 − v1∥ ⇒ (1− l)∥v2 − v1∥ ≤ 0.
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But 0 < l < 1 therefore ∥v2 − v1∥ = 0 ⇒ v2 = v1.
Hence v is unique. □

3.2. Controllability of semilinear system:
when B ̸= I

The approximate controllability of the semilinear
system under simple conditions B and F as indi-
cated by assumptions (3)-(6). Let us consider the
subsequent linear system

D℘,ϖ
0+

[Lw(σ)] = Aw(σ) +Bu(σ), σ ∈ J,
(17)

J
(1−℘)(1−ϖ)
0+

w(0) = z0, (18)

and the semilinear system

D℘,ϖ
0+

[Lz(σ)] = Az(σ) +Bv(σ)

+ F (σ, z(σ), v(σ)), σ ∈ J = (0, c],
(19)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (20)

We must make the following assumptions to prove
the fundamental aim of this section, namely, the
approximate controllability of (19)-(20):

Assumption 3. The linear system (17)-(18) is
approximately controllable.

Assumption 4. Assumption (2) is fulfilled.

Assumption 5. Range(F ) ⊆ Range(B).

Assumption 6. There exists ξ > 0 such that
∥Bv∥ ≥ ξ∥v∥, ∀ v ∈ U

Theorem 2. Under the assumptions (3)-(6), the
system (19)-(20) is approximately controllable,
provided that l fulfills l < ξ.

Proof. Assume that w(σ) and the control u are
the mild solution of (17)-(18). Assume that the
semilinear system that follows is

D℘,ϖ
0+

[Lz(σ)] = Az(σ) + F (σ, z(σ), v(σ))

+Bu(σ)− F (σ,w(σ), v(σ)),
(21)

J
(1−℘)(1−ϖ)
0+

z(0) = z0, (22)

In the above, the control function v in (21)-
(22) fulfills Bv(σ) = Bu(σ) − F (σ,w(σ), v(σ)),
and assumption (5), concludes that the con-
sidered equation is well defined. By employing
assumption (6) and the way of approached fol-
lowed in Theorem 2, we can easily prove that
provided that l < ξ, ∃ v(σ) ∈ U such that
Bv(σ) = Bu(σ)− F (σ,w(σ), v(σ)).

The mild solutions for (17)-(18) and (21)-(22) are
given by

w(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)Bu(ζ)dζ

(23)

and

z(σ) = L−1P℘,ϖ(σ)Lz0

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, z(ζ), v(ζ))dζ

+

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)Bu(ζ)dζ

−
∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)F (ζ, w(ζ), v(ζ))dζ

(24)
From equations (23) and (24), one can get

w(σ)− z(σ) =

∫ σ

0
(σ − ζ)ϖ−1L−1Sϖ(σ − ζ)

× {F (ζ, w(ζ), v(ζ))− F (ζ, z(ζ), v(ζ))}dζ.
(25)

Equation (25) is the same when compared with
(13). From Theorem 2, one can easily verify
w(σ) = z(σ), ∀ σ ∈ [0, c], i.e., the reachable set of
(17)-(18) is dense in the reachable set of (19)-(20),
which is dense in X, by referring assumption (3)
and which concludes the proof. □

4. Example

Consider U = L2[0, π]. Also, define the operator
B : D(B) ⊂ U → U as

Bx = x′′, x ∈ D(B),

D(B) = {x ∈ U : x, x′ are absolutely contin-
uous, x” ∈ U, x(0) = x(π) = 0}. Assume that
A : D(A) ⊂ X → X, L : D(L) ⊂ X → X,
and Lx = x−x′′ are the operators determined by
Ax = x′′ and Lx = x− x′′, respectively, and that
D(A) and D(L) are presented by

{x ∈ X : x, x′ are absolutely continuous,

x(0) = x(π) = 0}.

Additionally, A and L are given by

Ax =
∞∑

m=1

m2⟨x, um⟩um, x ∈ D(A),

Lx =

∞∑
m=1

(1 +m2)⟨x, um⟩um, x ∈ D(L),

where um(y) =
√

2
π sin(my), m = 1, 2, 3, · · · is

the orthonormal of vectors of A. Additionally, for
z ∈ X, we have

L−1z =

∞∑
m=1

1

(1 +m2)
⟨z, um⟩um,
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and

AL−1z =
∞∑

m=1

m2

(1 +m2)
⟨z, um⟩um.

The operator B has eigen values λm = −m2 m ∈
N and corresponding eigenfunction is given by
un. Hence the spectral representation of B is pre-
sented as

Bz =
∞∑

m=1

−m2⟨x, un⟩un, x ∈ D(B).

Further, S(ϱ) which is a C0-semigroup generated
by B has en as the eigenfunctions corresponding
to eigenvalues exp(λmt), that is

S(ϱ)x =
∞∑

m=1

exp(−m2ϱ)⟨x, un⟩un, x ∈ U.

Define by

Û =

{
v|v =

∞∑
m=2

vmum, with
∞∑

m=2

v2m < ∞
}
,

where Û is an infinite dimensional space with a
norm of

∥v∥
Û
=

( ∞∑
m=2

v2m

) 1
2

Define B : Û → U by

Bv = 2v2e1 +
∞∑

m=2

vmum, v =
∞∑

m=2

vmum ∈ Û .

where B is a linear continuous map.

Assume that the Hilfer fractional semilinear con-
trol heat system is as follows:

D℘,ϖ
0+

[
z(ϱ, x)− ∂2z(ϱ, x)

∂z2

]
=

∂2z(ϱ, x)

∂z2
+Bu(ϱ, x) + γ(ϱ, z(ϱ, x)); 0 < ϱ ≤ ι,

(26)

z(ϱ, 0) = z(ϱ, π) = 0, ϱ > 0;

J
(1−γ)
0+

(z(0, x)) = z0(x), 0 ≤ x ≤ π, (27)

The Hilfer fractional derivative of order ℘ ∈ (0, 1)
and type ϖ ∈ [0, 1] is denoted by Dα,η

0+
. If the

assumptions (1)-(6) hold, the above system (26)-
(27) is approximate controllable.

5. Conclusion

The focus of this study is on the Sobolev-type ap-
proximate controllability of Hilfer fractional semi-
linear control systems. The results were obtained
using Gronwall’s inequality, the Cauchy sequence,
and the fixed point technique was avoided. With
appropriate changes, these conclusions may be
extended to include many types of delay for both

deterministic and stochastic systems.

Remark 3. One can replace the Lipschitz con-
dition on the nonlinearity by monotonic nonlin-
earity or integral contractor type nonlinearity and
obtained a different set of sufficient conditions
for the approximate controllability of the proposed
system.
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