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 Residential customers are the main users generally need a great quantity of natural 

gas in distribution systems, especially, in the wintry weather season since it is 

particularly consumed for cooking and space heating. Hence, it ought to be non-

interruptible. Since distribution systems have a restricted ability for supply, 

reasonable planning and prediction through the whole year, especially in winter 

seasons, have emerged as vital. The Ridge Regression (RR) is formulated mainly 

to decrease collinearity results through shrinking the regression coefficients and 

reducing the impact in the model of variables. Conic multivariate adaptive 

regression splines ((C)MARS) model is constructed as an effective choice for 

MARS by using inverse problems, statistical learning, and multi-objective 

optimization theories. In this approach, the model complexity is penalized in the 

structure of RR and it is constructed a relaxation by utilizing continuous 

optimization, called Conic Quadratic Programming (CQP). In this study, CMARS 

and RR are applied to obtain forecasts of residential natural gas demand for local 

distribution companies (LDCs) that require short-term forecasts, and the model 

performances are compared by using some criteria. Here, our analysis shows that 

CMARS models outperform RR models. For one-day-ahead forecasts, CMARS 

yields a MAPE of about 4.8%, while the same value under RR reaches 8.5%. As 

the forecast horizon increases, it can be seen that the performance of the methods 

becomes worse, and for a forecast one week ahead, the MAPE values for CMARS 

and RR are 9.9% and 18.3%, respectively. 
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1. Introduction 

Local Distribution Companies (LDCs) are the service 

carriers of private natural gas purchasers within a 

particular transportation structure. When LDCs target 

unbalanced gas consumption from Transmission 

System Operator (TSO) pipelines, regulations, and 

related policies impose fairly high costs on them in the 

form of penalties. So correct forecasting is crucial here, 

as LCD demand is met through spot markets and much 

of the total demand is organized with global supply 

contracts through pipelines or liquefied natural gas.  

The operation must be flexible to compensate for 

fluctuations in demand. The fluctuation adjustment of 

energy demand under the constraints of system 

operation should be realized by predictive models 

organized for individual types of customers. For LCDs, 

a unique one-day and one-week forecast gives a 

discount to cost operations and elimination of penalties 

that occur due to unbalanced demand-supply quantities 

[1,2].  

A problem is described as an ill-posed problem if a 

solution is not unique, present, or stable under 

perturbation on data.  This means that if a small 

perturbation of the data may bring about a large 

perturbation of the solution. Ridge Regression is one of 

the most well-known structures to make these problems 

regular and stable [3, 4]. It is also known as Tikhonov 

Regularization. In the statistical literature, there exist 

some approaches such as principal components 

regression, partial least squares, least absolute 

shrinkage and selection operator (LASSO), and ridge 

regression (RR) to prevent collinearity in traditional 

linear regression models. Here, RR and LASSO are 

regularization/penalization strategies that impose a 

constraint on the regression coefficients while principal 

components and partial least squares regression are 

http://www.ams.org/msc/msc2010.html
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variable subset decision strategies that employ linear 

combinations of the independent variables in the 

regression model. RR is formulated mainly to decrease 

collinearity results by shrinking the regression 

coefficients and reducing the impact in the model of 

variables. Here, it seems that shrinking the coefficient 

estimates may extensively decrease their variance [5]. 

MARS creates flexible models by employing piecewise 

linear functions. This continuous model gives a high-

quality way to model nonlinearities [6]. Nowadays, as 

a nonparametric model, MARS is efficiently applied to 

many areas of technology and science. Here, Conic 

Multivariate Adaptive Regression Splines (CMARS) 

model [7-10] is evolved for the backward stage of 

MARS. It is obtained as a model-based alternative and 

an effective choice to MARS. In this algorithm, a 

Penalized Residual Sum of Squares (PRSS) is applied 

for MARS as RR problem and it is worked out by Conic 

Quadratic Programming (CQP). So, Interior Point 

Methods [11, 12] and their codes, e.g., MOSEK [13] 

can be applied by the technique of CMARS. In this 

paper, we represent natural gas forecasts for one day 

and one week in advance for a transmission system 

operator by using RR and CMARS. 

In this study, two multi-objective regression models are 

developed for short-term natural gas demand prediction 

using RR and CMARS for one day, and one week ahead 

with daily forecasting intervals. Here, the minimum 

temperature, the maximum temperature, and heating 

degree days of the daily average temperature are taken 

into consideration as different input variables. The 

MAPE values of CMARS reach 4.8 % and 8.5 for one 

day, and one week ahead forecasts, respectively. On the 

other hand, RR gives MAPE values of around 9.9% and 

18.3%. We reveal that CMARS performs better than 

RR in terms of the main performance criteria. 

The rest of the paper is organized into four parts. In 

Sections 2 and 3, we provide a brief review of the 

models applied in this study. In Section 3, we present 

our mathematical models. The numerical results of the 

model are presented and discussed in Section 4. We 

conclude our study with a discussion of the results and 

giving future research in Section 5. 

2. Ridge regression 

The subset determination strategies include applying 

the least-squares to fit a linear model which involves a 

subset of the predictors. As an alternative to subset 

selection, we may fit a model including all k predictors 

utilizing a procedure that contracts the coefficient 

estimates towards zero, or equivalently, that compels or 

regularizes the coefficient estimates [4, 14]. The 

shrinkage strategies become smaller the regression 

coefficients by implying a penalty on their size. These 

techniques bias the estimator of the regression 

coefficients to decrease the variance in addition to the 

mean squared error of the estimator and to forestall the 

model from overfitting [15]. The least-squares fitting 

procedure estimates 
0 1, , , k    using the values that 

minimize the Residual Sum of Square (RSS)  
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Here, 0  is a penalty parameter and it is defined 

separately. In this method, there is a tradeoff between 

two different criteria (bias and variance). RR search 

coefficients that match the data well, by decreasing the 

RSS. Here, the second term, 2

1

k

jj
 

= , known as a 

shrinkage penalty, is small if 
1, , k   are close to 

zero. Therefore, it affects the estimates of 
j  towards 

zero. The penalty parameter, , controls the relative 

effect of these two criteria on the estimation of 

regression coefficient in (1). When 0 = , RR produces 

the least-squares estimates and the penalty term does 

not affect the model [4, 15]. The penalty term is also 

known as 
2
 penalty and the 

2
 norm of a coefficient 

vector   is provided by 2

2 1

k

jj


=
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3. Conic multivariate adaptive regression splines 

In general, with the CMARS algorithm, 

implementation of spline function acquires extreme and 

very important benefits especially in the modeling of 

dynamics. For both MARS and CMARS, considering a 

one-dimensional case (input variable), splines are 

piecewise polynomials. MARS obeys the following 

general model assumed to exist between the variables 

[6, 15]: 
 

( ) ,Y f = +x
                             

(2)
                                             

 

where ( )1 2, ,
T

kx x x=x
 
is a vector of predictor, Y is 

the dependent variable and   is an error that is 

supposed to have 0 mean and finite variance. MARS 

obtains reflected pairs for each input  ( 1,2,..., )jx j k=

with k-dimensional knots 
,1 ,2 , ( , ,..., )T

i i i i k   = at each 

input data vector 
,1 ,2 , ( , ,..., )T

i i i i kx x x=x
 
(i = 1,2,...,N). 

Here, each function is piecewise linear with a knot 

value,  . Therefore, in MARS, the Basis Functions 

(BFs) are determined as [15] 
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Here, ( )f x  in (2) can be closer represented by a 

successively constructed linear combination of 
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functions obtained from the set C and Y takes the 

following form: 

0

1

( ) + ,
M

m m

m

Y    
=

= + x                    (3)

                                 

 

where 
0  is the intercept, 

m  is the unknown 

coefficient for the mth BF (m = 1,2,...,M), and 
m  

presents either a function or product of more than one 

function from the set C. The form of mth BF is 

represented as follows [15]: 
 

   
1

( ) := ( )    ( 1,2,..., ).
m

m m
j j

K

m i i
j

x i N
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  
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Here, m
j

  is the corresponding knot value of the 

variable m
j

x


 and, m
ji

x


 is the corresponding input 

variable for the jth truncated linear function in the mth 

BF.  Moreover, 
mK is the interaction degree of the mth 

BF [16]. To construct the model, the MARS forward 

stepwise algorithm begins with the constant function 
0

0 ( ) 1 =X  to estimate 
0 , and all functions in the set 

C are considered as candidate functions. A lack-of-fit 

criterion is used to compare the possible BFs that has 

the form [16,17]: 

•  1, 

•  ax , 

•  [ ]a jx  +−  , 

•  a bx x , and 

•  [ ] [ ]a j b kx x + +− − . 

  

The BFs above employ different input variables, ax  

and ,bx  with their knots, j  and k  as input variables 

cannot be the same for each BF in the MARS algorithm. 

At each step, with one of the reflected pair in set C, all 

products of a function  ( )m

m X  in the model set are 

taken into account as a new function pair and added the 

term to the model set. This term has the following form 

1 2( ) [ ] ( ) [ ]a a

M a k M a kX X     + + + + − +  −X X  

where 1M +  and 
2M +

 are coefficients that are 

estimated by least-squares with all other M+1 

coefficients. Then the “winning” products are added 

into the model and then, for example, the possible 

candidates for BFs as follows [17]: 

•  1, 

•  ax , 

•  [ ]a jx  +− ,  if ax  is in the model already, 

•  a bx x ,  if ax  and bx  are in the model already, 

• [ ] [ ]a j b kx x + +− − , if [ ]a j bx x +−  and 

[ ]b k ax x +−  are in the model already. 

  

The model obtained by forward stage overfits the data.  

Therefore, a backwards-pruning procedure is applied to 

find BFs that contribute least to model fit, and then 

these BFs are progressively deleted. This iterative 

process continues until an optimal number of terms are 

presented in the final model [18, 19]. Here, MARS used 

a modified recursive partitioning strategy to simplify 

high-dimensional problems. The sequence of models 

generated from this procedure is evaluated by using 

generalized cross-validation (GCV), and the model 

with the best predictive fit is selected. Consequently, an 

estimated best model f̂  of each number of terms,  , 

is found at the end of that process. In MARS model, 

generalized cross-validation is applied to define the 

optimal number of terms, , and it also shows the lack 

of fit. The GCV criterion defined by Friedman [4] is 

given by  
2
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Here, N is the number of sample observations, and 

( )M   represents the effective number of parameters in 

the model. 

In the CMARS method, firstly, the large model 

provided by the forward MARS algorithm is built up 

and addressed. Instead of the backward stage algorithm 

of MARS, the PRSS with maxM BFs is employed as a 

refinement of the least-squares estimation (LSE) to 

control the lack of fit from the viewpoint of the tradeoff 

between goals of complexity and stability to estimate 

and assess the function ( )f x  
in (2).  Consequently, 

PRSS can be summed up during the forward stage of 

MARS and written as [6]: 

max
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Here, ( )max1 2

1 2( ) : 1, ( ), ( ),..., ( ) ;
T

M

i i i m i  =b x x x
 

V(m) 

:={
m

j  | j= 1,2,...,
mK } is the variable set related to the 

mth BF, 
m ; m

t = 
1 2

( , ,..., )
Km

T

m m mt t t presents the vector 

of variables contributing to the mth BF, 
m ; 0m   

are penalty parameters (m = 1,2,...,
max

M );  is a 

max(( 1) 1)-M +  parameter vector to be estimated by 

using the data points [16]. Furthermore, mQ  is some 

appropriate integration domains in 
mK -dimensional 

parallel-pipe. After a discretization is employed to 

approximate the multi-dimensional integral 
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2
2

, ( )m m

m r s mD d    t t
  and only one penalty 

parameter ( )2:m  = =  is used rather than applying 

distinct penalty parameters for each derivative in (5), 

the new approximate form of PRSS can be written as 

follows (we refer to [2,7-9,16,20] for more details):
  

2 2

22
( ) .PRSS  − +y b L                   (6)                                       

 

Here, L is to be assigned an (
max max( 1) ( 1))M M+  + -

diagonal matrix. Then, the PRRS problem looks like a 

classical RR problem with 0  , 2 =  for some 

,  and this problem in (6) is expressed as a CQP 

[21]. So, based on a suitable selection of the bound ,K  

the optimization problem in (6) can be rearranged [16]: 
 

 

,

2

2

minimize  

subject to   ( ) ,  

                .

t

t

K

t

− 



b y

L



 



                   (7)                                              
 
 

 

At this point, we state that a careful learning process 

has to be followed for the choice of K . 

4. Natural gas demand modeling by RR and 

CMARS  

In this study, we consider two multi-objective models 

which use 
2

norm regularization in linear and 

nonlinear modeling for the prediction of natural gas 

demand. Here, the advantage of regularization is to 

decrease the risk of overfitting, which usually occurs in 

high-dimensional learning. The primary goal of the 

regularization technique is to make the machine 

learning algorithm “learn” but  “not memorize” by 

penalizing the algorithm to decrease its generalization 

error to avoid the risk of overfitting. As a consequence, 

the variance of the model may be considerably 

declined, without losing any important properties in the 

data. Moreover, since regularization is a kind of 

robustification, these kinds of models can also be called 

robust models.   

4.1. Data 

In this study, the data set comprising of daily natural 

gas demand data from 2004 to 2013 are provided by 

Baskentgaz, the LDC of Ankara. To check the 

performance of our models, we draw on the validation 

technique. We divide the dataset into two subsets as 

training and testing sets. Here, the dataset is not divided 

randomly since it includes a time series of natural gas 

and meteorological variables. Instead, the first six years 

(from 2004 to 2009) of each variable under 

consideration are selected as the training dataset, while 

the last four years of the series are selected as the test 

dataset. In this study, demand for residential customers 

of Baskentgaz is modeled by applying RR and CMARS 

algorithms.  

Our dataset contains some meteorological variables 

namely heating degree day (average temperature), 

relative humidity, wind speed, daily maximum and 

minimum temperatures. in this study, the 

meteorological variables used are proved by the 

Turkish State Meteorological Service. Indeed, energy 

consumption, especially natural gas, is highly 

dependent on weather conditions. If the temperature 

drops below a certain value of the heating threshold, 

households use more energy owing to the excessive 

need for space heating [1,2]. 

Here, firstly, the model details are given and then their 

performances are discussed for each forecasting time 

horizon. In the application of RR, the MATLAB 

regularization toolbox is utilized. In applications of 

CMARS, Salford MARS [19] is utilized to obtain BFs 

for the large model provided by the forward MARS 

algorithm. Afterward, MOSEK optimization software 

and MATLAB are used to solve the CQP problem and 

estimate unknown parameters. 

4.2. Criteria for performance evaluations 

Here, we tested the prediction accuracy of two specific 

prediction methods on real-time data. The main 

performance indicator for checking the accuracy of the 

models is the mean absolute percentage error (MAPE).  

In addition to MAPE, we also evaluate the multiple 

coefficient of determination ( 2R ), correlation 

coefficient (r), average absolute error (AAE), and root 

mean square error (RMSE) to check the performances 

of proposed models. These measures and their formulas 

are presented in Table 1. 

 
Table 1. Performance measures and their formulas. 
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4.3. RR models 

In the RR algorithm, first, many different models were 

obtained based on different penalty parameters,   , by 

using the MATLAB regularization toolbox. Here, the 

penalty parameter, , controlled the relative effect of 

both criteria (bias and variance) on the estimation of 

regression coefficient in (1). Then, the penalty 

parameter that tries to minimize two criteria in a 

balanced manner was selected.  So, the following RR 

model based on selected penalty value provided the 

best solution for complexity and accuracy in (1). 

 

4.3.1. One-day-ahead prediction 

Day-ahead forecast is generally used to reduce 

operational costs and eliminate the drawbacks that can 

occur owing to the imbalance between supply and 

demand quantities. The system operator requires to 

identify the supply security issues that may exist the 

next day. The RR model for one-day-ahead forecasting 

can be represented as follows: 
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ˆ
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Here, for RR and CMARS models based on one-day 

ahead and one-week ahead, X1, X2, X3, X4, X5, X6, X7, 

and X8 represents the first-order lagged, second-order 

lagged, third-order lagged, fourth-order lagged, fifth-

order lagged, sixth-order lagged, seventh-order lagged 

and fourteenth-order lagged natural gas consumption, 

respectively. Hence, the RR and CMARS models 

obtained are “lag” models since they involve lagged 

dependent variables. Furthermore, X9, X10, X11, and X12 

are the heating degree days, maximum temperature, 

minimum temperature, and wind speed, respectively. 
 

4.3.2. One-week-ahead prediction 

One-week-ahead forecast is usually used for generating 

unit production schedules for the next week. This gives 

companies insight into generation and consumption 

trends as well as assisting them to plan their weekly 

generation schedules. The RR model for a one-week 

forecast can be stated as follows: 
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10 11 12
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Here, RR models find all variables to be significant as 

expected. 

 

 

4.4. CMARS Models 

In the CMARS algorithm, first of all, using original 

data, the MARS algorithm is run via Salford MARS 

[22] and many MARS models were developed 

changing the number of BF and interaction. After 

selecting the optimal model for MARS among obtained 

models, the set of BFs in the forward part of MARS in 

the optimal MARS model was taken for the CMARS 

model. After the greatest models are constructed with 

the selected BFs and the L matrices in (7) are obtained, 

the PRSS in (6) is reformulated as a CQP problem. 

Here, based on different K  values in (7), several 

different CQP models in (7) were solved individually 

via MOSEK [11]. Here, MOSEK applies an interior 

point algorithm [12,13] to treat the CQP problems 

CMARS yields many solutions. Finally, the CQP 

model that has the minimum value of approximate 

PRSS was selected and the unknown parameters were 

estimated for the CMARS model. Here, this point tries 

to minimize the criteria, 
2

( ) − b y and  
2

L , in a 

balanced manner and the chosen value provides the best 

solution for complexity and accuracy based on PRSS. 
Here, we should note that the knot values of BFs in the 

CMARS model are selected differently but extremely 

close to the corresponding input data to avoid non- 

differentiability in the optimization problem.  

 

4.4.1. One-day ahead prediction 

In the CMARS algorithm, using the MARS software 

[22], the highest degree of interactions and 
maxM are 

found by the forward MARS algorithm. For this data 

set,
maxM  is 23 and the highest degree of interaction is 

2. So, the largest model constructed by the forward 

MARS stage includes the following BFs. 
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16 6 9
( ) max{0,  7.336  } max{0,    8.001},X X = −  −x  
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X X
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CMARS model for the one-day-ahead forecast is stated 

as follows: 
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For the CMARS model based on one-day ahead 

forecasting, the first-order lagged natural gas 

consumption (
1

X ), the sixth-order lagged natural gas 

consumption (
6

X ), the heating degree days (
9

X ), and 

minimum temperature (
11

X ) are significant. 
 

4.4.2. One-week ahead prediction 

For this natural gas data set based on one-week ahead 

forecasting,
maxM  is 27 and the highest degree of 

interaction is 2. So, the largest model constructed by the 

forward MARS algorithm includes the following BFs. 
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CMARS model for the one-week-ahead forecast is 

stated as follows: 
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For the CMARS model based on one-week ahead 

forecasting, the first-order lagged natural gas 

consumption (
1

X ), the third-order lagged natural gas 

consumption (
3

X ), the sixth-order lagged natural gas 

consumption (
6

X ), the seventh-order lagged natural gas 

consumption (
7

X ), the fourteenth-order lagged natural 

gas consumption (
8

X ), the heating degree days (
9

X ), 

maximum temperature (
10

X ), and wind speed      (
12

X ) 

are significant. 
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4.5. Results 

In this study, we propose to model seasonal patterns 

and trends directly without using any transformations. 

As shown in Figures 1-8, the presented models capture 

the seasonality and trend of natural gas consumption. 

Moreover, with an additional plot, Figures 1-8 display 

the daily error (residual) time series for each model and 

let us analyze the residual dynamics. For natural gas 

demand prediction, the performance of the RR and 

CMARS models was evaluated using the performance 

measures presented in Table 1. For the training and test 

cases of the RR and CMARS models, Table 2 and Table 

3 show the performance matrices for the forecasting of 

one-day-ahead and one-week-ahead, respectively.  
 

 

Figure 1. Exact values and RR approximation of natural gas 

consumption for one-day-ahead prediction based on training 

data 
 

 

 
Figure 2. Exact values and CMARS approximation of natural 

gas consumption for one-day ahead prediction based on 

training data 

 

 

 
Figure 3. Exact values and RR approximation of natural gas 

consumption for one-day ahead prediction based on test data 

 

 
Figure 4. Exact values and CMARS approximation of natural 

gas consumption for one-day ahead prediction based on test 

data 

 

 

 
Figure 5. Exact values and RR approximation of natural gas 

consumption for one-week ahead prediction based on training 

data 

 

 

 
Figure 6. Exact values and CMARS approximation of natural 

gas consumption for one-week ahead prediction based on 

training data 

 

 

 
Figure 7. Exact values and RR approximation of natural gas 

consumption for one-week ahead prediction based on test 

data 
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Figure 8. Exact values and CMARS approximation of natural 

gas consumption for one-week ahead prediction based on test 

data 

 

Table 2. Performance of RR and CMARS for one-day ahead 

forecasting 

                               RR CMARS 

   train    test train test 

  
 

0.989 0.991 0.994 0.994 

AAE                                       0.28 0.253 0.195 0.18 

RMSE  0.405 0.333 0.313 0.264 

r 0.995 0.996 0.997 0.997 

MAPE  0.094 0.085 0.046 0.048 

 

Table 3. Performance of RR and CMARS for one-week 

ahead forecasting 

                               RR CMARS 

   train    test train test 

  

 

0.885 0.889 0.977 0.976 

AAE                                       0.861 0.827 0.383 0.368 

RMSE  1.324 1.165 0.596 0.538 

r 0.965 0.971 0.988 0.989 

MAPE  0.181 0.183 0.09 0.099 

 

For the one-day-ahead forecast, Table 2 shows the 

performances of the RR and CMARS models based on 

training and test. Depending on the results given in 

Table 2, the CMARS model outperforms the RR model 

in terms of all performance measures for training and 

testing data.  

For the one-week-ahead forecast, the performances of 

RR and CMARS models are compared in Table 3 in 

terms of training and test cases. Based on the results 

shown in Table 3, the CMARS model outperforms the 

RR model in terms of all performance measures for 

training and test cases. Here, the MAPE performance 

becomes worse as the prediction horizon increases.  

Based on residual, RR and CMARS have similar plots 

for one-day-ahead forecast whereas CMARS has better 

results than RR for the one-week-ahead forecast as in 

terms of training and test cases, as seen in Figures 1-8. 

Here, the proposed models have very small residuals 

for one-day-ahead forecasting. However, when the 

forecasting horizon increases, the residuals of the 

models become worse as expected.  

 

In this application, the most essential variables in the 

analyzed residential demand models are based on 

temperature since a huge volume of natural gas is 

needed for space heating in Ankara, Therefore, in cold 

weather, natural gas usage reduces virtually linearly as 

the temperature rises. As you can see in Figures 1-7, 

this event also constructs a large difference between the 

winter and summer periods of private natural gas 

demand. Among the presented models, the CMARS 

model significantly outperforms the RR model in terms 

of all the training and test case performance criteria 

presented in Table 1 based on the short-term forecast. 

Therefore, CMARS should be the preferred model for 

this particular problem based on the short-term natural 

gas forecast. 

5. Conclusion 

In this study, we present two innovative models to 

short-term natural gas forecasting problems in the 

energy market. For residential users of LDCs, we 

evaluate daily and weekly forecasts of natural gas 

demand with daily intervals. We produce out-of-

sample forecasts and compare them to observed data in 

terms of test datasets to assess the models' prediction 

accuracy.  

The prediction accuracy is assessed for each forecast 

horizon using the performance criteria listed in Table 1. 

The proposed models, as illustrated in Figures 1-8, can 

capture the natural gas demand trend and seasonal 

pattern. However, it is found that CMARS performs 

better for one-day-ahead and one-week-ahead forecasts 

with MAPE values of 4.8% and 9.9%, respectively. 

Moreover, using CMARS as a substitute for MARS 

provides an integrated representation of all parameter 

identification tasks as a model-based optimization 

model instead of a model-free problem. As a result, in 

the multicriteria regression models offered, CMARS 

models should be favored for this particular situation. 

However, since the knot selection does not require for 

the linear parts in CMARS, as further study, Conic 

Generalized Partial Linear Model (CGPLM) [23] may 

also be added to the CMARS algorithms so that these 

semi-parametric algorithms may provide to decrease 

the complexity of CMARS. Moreover, the same study 

may be repeated with the robust counterparts being 

R(C)PLM [24,25] and R(C)MARS [26-31], and then 

the comparative results may be provided. In future 

researches, proposed models can be compared to time 

series models and many other traditional and recent 

methods.  
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