
An International Journal of Optimization and Control: Theories & Applications

ISSN:2146-0957 eISSN:2146-5703

Vol.12, No.2, pp.99-112 (2022)

http://doi.org/10.11121/ijocta.2022.1166

RESEARCH ARTICLE

A belief-degree based multi-objective transportation problem with
multi-choice demand and supply

Vandana Kakran*, Jayesh Dhodiya

Department of Mathematics and Humanities, S.V. National Institute of Technology, Surat, Gujarat, India
vandana.kakran98@gmail.com, jdhodiya2002@yahoo.com

ARTICLE INFO ABSTRACT

Article History:
Received 21 September 2021
Accepted 1 June 2022
Available 12 July 2022

This paper focusses on the development of a Multi-choice Multi-objective
Transportation Problem (MCMOTP) in the uncertain environment. The pa-
rameters associated with the objective functions in MCMOTP are regarded as
uncertain variables and the other parameters associated with supply capacity
and demand requirements are considered under the multi-choice environment.
In this paper, two ranking criteria have been utilized to convert the uncertain
objectives into their crisp form. Using these two ranking criteria for the uncer-
tain MCMOTP model, two deterministic models have been developed namely,
Expected Value Model (EV Model) and Optimistic Value Model (OV Model).
The multi-choice parameters in the constraints are converted to a single choice
parameters with the help of binary variable approach. The EV and OV mod-
els are solved directly in the LINGO 18.0 software using minimizing distance
method and fuzzy programming technique. At last, a numerical illustration
is provided to demonstrate the application and algorithm of the models. The
sensitivity of the objective functions in OV Model is also examined with respect
to the confidence levels to investigate variation in the objective functions.
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1. Introduction

In the business sector, transportation is one of
the most significant concerns. The Transporta-
tion Problem (TP) consists of many warehouses
(sources) and delivery locations (destinations).
The basic objective of this problem is to find the
quantity of items that should be supplied from
each warehouse to each consumer while reduc-
ing the transportation cost. The concept of TP
was first introduced by Hitchock [1] in 1941. In
real life applications, the decision-makers wish
to optimize multiple objectives simultaneously
instead of a single objective. Many researchers
have addressed the multi-objective environment
in a wide range of applications because it is bet-
ter adapted to real-world scenarios than a single-
objective environment. Some of the authors such

as [2–4] have considered multi-objective envi-
ronment to deal with various real world prob-
lems. When the multi-objective environment is
incorporated in the transportation theory, it re-
sults in Multi-objective Transportation Problem
(MOTP) which is more applicable in the real
world. These multiple objectives can be inher-
ently conflicting in nature, so they cannot be
optimised at the same time. For example, a trans-
portation problem may require minimising overall
transportation cost and transportation time while
transporting the items. Zimmermann [5] intro-
duced the Fuzzy Programing Technique (FPT) to
solve multi-objective linear programming prob-
lems. FPT has wide number of applications in
the field of optimization problems such as [6–8].
The MOTPs can involve different types of mul-
tiple objective functions like transportation cost,
transportation time, damage cost, profit, CO2
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emissions etc.

In traditional TP, the supply, demand and cost
parameters for transportation problems were as-
sumed to be precisely defined. However, this is
not the case while handling real-world applica-
tions because not all of the parameters in the
TP can be defined precisely. Consequently, a
number of theories have been developed to rep-
resent imprecise TP parameters such as fuzzy
set theory [9], probability theory [10], and in-
terval theory [11]. Transportation problems are
distinguished by the parameter space or variable
space in which they are defined. For example,
the TPs with variables/parameters considered as
fuzzy numbers are known as fuzzy TPs and the
TPs with parameters considered in the random
space are known as the stochastic TPs. Likewise,
the TP with variables as interval numbers are
known as interval TPs. These theories are suit-
able when historical information is available for
estimating imprecise values. These notions (his-
torical data available) have been studied by sev-
eral researchers in the transportation problem.
Many researchers like Bhargava et al. [12], Giri
et al. [13], Ali Ebrahimnejad [14] have considered
the multi-objective TP under the fuzzy logic and
obtained the compromise solution using the dif-
ferent solution approaches. Maity et al. [15] pre-
sented the study of TP with interval goal under
multiple objective environment and obtained the
solution using utility function approach. Roy et
al. [16] analysed MOTP under fuzzy intutionistic
environment in his paper. Gupta et al. [17] pre-
sented the multi-objective capacitated TP under
both the certain and uncertain environments and
obtained their solution using fuzzy goal program-
ming approach. Singh et al. [18] studied the three
dimensional MOTP under the stochastic environ-
ment and the solutions were obtained using FPT.
Gupta et al. [19] presented a paper on extended
capacitated MOTP with mixed constraints under
the fuzzy environment.

Research works cited so far gives the application
of theories which are suitable when the histori-
cal data is available for the situations. In 2007,
Liu [20] introduced a new theory for handling
the imprecise or uncertain data known as Uncer-
tainty theory. This theory is best suited in the
situations where we face problems in accessing
the historical data and have no adequate samples
available. When there is lack of adequate sam-
ples, this theory deals with the degree of belief
for each event to happen which is estimated by
some experts of the related domain area. This
theory finds a wide number of applications in the

transportation problems. In the past years, a TP
with uncertain values for time taken during trans-
portation was considered by Mou et al. [21]. In
2017, a very commonly used goal programming
approach was considered by Chen et al. [22] for
solving a bi-objective Solid Transportation Prob-
lem (STP) under uncertainty to deal with an
additional constraint for mode of transportation
along with the source and destination constraints.
Liu et al. [23] considered a solid TP with multi-
ple items and fixed-charges under the assumption
of data with uncertain numbers. Dalman [24]
tackled an uncertain multi-item solid TP and
obtained its solution using minimizing distance
and convex-combination method. Mahmoodirad
et al. [25] modelled a TP with fractional objec-
tives where the uncertain parameters are taken
as uncertain variables. Chen et al. [26] and Dal-
man [27] proposed an entropy based STP and
multi-item STP in the uncertain environment.
Recently, Zhao and Pan [28] in 2019 generalized
the existing uncertain transportation models and
proposed a new uncertain transportation model
with transfer costs in which all the variables along
with transfer costs are supposed to be uncertain
numbers.

In addition to the imprecise parameter values of
the TPs, it is also possible that multiple num-
ber of choices for a parameter are provided by
the decision maker. In this context, the study of
transport problems leads to the emergence of a
new direction known as the multi-choice problem
of multi-objective transport. In 2007, Chang [29]
primarily introduced the multi-choice program-
ming model. In his paper, he introduced a new
idea of programming the problem having multi-
ple choices for a parameter from which one choice
of a parameter is to be selected and stated it
as multi-choice goal programming. Biswal and
Acharya [30] has done illustrious amount of work
in the field of multi-choice theory which is capa-
ble of accommodating upto sixteen multi-choice
parameters. Acharya et al. [31] gave generalized
transformation techniques for multi-choice linear
programming problems. Acharya and Biswal [32]
solved the MCMOTP using interpolating poly-
nomials and solved it using the fuzzy technique.
The multi-choice TP under the stochastic envi-
ronment has been studied by various researchers
such as [33–35] with cost coefficients as multi-
choice type and supply and demand parame-
ters following different probabilistic distributions.
Maity and Roy [36] obtained the solution of TP
having non-linear cost and multi-choice demand
in the multi-objective environment. Gupta et
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al. [37] have also studied the multi-choice multi-
objective capacitated TP with the uncertain de-
mand and supply. Roy et al. [38] introduced the
conic scalarization approach to solve the multi-
objective TP with an interval goal under a multi-
choice environment. Nasseri [39] solved MOTP
with multi-choice parameters where the alterna-
tive choices of the parameters were taken as ran-
dom variables. They converted the multi-choice
parameters into a single choice using the interpo-
lating polynomials and obtained the solution by
utilizing fuzzy approach. Nayak et al. [40] studied
the TP with transportation cost as multi-choices
and other parameters like supply and demand
as fuzzy trapezoidal numbers. They used binary
variable approach to choose a single choice among
the multiple choices of the parameters. Agarwal
et al. [41] presented a methodology for finding the
solution of multi-choice TP with multi-choices as
random variables. Vijayalakshmi et al. [42] con-
tributed in the study of eco-friendly MOTP under
the fuzzy environment and obtained its solution
using goal programming approach. Agarwal and
Ganesh [43] focussed on obtaining the solution
of stochastic TP involving multi-choice random
parameter using Newton’s divided difference in-
terpolation.

As seen from the literature survey, it is noted that
the major amount of research work with multi-
choice programming in TPs is mainly focused
under the uncertain environments like stochas-
tic or fuzzy or interval-valued environment (en-
vironments which require the historical data).
Our paper proposes a new model, an uncer-
tain multi-choice programming model for multi-
objective transportation problem known as Un-
certain Multi-choice Multi-objective Transporta-
tion Problem (UMCMOTP). The UMCMOTP
considered in this paper is an extension of the
basic transportation problem and we all are very
much familiar that transportation problems find
a wide number of applications in the economic
and industrial and business sector for reducing
the transportation cost and time, maximizing
the profit etc. Such extension of the transporta-
tion problem (i.e MCMOTP) finds applications
in the real world when we have multiple objec-
tive functions, various sources and destinations.
Additionally, the MCMOTP with uncertain vari-
ables is more applicable in the real world when
the decision maker finds difficulty in providing the
precise value of the parameters associated with
the objective functions and constraints due to
various reasons like lack of information, weather
conditions, road conditions etc. The uncertain

multi-choice multi-objective transportation prob-
lem assumes uncertain variables in the objective
functions and multi-choice parameters in the con-
straints. To obtain the solution of the UMC-
MOTP, we have developed two different models:
an EV Model and OV Model, by using concepts of
uncertainty theory and multi-choice programming
techniques. Further, the deterministic conversion
of the uncertain objective functions is done by uti-
lizing the expected and optimistic value criteria
given by Liu [44] and the multi-choices in the con-
straints are converted to single choice using the bi-
nary variable approach suggested by Acharya and
Biswal [30]. The formulated multi-objective mod-
els are then converted to single-objective models
using the fuzzy programming and minimizing dis-
tance technique. Lastly, the compromise solution
of the single-objective models is obtained with
the help of LINGO 18.0 software.

The main motivations of this paper can be listed
as below:

1. None of the researchers have considered
the complex environments like uncertain
multi-choice environment for transporta-
tion problem with objective parameters as
uncertain variables and constraint param-
eters as multi-choice variables.

2. The expected value model has been widely
adopted to convert the uncertain model
into its crisp model whereas the optimistic
value model has not yet been considered
to deal with uncertain problems.

3. To solve the MOTP under uncertain
multi-choice environment, we are the
first to consider the minimizing distance
method and fuzzy programming technique
solution approaches.

4. The sensitivity of the objective functions
with respect to confidence levels in the
optimistic value model of multi-objective
transportation problem under uncertain
multi-choice environment has not yet been
done.

The structure of the paper proceeds in the follow-
ing manner. Section 2 discusses some key con-
cepts in uncertainty theory that are essential for
understanding this paper and Section 3 states the
mathematical description of MCMOTP. Section 4
introduces the uncertain model for the MCMOTP
and its conversion procedure for obtaining the de-
terministic model is discussed. Section 5 gives
the two solution methodologies used for solving
the deterministic models of MCMOTP. Section
6 provides a numerical illustration to depict the



102 V. Kakran, J. Dhodiya / IJOCTA, Vol.12, No.1, pp.99-112 (2022)

application of the models along with the sensi-
tivity of the objective functions involved in the
OV Model. Section 7 shows the obtained results
and their comparison with other models. Finally,
the last section gives the concluding remarks and
summarizes the overall study of the paper.

2. Introduction to uncertainty theory

This section introduces some prime definitions
and theoretical notions of uncertainty theory use-
ful for the better understanding of the paper.

Definition 1. (Liu [20]) A function M: F →
[0, 1] (here F is a σ-algebra defined on Ω and
Ω ̸= ϕ), is known as an uncertain measure if it
meets the stated axioms:

Axiom 1: M{Ω} = 1.
Axiom 2: M{υ}+M{υc} = 1, for event υ ∈ F.

Axiom 3: M

{ ∞⋃
j=1

υj

}
≤

∞∑
j=1

M{υj}, for any

countable sequence of events {υj}.

Here, the space denoted by the triplet (Ω,F,M) is
known as an uncertainty space.

Definition 2. (Liu [20]) A measurable function
ζ from (Ω,F,M) to the real line R is said to be

an uncertain variable if {ζ ∈ B
}

is an event for

any Borel set B of real numbers.

Definition 3. (Liu [20]) The uncertainty distri-
bution Ψ : R → [0, 1] for any uncertain variable
ζ is defined as Ψ(y) = M{ζ ≤ y}, for any real
number y.

Definition 4. (Liu [20]) An uncertain variable ζ
with Ψ(y) defined as

Ψ(y) =


0, if y ≤ l,
y−l

2(m−l) , if l ≤ y ≤ m,
y+n−2m
2(n−m) , if m ≤ y ≤ n,

1, if y ≥ n,

is called zigzag uncertain variable. Such uncer-
tain variable ζ is characterised by Z(l,m, n) where
l,m, n are any real numbers with l < m < n.

Definition 5. (Liu [20]) The inverse uncertainty
distribution function, denoted by Ψ−1 of Z(l,m, n)
is given by

Ψ−1(γ) =

{
(1− 2γ)l + 2γm, if γ < 0.5,

(2− 2γ)m+ (2γ − 1)n, if γ ≥ 0.5.

Theorem 1. (Liu [20]) The expected value of an
uncertain variable ζ, if it exists, is provided by

E[ζ] =

∫ 1

0
Ψ−1(γ)dγ.

For the zigzag uncertain variable Z(l,m, n), the
expected value is obtained as E[ζ] = (l + 2m +
n)/4.

Theorem 2. (Liu [20]) The expected value oper-
ator satisfies the linearity property E[xζ + yξ] =
xE[ζ] + yE[ξ], where ξ and ζ are any two inde-
pendent uncertain variables and x, y ∈ R.

Definition 6. (Liu [20]) The γ-pessimistic and
γ-optimistic values of ζ are defined by

ζinf (γ) = inf{t|M{ζ ≤ t} ≥ γ} = Ψ−1(γ), γ ∈
(0, 1].

ζsup(γ) = sup{t|M{ζ ≥ t} ≥ γ} =
Ψ−1(1− γ), γ ∈ (0, 1].

For zigzag uncertain variable Z(l,m, n), we have:

ζsup(γ) =

{
2γm+ (1− 2γ)n, if γ < 0.5,

(2γ − 1)l + (2− 2γ)m, if γ ≥ 0.5,

(1)

ζinf (γ) =

{
(1− 2γ)l + 2γm, if γ < 0.5,

(2− 2γ)m+ (2γ − 1)n, if γ ≥ 0.5.

(2)

Theorem 3. (Liu [20]) Let ζ be an uncertain
variable and γ ∈ (0, 1]. Then we have

(a) ζinf (γ) is left-continuous and increasing
function of γ.

(b) ζsup(γ) is left-continuous and decreasing
function of γ.

The fundamental problem seen in handling the
uncertain variables is how to rank the uncertain
numbers as there is no specific order in the uncer-
tain environment. For this reason, four criteria
were introduced by Liu [44] to rank the uncerain
numbers. These ranking criteria are: Expected
Value Criterion (EVC), Optimistic Value Crite-
rion (OVC), Pessimistic Value Criterion (PVC)
and Chance-Criterion (CC). Considering two un-
certain variables ζ and ξ, he stated these ranking
criteria as:

EVC states that ζ < ξ iff E[ζ] < E[ξ].
OVC states that ζ < ξ iff ζsup(γ) <
ξsup(γ), for some γ ∈ (0, 1].
PVC states that ζ < ξ iff ζinf (γ) <
ξinf (γ), for some γ ∈ (0, 1].
CC states that ζ < ξ iff M{ζ ≥ t̄} < M{ξ ≥ t̄}
for some predefined level t̄.
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3. Problem description

This section describes the MCMOTP with an as-
sumption of m sources and n destinations. MC-
MOTP concerns with developing an ideal trans-
portation plan with an objective of obtaining the
minimum of the objective vector Zt consisting of
different objectives like transportation cost, dam-
age cost, transportation time etc.

The MCMOTP model can be mathematically for-
mulated as given below:

Model-1:

min Zt =
∑
∀i

∑
∀j

(ctijxij),∀t;

Subject to the given constraints:

∑
∀j
xij ≤ ai, ∀i, (3.1)

∑
∀i
xij ≥ bj , ∀j, (3.2)

xij ≥ 0; (3.3)

Here, we have have used notations ∀ t for
t = 1, 2, · · ·S, ∀ i for i = 1, 2, · · ·m and ∀ j for
j = 1, 2, · · ·n throughtout this paper, with S, m
and n representing the total number of objectives,
sources and destinations respectively. ai repre-
sents the supplying capacity of the source i and
bj represents the demand requirements at desti-
nation j. The notation ctij is used for representing
different objective parameters like shipping cost,
damage cost for a unit item to destination j from
source i corresponding to objective t whereas xij
represents the number of items transported from
source i to destination j.

The above Model-1 assumes all the variables
ai, bj , c

t
ij as constants. But in the practical sit-

uations, we are not able to define these variables
accurately due to lack of information as the trans-
portation plan is supposed to be made in advance.
If the previously used information regarding the
plan is available, the variables can be treated as
the random variables but if we are not provided
with the previous information then treating these
variables as the random variables will not lead us
to the appropriate results. Thus, in such cases,
when we have lack of information about the his-
torical data, we take into consideration the con-
cepts of uncertainty theory given by Liu [20] in
the objective functions.

Furthermore, the decision-makers face more com-
plexities in making a decision when there are mul-
tiple choices/alternatives in the TP for parame-
ters such as cost, demand and supply. These mul-
tiple alternatives for the parameters may exist due
to several routes for transporting the goods or ef-
fect of climatic conditions during transportation.
Therefore, in this problem, we have considered the
supply and demand ai, bj as multi-choice param-

eters
(
a
(1)
i , a

(2)
i , · · · a(ki)i

)
,
(
b
(1)
j , b

(2)
j , · · · b(kj)j

)
and

objectives ctij as uncertain objectives denoted by

ζtij . So, the MCMOTP becomes Uncertain MC-
MOTP, denoted by UMCMOTP.

4. Uncertain model of MCMOTP with
multi-choices in constraints

Replacing the uncertain variables ζtij and multi-

choices
(
a
(1)
i , a

(2)
i , · · · a(ki)i

)
,
(
b
(1)
j , b

(2)
j , · · · b(kj)j

)
in the objective functions and constraints of
Model-1, to get the following UMCMOTP Model-
2:

Model-2:

min Zt(x; ζ) =
∑
∀i

∑
∀j
ζtijxij , ∀t; (4.1)

Subject to the given constraints:

∑
∀j
xij ≤

(
a
(1)
i , a

(2)
i , · · · a(ki)i

)
, ∀i, (4.2)

∑
∀i
xij ≥

(
b
(1)
j , b

(2)
j , · · · b(kj)j

)
, ∀j, (4.3)

xij ≥ 0; (4.4)

which is called the uncertain programming model.

Since this uncertain mathematical model is diffi-
cult to handle due to the presence of uncertain
objectives and multi-choice constraints, we need
to convert both of them (uncertain objectives and
multi-choice constraints) into their deterministic
forms as discussed below.

4.1. Conversion procedure for
multi-choice constraints

Here, we have considered the situation when the
supply or demand values are not defined by an
exact number. In this framework, the use of
multi-choices should therefore be used to define
the value of supply and demand. As there is
no existing method in the literature to handle
multi-choices, Biswal and Acharya [30] provided
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a transformation technique for obtaining the de-
terministic form of the multi-choice constraints
in the MOTP Model-2 because there must be a
single choice for all the parameters to solve the
model. Assume that the supply capacity ai at
the source i has multiple choices represented in

the form
(
a
(1)
i , a

(2)
i , · · · a(ki)i

)
,∀i, where ki is the

number of multiple choices available for the pa-
rameter ai.

Let us consider the multi-choice supply constraint
(4.5) with ki choices of supply capacity at the ith

origin is written as follows:

n∑
j=1

xij ≤
(
a
(1)
i , a

(2)
i , · · · a(ki)i

)
,∀i. (4.5)

The transformation technique presented by
Biswal and Acharya [30] considers two classes of
ki for obtaining a single choice from multi-choice
parameters. The first class deals with the case
when ki = 2m1 and the second class deals with
the case when ki ̸= 2m1 with m1 = 1, 2, 3, 4. In
his paper, he has considered all the fifteen cases
when 2 ≤ ki ≤ 16. Here, we have discussed only
three cases of ki taken as ki = 2, 3, 4 which are
shown as below:

when ki = 2, the multi-choice supply constraint
is represented as:

n∑
j=1

xij ≤
(
a
(1)
i , a

(2)
i

)
,∀i. (4.6)

There are two multiple choices a
(1)
i , a

(2)
i for the

parameter ai from which a single choice is to be
chosen. Since there are two elements in the set(
a
(1)
i , a

(2)
i

)
, we need only a single binary variable

m
(1)
i to handle these two choices. Using the bi-

nary variable m
(1)
i , the constraint (4.6) can be

converted to the following constraint (4.7) formu-
lated as given below:

n∑
j=1

xij ≤ m
(1)
i a

(1)
i + (1−m

(1)
i )a

(2)
i , ∀i, (4.7)

m
(1)
i ∈ {0, 1}, ∀i.

With ki = 3, the three multi-choices in the supply
constraint are represented as:

n∑
j=1

xij ≤
(
a
(1)
i , a

(2)
i , a

(3)
i

)
,∀i. (4.8)

There are three known parameters a
(1)
i , a

(2)
i , a

(3)
i

in the right hand side of the equation (4.8) from

which a single choice is to be selected. To deal
with the multi-choice constraint (4.8), we need

only two variables m
(1)
i & m

(2)
i because 21 < 3 <

22. Using these two binary variables m
(1)
i & m

(2)
i ,

we can transform the multi-choice constraint (4.8)
to constraint (4.9) along with an additional con-
straint (4.10) for restricting the two binary vari-

ables m
(1)
i & m

(2)
i .

n∑
j=1

xij ≤
(
1−m

(1)
i

)(
1−m

(2)
i

)
a
(1)
i +

(
1−m

(1)
i

)
m

(2)
i a

(2)
i

+m
(1)
i

(
1−m

(2)
i

)
a
(3)
i ,∀i,

(4.9)

m
(1)
i +m

(2)
i ≤ 1, (4.10)

m
(p)
i ∈ {0, 1}, p = 1, 2,

xij ≥ 0,∀i,∀j.
With ki = 4, the four multi-choices in the supply
constraint can be represented as:

n∑
j=1

xij ≤
(
a
(1)
i , a

(2)
i , a

(3)
i , a

(4)
i

)
, ∀i. (4.11)

To handle the four known parameters

a
(1)
i , a

(2)
i , a

(3)
i , a

(4)
i in the right hand side of con-

straint (4.11), we require only two binary vari-

ables m
(1)
i and m

(2)
i because there are 22 choices

in the constraint (4.11) out of which one of them
is to be selected. Using these two binary vari-

ables m
(1)
i and m

(2)
i , the constraint (4.11) can be

converted into the following constraint (4.12):

n∑
j=1

xij ≤ m
(1)
i m

(2)
i a

(1)
i +

(
1−m

(1)
i

)
m

(2)
i a

(2)
i

+m
(1)
i

(
1−m

(2)
i

)
a
(3)
i

+
(
1−m

(1)
i

)(
1−m

(2)
i

)
a
(4)
i ,∀i

m
(p)
i ∈ {0, 1}, p = 1, 2,

xij ≥ 0,∀i,∀j.
(4.12)

Similar to multiple choices for supply capac-
ity parameters, the demand parameters can
also be multi-choices involved due to factors
like seasonality, taxation, product availability
and pricing. The procedure of transforming
the multi-choice demand constraint

∑m
i=1 xij ≥(

b
(1)
j , b

(2)
j , · · · b(kj)j

)
, j = 1, 2 · · ·n is same as

stated for multi-choice supply points.
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4.2. Conversion procedure for uncertain
objectives

The objectives in Model-2 consists of S differ-
ent objectives like uncertain transportation cost
and damage cost etc., represented by ζtij which
are uncertain variables. As stated earlier, the
basic problem in uncertain transportation prob-
lems is how to rank the uncertain variables. Thus,
Liu [44] introduced four ranking criteria as: EVC,
OVC, PVC and CC discussed in Section 2.

These four ranking criteria can be used to con-
vert the uncertain objectives into their determin-
istic forms. In this paper, we have only utilized
the expected value criterion and optimistic value
criterion for converting the uncertain objectives
into crisp objectives but the other two remaining
criterions can also be utilized for the conversion
of uncertain objectives.

a) Expected value criterion: The main idea
in this criterion turns out to utilize the expected
values of the uncertain variables in the objective
functions. So, the expected form of the uncertain
objective (4.1) in Model-2 can be written as:

min E[Zt] = E

∑
∀i

∑
∀j
ζtijxij

 , ∀t; (4.13)

Theorem (1) is now used to deduce the crisp for-
mulation of the objective as shown in equation
(4.14). This crisp objective can be considered
for formulating the mathematical model along
with the crisp form of the multi-choice constraints
(as discussed in Section 4.1). The mathematical
Model-3, also known as the expected value model,
is a crisp model of the uncertain Model-2.

Model-3:

min ZtE =
∑
∀i

∑
∀j

(
xij

∫ 1

0
Ψ−1
ζtij

(ηt)dηt

)
,∀t;

(4.14)

Subject to the constraints (4.2) to (4.4).

b) Optimistic value criterion: To deal with
uncertain objectives, optimistic value criterion
can also be utilized to convert the uncertain vari-
ables in crisp form.

min Ztsup(ηt) =

∑
∀i

∑
∀j
ζtijxij


sup

(ηt) , ∀t;

(4.15)

The optimistic value based-objective function
(4.15) can further be simplified using the equa-
tion (1) and can be equivalently written as shown
in equation (4.16). The mathematical Model-4
formed with the crisp objective function (4.16)
along with the crisp multi-choice constraints is
labelled as optimistic value model. In objective
functions (4.15), ηt are the confidence levels as-
sumed with some fixed values.

Model-4:

min ZtS =
∑
∀i

∑
∀j
xijΨ

−1
ζtij

(1− ηt), ∀t; (4.16)

Subject to the constraints (4.2) to (4.4).

5. Solution approaches

In this section, two main classical approaches
are discussed for obtaining the compromise solu-
tion of the multi-objective optimization problems
which are Minimizing Distance Method (MDM)
and fuzzy programming technique. These two
methods are utilized to obtain the compromise
solution for the crisp formulations of EV and OV
Models.

5.1. Minimizing distance method

This method transforms a multi-objective prob-
lem into single objective by minimizing the sum
of deviation of the ideal vector from the corre-
sponding objective functions. In this method, Eu-
clidean distance is used to convert the crisp multi-
objective models i.e. EV Model and OV Model
into their equivalent compromise model as given
below:

min

√√√√ S∑
t=1

(Zt − Zot )
2

subject to the constraints (4.2) to (4.4).

Here, Zt is a generalized representation for the
objective functions in both the models and Zot de-
note the ideal objective value of the tth objective
function in EV and OV Models without consider-
ing other objective functions.

5.2. Fuzzy programming technique

The fuzzy programming approach introduced by
Zimmerman [5] is applicable to multi-objective
problems only and their solutions can be obtained
using the sequential steps as defined below:

Step 1. Consider each objective function of the
deterministic Models 3 and 4 as a single objective
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problem by ignoring all the other objectives and
proceed to the next step.

Step 2. Obtain the minimum (Lt) and maximum
(Ut) values for t = 1, 2, · · ·S objective functions.

Step 3. Formulate the linear or exponential mem-
bership function µt(Zt) for t = 1, 2, · · ·S objective
functions:

A Linear Membership Function (LMF) can be de-
fined by:

µt(Zt) =


1, if Zt ≤ Lt,
Ut−Zt
Ut−Lt

, if Lt < Zt < Ut,

0, if Zt ≥ Ut, ∀t.
(5.1)

An Exponential Membership Function (EMF) is
defined by:

µt(Zt) =


1, if Zt ≤ Lt,

e−stψt(x) − e−st

1− e−st
, if Lt < Zt < Ut,

0, if Zt ≥ Ut, ∀t.
(5.2)

where, ψt(x) =
Zt−Lt
Ut−Lt

and st is a non-zero shape
parameter given by the decision-maker.

Step 4. Using the max-min operator, formulate
the single-objective model as:

Maximize λ

Subject to the given constraints:

µt(Zt) ≥ λ,where λ = minµt(Zt) ≥ 0. t = 1, 2,

and the constraints (4.2) to (4.4) ,

Step 5. This single-objective model is further
solved in LINGO 18.0 optimization tool to achieve
the compromise solution of the MCMOTP prob-
lem.

6. Numerical illustration of uncertain
MCMOTP

Let us consider a TP in which we have three ori-
gins (m = 3) and three destinations (n = 3). In
this problem, all the parameters involved with
objectives like transportation cost/damage cost
are all considered as independent zigzag uncer-
tain variables. The other parameters like supplier
capacities and destination demands are the pa-
rameters with multi-choices. The problem aims

at finding the total number of products to be
shipped from sources to destinations such that the
transportation cost and damage cost of items dur-
ing transportation is minimized. The uncertain
data for the objectives is given in Table 1 and the
multi-choices for the capacity of suppliers and de-
mands required at destinations are listed below:

ã1 ∈ {8, 10, 12}, ã2 ∈ {9, 10, 11, 13},
ã3 ∈ {12, 14}, b̃1 ∈ {7, 8},
b̃2 ∈ {6, 7, 8}, b̃3 ∈ {9, 10, 11}

Table 1. The shipping/damage costs
for two objectives from i sources to j
destinations.

ζ1ij 1 2 3 ζ2ij 1 2 3

1 (2,3,4) (5,6,7) (4,6,8) 1 (6,8,9) (4,6,7) (6,8,10)

2 (3,5,7) (1,3,5) (2,3,4) 2 (3,5,7) (2,3,4) (7,8,9)

3 (4,6,8) (7,8,9) (6,8,10) 3 (8,9,10) (5,6,7) (6,7,8)

The uncertain problem defined above consists of
uncertain objectives and multi-choice constraints.
The uncertain model formed with this uncertain
data can be converted into its crisp models: EV
and OV Models using the procedure defined in
Section 4.1.These two models are solved here and
their results are obtained with the two solution
methodologies mentioned in Section 5.

Solution:

6.1. Expected value model

The objective functions of the Model-5 are ob-
tained by applying the expected value opera-
tor on the zigzag uncertain variables given in
the Table 1. The multi-choice constraints in
Model-5 are further converted to single choice
constraints using the procedure given by Biswal
and Acharya [30] as described in Section 4.1.

Model-5:
minZ1E =3x11 + 6x12 + 6x13 + 5x21 + 3x22 + 3x23 + 6x31

+ 8x32 + 8x33;

minZ2E =7.75x11 + 5.75x12 + 8x13 + 5x21 + 3x22 + 8x23

+ 9x31 + 6x32 + 7x33;

Subject to the given constraints:

x11 + x12 + x13 ≤ {8, 10, 12};
x21 + x22 + x23 ≤ {9, 10, 11, 13};
x31 + x32 + x33 ≤ {12, 14};
x11 + x21 + x31 ≥ {7, 8};
x12 + x22 + x32 ≥ {6, 7, 8};
x13 + x23 + x33 ≥ {9, 10, 11};
xij ≥ 0,∀i,∀j;
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The results obtained for the EV Model using
the discussed two solution methodologies are pre-
sented here.

a) Minimizing distance method:

The results obtained using MDM are displayed
below with ideal values taken as Zo1E = 72 and
Zo2E = 116:

Z∗
1E = 83.92890, Z∗

2E = 137.6891, x11 = 4.6142, x13 = 4.3858,

x21 = 2.3858, x22 = 6, x23 = 4.6142

b) Fuzzy programming technique:

i) Using linear membership function

To apply the FPT with linear membership func-
tion, the Ut and Lt are obtained as: L1 =
72, L2 = 116, U1 = 237, U2 = 296.5 which
are substituted in linear membership function
(5.1) to get a single objective fuzzy model as dis-
cussed in step 5 of Section 5.2. The solution ob-
tained for the EV Model-5 by applying the fuzzy
technique procedure is: λ = 0.8958525, x11 =
3.563134, x13 = 5.436866, x21 = 3.436866, x22 =
6, x23 = 3.563134 and the compromise solution
for the objective functions are Z∗

1E = 89.18433
and Z∗

2E = 134.7986.

Here, λ represents the minimum value amongst
both the membership functions. i.e. λ =
min (λ1, λ2), where λ1 = µ1(Z1E) and λ2 =
µ2(Z2E).

ii) Using exponential membership function

For applying FPT with exponential membership
function, the Ut and Lt values are L1 = 72, L2 =
116, U1 = 237, U2 = 296.5 used to construct an
exponential membership function given in (5.2)
for formulating a single objective fuzzy model dis-
cussed in step (5) of Section 5.2 for the EV Model-
5. Solving the single objective fuzzy model of EV
Model-5 for three different cases of shape param-
eters (s1, s2) taken as (−2,−2), (3, 2) and (4, 3)
in the exponential membership function, we get
the solutions as shown in Table 2.

The graphical representation of the objective
functions with respect to the linear and exponen-
tial (with three cases of shape parameters) mem-
bership functions in EV Model-5 is shown in Fig-
ure 1. In Figure 1, it is clearly seen that the
compromise solution of the objective functions is
achieved at their corresponding degree of satis-
faction level. For example, in the case of lin-
ear membership function, the compromise solu-
tion Z∗

1E = 89.18433 and Z∗
2E = 134.7986 are ob-

tained at membership values λ1 = 0.8958525 and
λ2 = 0.8958525 which represents the individual
degree of satisfaction for objectives Z1E and Z2E .
The fuzzy programming solution approach gives

the minimum value λ of these individual member-
ship function values λ1, λ2, stating that each of
the objective function posseses at least λ degree
of satisfaction level. As the membership value in-
creases and approaches to 1 for the objective func-
tions, the objective values are improved simulta-
neously and approach to the best value (optimal
value) of the individual objective functions. Also,
for each objective function, the shape parameter
values can be chosen at random until the model
produces a feasible solution. Changing the shape
parameter values will result in different compro-
mise solutions.

(a) Degree of satisfaction level for Z1.

(b) Degree of satisfaction level for Z2.

Figure 1. Graphical representation
of solutions for EV Model-5 with
FPT.

6.2. Optimistic value model

To formulate OV Model, we need the predeter-
mined confidence levels ηt ∈ (0, 1]. Let us assume
that all the confidence levels are equal to 0.9.

Model-6:

minZ1S =2.2x11 + 5.2x12 + 4.4x13 + 3.4x21 + 1.4x22 + 2.2x23

+ 4.4x31 + 7.2x32 + 6.4x33;

minZ2S =6.4x11 + 4.4x12 + 6.4x13 + 3.4x21 + 2.2x22 + 7.2x23

+ 8.2x31 + 5.2x32 + 6.2x33;
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Table 2. Solution table for (s1, s2) in the exponential membership function for EV Model-5.

(s1, s2) Z∗
1E Z∗

2E λ = λ1 = λ2 Solution

(-2,-2) 89.18433 134.7986 0.963754 x11 = 3.563134, x13 = 5.436866, x21 = 3.436866, x22 =
6, x23 = 3.563134

(3,2) 85.95132 136.5768 0.764216 x11 = 4.209737, x13 = 4.790263, x21 = 2.790263, x22 =
6, x23 = 4.209737

(4,3) 86.46528 136.2941 0.698695 x11 = 4.106944, x13 = 4.893056, x21 = 2.893056, x22 =
6, x23 = 4.106944

Subject to the given constraints of Model-5. The

solution of this multi-objective OV Model-6 can
be achieved with the two solution methodologies
mentioned in section 5. The results of both the
methods are shown below.

a) Minimizing distance method:
The solution obtained for Model-6 using MDM
is:

Z∗
1S =62.1126, Z∗

2S = 105.4271, x11 = 2.8492, x13 = 6.1508,

x21 = 4.1508, x22 = 6, x23 = 2.8492

with ideal values of the objective functions taken
as Zo1S = 48 and Zo2S = 92.8.

b) Fuzzy programming technique:

i) Using linear membership function

The sequential steps of the FPT can be applied
to obtain the Ut and Lt values as: L1 = 48, L2 =
92.8, U1 = 189.80, U2 = 260.40. The solution
obtained for the OV Model-6 using linear mem-
bership function is given as: λ = 0.9129054, x11 =
3.367644, x13 = 5.632356, x21 = 3.632356, x22 =
6, x23 = 3.367644 and the compromise solution for
the objective functions are Z∗

1S = 60.35001 and
Z∗
2S = 107.3970. Here, λ represents the minimum

value amongst all these membership functions.
i.e. λ = min (λ1, λ2), where λ1 = µ1(Z1S) and
λ2 = µ2(Z2S).

ii) Using exponential membership function
The solutions obtained for three different cases
of shape parameters (s1 = −2, s2 = −2),(s1 =
3, s2 = 2) and (s1 = 4, s2 = 3) are displayed in
Table 3.

The graphical representation of the linear and ex-
ponential membership function versus the objec-
tive functions in Model-6 is shown in Figure 2.

In Figure 2, it is observed that the compromise so-
lution of both the objective functions (with linear
and exponential membership function in FPT) is
achieved at their corresponding individual degree
of satisfaction. Say, for the linear membership
function, the compromise values of the objective
functions Z∗

1S = 60.35001 and Z∗
2S = 107.3970 are

achieved at degree of satisfactions λ1 = 0.9129054

and λ2 = 0.9129054. Similarly, the compromise
solution of both objective functions with three
cases of shape parameters in exponential mem-
bership functions is achieved at their respective
individual degrees of satisfaction, as can be seen
in Figure 2.

(a) Degree of satisfaction level for Z1.

(b) Degree of satisfaction level for Z2.

Figure 2. Graphical representation
of solutions for OV Model-6 with
FPT.

6.2.1. Sensitivity analysis of the objective
functions in OV model

Here, the sensitivity of the objective functions is
investigated in the OV Model with respect to the
confidence level ηt. The complementary test is
performed by variating the values of the confi-
dence level ηt in the range [0.1, 0.9] with a step
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Table 3. Solution table for (s1, s2) in the exponential membership function for OV Model-6

(s1, s2) Z∗
1S Z∗

2S λ = λ1 = λ2 Solution

(-2,-2) 60.35001 107.3970 0.970218 x11 = 3.367644, x13 = 5.632356, x21 = 3.632356, x22 =
6, x23 = 3.367644

(3,2) 58.46478 109.5041 0.790991 x11 = 3.922123, x13 = 5.077877, x21 = 3.077877, x22 =
6, x23 = 3.922123

(4,3) 58.77858 109.1534 0.732933 x11 = 3.829830, x13 = 5.170170, x21 = 3.170170, x22 =
6, x23 = 3.829830

size of 0.1 with respect to the crisp multi-choice
constraints of Model-6. The results of the sensi-
tivity analysis are shown for both the two solution
methodologies. The objective values obtained
during the sensitivity analysis of OV Model-6 are
shown in Table 4. “CL” represents the variation
of confidence level in ηt : t = 1, 2, for both the
objective functions.

Table 4. Objective values obtained
during the sensitivity analysis of the
OV Model-6 with FPT.

Fuzzy programming technique

CL ZtS MDM EMF LMF

(-2,-2) (3,2) (4,3)

0.1 Z1S 100.9969 111.5599 107.7755 108.3744 111.5599

Z2S 161.2291 157.2987 158.7068 158.4839 157.2987

0.2 Z1S 96.95949 106.3698 102.6568 103.2445 106.3698

Z2S 155.9729 152.0711 153.6106 153.3669 152.0711

0.3 Z1S 92.97171 101.0594 97.4410 98.01394 101.0594

Z2S 150.5054 146.7726 148.4426 148.1782 146.7726

0.4 Z1S 89.01075 95.63106 92.12848 92.68335 95.63106

Z2S 144.7999 141.4003 143.1989 142.9140 141.4003

0.5 Z1S 85.23529 89.61566 86.37785 86.89344 89.61566

Z2S 138.0588 135.4306 137.3733 137.0639 135.4306

0.6 Z1S 79.87618 82.29727 79.41449 79.87810 82.29727

Z2S 130.1470 128.4628 130.4682 130.1457 128.4628

0.7 Z1S 74.2800 74.98182 72.44310 72.85571 74.98182

Z2S 122.0400 121.4719 123.5270 123.1930 121.4719

0.8 Z1S 68.37898 67.66704 65.46099 65.82364 67.66704

Z2S 113.7778 114.4523 116.5422 116.1987 114.4523

0.9 Z1S 62.11262 60.35001 58.46478 58.77854 60.35001

Z2S 105.4271 107.3970 109.5041 109.1534 107.3970

The graphical interpretation of the objective val-
ues w.r.t the confidence level ηt are shown in
Figure 3. Figure 3 indicates that the objective
function values are decreasing with respect to the
tested confidence levels ηt for both the solution
methodologies.
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(a) Sensitivity analysis of Z1 w.r.t ηt in the Model-6.
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(b) Sensitivity analysis of Z2 w.r.t ηt in the Model-6.

Figure 3. The sensitivity analysis of
the objectives in OV Model-6 w.r.t ηt
using FPT and MDM.

7. Comparison of the results

This section presents the results obtained for the
Uncertain MCMOTP using the EV and OV Mod-
els. Table 5 compares the results obtained for EV
and OV models with minimizing distance method
and fuzzy programming technique methodologies.
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Table 5. Comparison of the results
obtained with two methodologies.

Fuzzy programming technique

Model Zt MDM EMF LMF

(-2,-2) (3,2) (4,3)

EV

Model

Z∗
1E 83.9290 89.1843 85.9513 86.4653 89.1843

Z∗
2E 137.6891 134.7986 136.5768 136.2941 134.7986

OV

Model

Z∗
1S 62.1126 60.3500 58.4648 58.7786 60.3500

Z∗
2S 105.4271 107.3970 109.5041 109.1534 107.3970

From the results obtained with the given solution
methodologies, it can be observed that neither of
the method is dominating the results of the other
method because if one objective approaches to-
wards its best value then the other objective value
starts worsening. Also, the EV Model gives the
solution in terms of expected values of the ob-
jective functions, OV Model gives the solution in
terms of optimistic values of the objective func-
tions. The results of the OV Model obtained
here are only for a single case of confidence level
ηt = 0.9 in the objective function, but varying
ηt in the range (0, 1] can provide numerous set of
solutions.

8. Conclusion

This paper developed the Uncertain Multi-choice
MOTP with objectives as zigzag uncertain vari-
ables and supply and demand parameters as
multi-choice parameters. The uncertain MC-
MOTP model has been solved using the two
crisp models: EV and OV Models. Further, the
crisp models were solved using minimizing dis-
tance method and fuzzy technique (with linear
and exponential membership functions). The EV
Model will always lead to a single or multiple so-
lution based on the solution methodology utilized
whereas OV Model will always provide numerous
solutions to the decision maker because of the con-
fidence level ηt involved in the OVModel. In com-
parison to the EV Model, which does not incorpo-
rate confidence level, the OV Model may provide
the decision maker with a number of alternative
solutions by altering the values of the confidence
level ηt between 0 and 1.
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