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In this paper, the global asymptotic stability and strong passivity of three types
of nonlinear LRC circuits are investigated by utilizing the Lyapunov’s direct
method. The stability conditions are obtained by constructing appropriate
energy (or Lyapunov) function, which demonstrates the practical application
of the Lyapunov theory with a clear perspective. Many specialists construct
Lyapunov functions by using some properties of the functions with much trial
and errors or for a system they choose candidate Lyapunov functions. So, for
a given system the Lyapunov function is not unique. But we insist that the
Lyapunov (energy) function is unique for a given physical system. Thus, this
study clarifies Lyapunov stability with suitable tools and also improves some
previous studies. Our approach is constructing energy function for a given
nonlinear system that based on the power-energy relationship of the system.
Hence for a dynamical system, the derivative of the Lyapunov function is equal
to the negative value of the dissipative power in the system. These aspects have
not been addressed in the literature. This paper is an attempt towards filling
this gap. The provided results are central importance for the stability analysis
of nonlinear systems. Some simulation results are also given successfully that
verify the theoretical predictions.
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1. Introduction

In history, modeling and stability analysis of non-
linear systems are the most important and pop-
ular problems in control theory. Since almost all
systems are nonlinear in nature [1], a number of
promising studies have been analyzed in the liter-
ature. Many researchers as Lagrange, Hamilton,
Poincare and Lyapunov are focused on the mod-
elling problem to analyze the dynamic behavior
of systems [1, 2]. The aforementioned methods
are based on the energy utilization of the related
systems. However, since all systems are not in
linear forms, certain mathematical solutions are
not available to solve these issues. Furthermore,
closed-form expressions for the solutions of the
linear systems are not possible to solve nonlinear

systems. Nevertheless, it is important to be able
to make some assumptions about the conduct of
a nonlinear system called qualitative analysis.

The stability of the equilibrium point was first ex-
amined by Lagrange; however, the Lagrange prin-
ciple was only suitable for the Lagrange systems
(conservative systems) [1], but engineering sys-
tems usually have damping [3]. Then, the sta-
bility theory of motion derived from the concepts
of Lagrange’s principle and Poincare’s regular so-
lution (Lyapunov stable motion) was developed
by Lyapunov [2]. Hamiltonian and Lagrangian
systems comply with conservative systems (ex-
act differential equations), but Lyapunov stability
theory can be applicable to arbitrary differential
equations. Thus, the Lyapunov direct method is
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the most common and efficient tool for stability
analysis [4–7]. In this context, many elegant stud-
ies on the qualitative behavior of systems can be
recorded in the literature. Most experiments are
carried out on the axiomatization of the stability
principle. The problem of stability of the solar
system attracted a great deal of early interest.
Then, Lyapunov used his second (direct) method
that there is no need to solve the differential equa-
tions explicitly to investigate the stability of the
given systems. The Lyapunov’s direct method is
still recognized as an effective tool to study the
stability theory of dynamical systems such as: the
global asymptotic stability of the electrical RLC
circuit [8], neural networks with time varying de-
lays [9,10], power systems analysis [11], robot ma-
nipulators [12], dissipativity analysis of discrete-
time neural networks [13], global robust passiv-
ity analysis [14], dissipativity and passivity anal-
ysis of neural networks [15]. This method is the
best way to determine the asymptotic stability
or asymptotic controllability of nonlinear systems.
The central notion is that the energy of the system
diminishes along suitably chosen paths, such that
the system attains a minimal energy configuration
at the invariant equilibrium. Here, this result has
been presented both mathematically and through
simulation.

Lyapunov theory is based on the Torricelli princi-
ple [16]. Therefore, the storage energy of the dy-
namic system decreases over time along the tra-
jectories of the system. So, the direct method
provides the opportunity to examine the stability
of the equilibrium points with minimum energy.
This meaning (diminishing of energy) tends us
to the passivity of the systems. Passivity, which
is the basic feature of the dynamic systems the-
ory [17–20], can now be debated. LRC circuits,
viscoelastic systems and thermodynamic systems
are typical examples of dissipative systems with
the external sources. The terminology of dissipa-
tivity is a generalization of the concept of passiv-
ity [21]. Apparently, a dissipative system is not
a conservative system. The main point of passiv-
ity theory is that the systems are internally sta-
ble [22, 23]. Storage functions are bounded [21],
and this result has been proved mathematically in
the proof of Theorem 4. Thus, some new passiv-
ity results with Gronwall’s inequality [3] can be
shown to define the strict passivity or bounded-
ness of the systems involved.

Natural (real) energy functions of the dynamic
systems empower the Lyapunov’s direct process
implementations more than the Lyapunov candi-
date functions. Thus, each energy function used

in this study is constructed from the physical
meaning of the given system and its time deriva-
tive (directional) is equal to the negative value of
the dissipated power in the system. For example,
for any unforced dissipative system, the time de-
rivative of the energy (Lyapunov) function E(t)
along the system orbits gives

V ′(t) = −
n∑
i=1

RiI
2
i , (1)

where Ri is the damping term (or resistance) and
Ii is the velocity (or current) of the ith component
of the system.

The above arguments are not clear in the re-
lated literature. Hence, many specialists chose
candidate Lyapunov functions or consider some
Lyapunov functions or construct Lyapunov func-
tions with much trial and error for their sys-
tems [1, 11, 24, 25] without any physical meaning.
Generally, these tools make Lyapunov stability
very complex (see [24, 25]). Because, still there
is an idea in the literature, constructing Lya-
punov functions for nonlinear systems is a difficult
task [26, 27]. But, for the first and second order
ordinary differential equations we highly simpli-
fied Lyapunov stability theory with LRC circuit
systems. Hence, the interested knows how to con-
struct the energy (Lyapunov) function and checks
the result of the time derivative (directional) of
the energy function with (1). This approach also
improves some well-known studies. These im-
provements will take place in section 4. In ad-
dition, [6] does not involve the passivity analy-
sis, the notion of power –energy relationship con-
structing Lyapunov functions, and equation (1)
and its implications. The present work includes
these and some improvements.

The rest of this paper is organized as follows. Sec-
tion 2 presents some definitions and auxiliary re-
sults. Section 3 deals with the main results. Sec-
tion 4 deals with discussion. Section 5 closes the
paper with a short conclusion.

2. Preliminaries

A commonly used model for an autonomous non-
linear system is

x′(t) = f(x(t), u(t)), x(0) = x0,∀t ≥ 0, (2)

where t ∈ <+(<+ = [0,∞)) denotes time, x ∈ <n
denotes the state of the system, while u ∈ <m is
called the input or the control function. However,
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f : <n × <m → <n satisfies Lipschitz condition.
The state vector x(t) ∈ D in which D j <n is
a domain that contains the origin x = 0. We as-
sume that (2) is well posed, that is, there exists a
unique solution x : [0,∞) → <n for every initial
data x(0) = x0 ∈ <n, and x depends continuously
on x0 according to the normed topology on <n.
Let f(0, 0) = 0, f(x, 0) 6= 0 for x 6= 0, and ||.|| is
the Euclidean norm on <n. Further, assume that
u is an admissible real valued input function so
that

m∑
i=1

∫ t

0
ui(t)dt ≤ K <∞, ∀t > 0, (3)

where K is a positive constant. A state x ∈ <n
is an equilibrium of (2) if f(x, 0) = 0. A system
or machine attains its minimum of energy at the
equilibrium points.

We shall now need some basic definitions on the
properties of the Lyapunov functions.

Definition 1. ( [1]) A function α(<+,<+) is of
class κ if it is continuous on [0,∞), monotonically
increasing, and α(0) = 0. A class κ function α(r)
belongs to class κ∞ if α(r)→∞ as r →∞.

Definition 2. ( [1]) A function E(x) ∈ C1(<+×
<n,<+) is said to be positive definite, decres-
cent and radially unbounded function if there exist
functions α and β of class κ are such that

(i) α(||x||) ≤ E(x) ≤ β(||x||), ∀x ∈ <n,

(ii) E′(x(t)) ≤ 0,

(iii) α(||x||)→∞ as ||x|| → ∞,

(iv) Furthermore, assume that the set S = {x ∈
<n : E′(x) = 0}, contains no invariant set other
than the set {0}.

Now, to motivate the definitions of passivity we
can use electrical circuits. Inflow power of a sim-
ple resistive system is always nonnegative with
the voltage u(t) as input and the current y(t) as
output, that is, if uy ≥ 0 for all u, y ∈ <, and for a
multiport network we have uT y =

∑m
i=1 uiyi ≥ 0.

Therefore, for general nonlinear systems we can
state some new passivity properties. These new
properties are of interest in circuit and control
theory [24] and has applications in mathematical
control theory with Gronwall’s inequality [3].

Definition 3. ( [24]) System (2) is passive if
there exists a positive definite function E(t) is
such that

(i) E′(t) ≤ r(u, y).

Moreover, it is lossless if

(ii) E′(t) = r(u, y),

and strictly passive if

(iii) E′(t) + Ψ(x, y) ≤ r(u, y),

for some positive definite function Ψ, where y =
x′, and r(t) = r(u(t), y(t)) =

∑m
i=1 uiyi is the

supply rate function of (2) defined on <m × <n,
and satisfies ∫ t

0
|r(s)|ds <∞,

for all t ≥ 0, with r(0, y) = 0.

Lemma 1. If system (1) is passive with an
energy-like function E, then the origin of x′ =
f(x, 0) is stable.

Proof. See [24]. �

3. Main results

The matter under discussion is the stability of
the origin (0, 0) and the passivity of the following
nonlinear resistive, inductive, and capacitive LRC
circuits for one input variable (m = 1) and two
state variables (n = 2). In this work, the inputs of
the systems (circuits) are bounded and admissible
continuous functions in t. In addition, a nonlinear
resistor can be both current controlled (R(i)) and
voltage controlled (R(v)) element. A nonlinear in-
ductor is current controlled (L(i)) element while
a nonlinear capacitor is said to be voltage con-
trolled (C(v)) element. The internal resistance of
a current source is infinite while that of a voltage
source is finite and especially chosen to be small.

3.1. Nonlinear resistor

In the following circuit [28] (Figure 1) there is a
nonlinear resistive element which is specified by
i2 = f(v2) and the remaining components R1, R2,
L, C are positive scalars.
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Figure 1. LRC circuit with nonlin-
ear resistive element.

Theorem 1. The nonlinear element of the time-
invariant circuit shown in Figure 1 is specified
by the relation i2 = f(v2). v1 and v2 are the
state variables of the circuit. Then, the solution
v(t) = 0 to the system.

v′1 = 1
C [i(t)− v1

R1
− f(v2)− v2

R2
],

v′2 = [f ′(v2) + 1
R2

]−1[v1−v2L ]
(4)

with i(t) = 0, is globally asymptotically stable and
the circuit will be lossless at infinity if

(i) v1 > v2,

(ii) v2f(v2) ≥ 0,

(iii) f(0) = 0.

Proof. First, let write down the state equations
of the above circuit:

i(t) = v1
R1

+ Cv′1 + f(v2) + v2
R2
,

v1 − v2 = L d
dt [f(v2) + v2

R2
] = L[f ′(v2)v

′
2 +

v′2
R2

].

Then after some arrangement we obtain sys-
tem (4). The natural energy function E1(t) =
E1(v1, v2) from the storage elements (capacitor
and inductor) of this circuit is

E1(t) =
1

2
Cv21 +

1

2
L[f(v2) +

v2
R2

]2.

The energy function (E1 : <2 → <+) satisfies

(i) E1(0) = 0,
(ii) E1(v) > 0, ∀v ∈ <2 − {0}.

E1 is confirmed by the hypothesis (i) of Definition
2. Thus, E1 is a positive definite function. Then,
we write

E1(t) ≥
1

2
Cv21 ≡ α(||v1||). (5)

The derivative of the Lyapunov function along the
trajectories of system (4) gives

E′1(t) = Cv1v
′
1 + L[f(v2) +

v2
R2

][f ′(v2) +
1

R2
]v′2,

By using system (4), we have

E′1(t) = i(t)v1 −
v21
R1
− f(v2)v1 −

v1v2
R2

+[f(v2) +
v2
R2

](v1 − v2),

E′1(t) = i(t)v1 −
v21
R1
− f(v2)v1 −

v1v2
R2

+f(v2)v1 +
v1v2
R2
− f(v2)v2 −

v22
R2
,

E′1(t) = i(t)v1 −
v21
R1
− f(v2)v2 −

v22
R2
.

For i(t) = 0, it follows that

E′1(t) = − v
2
1

R1
+
v22
R2
− v2f(v2)

= −R1I
2
R1
−R2I

2
R2
−RNLi22,

where RNL represents the resistance value of the
nonlinear element. E′1 is verified by (1). The ap-
plication of Theorem 1 shows that: E′1 ≤ 0 on <2,
E1(∞) = 0 and E1(v)→∞ as ||v|| → ∞. Hence,
all the motions of (4) are bounded (as illustrated
in Figure 2a, 2b). The set S where E′1 = 0 is
{0, 0}. This implies that {0, 0} is the only invari-
ant subset of S, and the zero solution or equi-
librium solution of (4) is globally asymptotically
stable. It can be seen that (4) is a lossless system
at infinity due to v(t) = 0. Hence, the system is
zero-state observable. �

3.2. Nonlinear inductor

The circuit shown in Figure 3 [24] contains a non-
linear inductive element and is driven by a time-
dependent current source is(t). Suppose the non-
linear inductor is a Josephson junction described
by iL = aφ(t) + bφ3(t), where φ is the magnetic
flux of the inductor, a, b > 0 are positive con-
stants. The remaining elements R and C are lin-
ear and have positive real values.
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(a) Phase plane plot of system (4) with L = 1
15H (b) Solution of system (4) with L = 4

3H

[R1 = R2 = 1kΩ, C = 10mF , f(v2) = 5v32]

Figure 2. The motions of system (4).

Figure 3. LRC circuit with nonlin-
ear inductive element.

Theorem 2. Let φ and v(= vL) be the state vari-
ables of the above circuit (Figure 3) with iL =
aφ(t) + bφ3(t). Then, the solution (φ(t), v(t)) =
(0, 0) to the system

φ′ = v
L(a+3bφ2)

,

v′ = 1
C [is(t)− v

R − aφ− bφ
3]

(6)

with is(t) = 0 is globally asymptotically stable or
the circuit is lossless at infinity.

Proof. First, let write down the node and v equa-
tions of the above circuit: v = L d

dt(aφ+ bφ3),

is(t) = v
R + Cv′ + aφ+ bφ3

Then after some rearrangement we obtain system
(6).

The native energy function for this circuit is

E2(t) = E2(φ, v) =
1

2
L(aφ+ bφ3)2 +

1

2
Cv2.

The energy function (E2 : <2 → <+) satisfies

(i) E2(0) = 0,

(ii) E2(φ, v) > 0, ∀(φ, v) ∈ <2 − {
√
φ2 + v2 6= 0}.

E2 is confirmed by the hypothesis (i) of Definition
2. Thus, E2 is a positive definite function. Then,
we write

E2(t) ≥
1

2
Cv2 ≡ a(||v||). (7)

The derivative of the energy function E2 along the
trajectories of system (6) gives

E′2(t) = L[aφ+ bφ3][a+ 3bφ2]φ′ + Cvv′.

By using (6), we have

E′2(t) = is(t)v −
1

2
v2.

For is(t) = 0, it follows that

E′2(t) = −1

2
v2 = −RI2R.

E2 is verified by (1). The application of Theo-
rem 2 shows that: E′2 ≤ 0 on <2, E2(∞) = 0

and E2(φ, v) → ∞ as
√
φ2 + v2 → ∞. Hence,

all the motions of (6) are bounded (as illustrated
in Figure 4a, 4b). The set S where E′2 = 0 is
{φ, 0} and from (6) this implies that {0, 0} is the
only invariant subset of S, such that the zero so-
lution or equilibrium solution of (6) is globally
asymptotically stable. Thus, system (6) with its
Lyapunov function satisfies all the assumptions of
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(a) Phase plane plot of system (6) (b) Solution of system (6)

[a = b = 1, R = 100Ω, C = 20mF , L = 20H]

Figure 4. The motions of system (6)

Theorem 2. Therefore, (6) or the related circuit
is lossless due to the trivial solution which occurs
at infinity. �

3.3. Nonlinear capacitor

A nonlinear capacitive element is present in the
following circuit [29] and its voltage drop is no
longer given by q/C, but is more accurately de-
scribed by αq(t) +βq3(t), where α and β are con-
stants. The remaining elements L and R are pos-
itive scalars.

Figure 5. LRC circuit with nonlin-
ear capacitive element.

The above dynamical system generates a differen-
tial equation of the form

q′′ +Rq′ + αq + βq3 = u(t).

Let, q = x is the flow of the charge, α and β
are real constants, and u is the applied voltage.
Instead of the above equation{

x′ = y,
y′ = −Ry − αx− βx3 + u,

(8)

will be discussed.

Theorem 3. The system (8) is stable if

u = 0, α > 0, β < 0

and it is globally asymptotically stable if β < 0 is
replaced by β > 0.

Proof. Let (x(t), y(t)) be a solution of (8) for
t ≥ 0. In the case of β < 0: Let β = −c (c > 0, α
constant), the system has the equilibrium point

(0, 0) and (±
√
αc−1, 0). In the other case (β > 0),

the system has (0, 0) and (±
√
αβ−1, 0). There-

fore, (0, 0) is the only invariant equilibrium point
of (8). For the first case we investigate the sta-
bility of (8). The storage energy function from
power- energy relationship can be constructed in
the neighborhood of the equilibrium point (0, 0)
as

E3(t) = E3(x, y) =
1

2
y2 +

∫ x

0
(αx+ βx3)dx,

E3(t) = E3(x, y) =
1

2
y2 +

α

2
x2 +

β

4
x4.

The energy function (E3 : <2 → <+) satisfies

(i) E3(0) = 0,

(ii) E3(x, y) > 0, ∀(x, y) ∈ <2 − {
√
x2 + y2 6= 0}.

E3 is not radially unbounded. But, in the neigh-
borhood of (0, 0), E3 is positive definite, and we
have

E3(t) ≥
1

2
y2. (9)
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(9) obeys (i) and (ii) of Definition 2. The deriva-
tive of the energy function E3 along the trajecto-
ries of system (8) gives

E′3 = yy′ + αxx′ + βx3x′.

By using (8), we have

E′3 = −Ry2 + uy.

For u(t) = 0, it follows that

E′3 = −Ry2. (10)

(10) is verified by (2) and system (8) is stable. .
On the other hand, the integration of (10) from 0
to t(≥ 0) gives

E3(x(t), y(t)) ≤ E3(x(0), y(0)), t ≥ 0.

That is, E3 is a decreasing function along the so-
lution curve (x(t), y(t)), and (0, 0) is a minimum
point of E3. The above inequality implies that the
motion (x(t), y(t)) will stay in the neighborhood
of the equilibrium point (0, 0) for t ≥ 0 provided
that the initial point (x(0), y(0)) = (x0, y0) is suf-
ficiently near the point (0, 0). Hence, the origin is
stable. In addition, for α = 1 and β < 0 we have
the following inequalities.

E3(x(t), y(t)) ≤ x2(t) + y2(t)

and

E3(x(0), y(0)) ≤ x2(0) + y2(0).

Then, it follows that

x2(t) ≤ E3(t) ≤ x2 + y2,

x2(t) + y2(t) ≤ x2(0) + y2(0), t ≥ 0.

Then, for any given ε > 0, there is a δ > 0. Thus
if, √

x2(0) + y2(0) =
√
x20 + y20

and √
x2(t) + y2(t) < ε.

Then

||x0|| < δ implies that ||x(t)|| < ε.

This is precisely the most common definition of
stability of a system which has an isolated equi-
librium point (0, 0).

In the case where β > 0 : E′3(x, y) ≤ 0 at all
points (x, y) ∈ <2. That is E3(t) is a decreasing
function along any motion of (8), E3(∞) = 0 and
E3(x)→∞ as ||x|| → ∞.Hence, all the solutions
of (8) are bounded.The set S, where E3 = 0 is
(x, 0), and (0, 0) is the only invariant subset of S.
Thus, the application of Theorem 3 shows that
the solution x(t) = 0 to (8) as t → ∞. There-
fore, the system is zero-state observable. This
also implies that there is no energy dissipation in
the circuit at infinity (t = ∞); that is, the cir-
cuit will be lossless at infinity. This explanation
is compatible with Figure 6a, 6b. Besides, when
the value of R increased, the motion goes to the
equilibrium point immediately. �

The simulations are verifying our theoretical re-
sults. The trajectories in the phase spaces (Fig-
ure 2a, 4a, and 6a) go to the equilibrium solutions
(x(∞), y(∞)) = (0, 0). On the other hand, time
series solutions (Figure 2b, 4b, and 6b) approach
zero at infinity.

The three strong passivity results or the bound-
edness of the motions (strict passivity) of (4), (6)
and (8) with their input functions are the follow-
ing.

Theorem 4. Suppose that all the conditions in
Theorems 1, 2, and 3 are satisfied and also as-
sume that (3) holds such that

max {
∫ t
0 i(s)ds,

∫ t
0 is(s)ds,

∫ t
0 u(s)ds} ≤ K <∞,

∀t > 0,

where K is a positive constant. Then, all the mo-
tions of (4), (6) and (8) with their forcing func-
tions are bounded or the systems are strongly pas-
sive.

Proof. From the proof of Theorem 1 we have

E′1(t) = − v
2
1

R1
− v22
R2
− v2f(v2) + iv1.

Then
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(a) Phase plane plot of system (6) (b) Solution of system (6)

[R = 0.5Ω, α = β = 10]

Figure 6. The motions of system (6).

E′1(t) +
v21
R1

+
v22
R2
≤ iv1.

Hence, by Definition 3, the system (4) is strictly
passive.

Furthermore

E′1(t) ≤ iv1 ≤ i(1 + v21),

which also known as the dissipative inequality.

By (5), it follows that

E′1(t) ≤ i(t) +
2

C
E1(t)i(t). (11)

Integrating (11) from 0 to t(> 0), and using The-
orem 4, it follows that

E1(t) ≤ K +
2

C

∫ t

t0

E1(s)i(s)ds.

Then, Gronwall’s inequality [3] yields

E1(t) ≤ K exp(
2K

C
). (12)

Using the foregoing procedure, the following re-
sults are obtained which determine the upper
bounds of E2 and E3, respectively.

E2(t) ≤ K exp(
2K

C
), (13)

and

E3(t) ≤ K exp(2K), (14)

Finally, the connection between (5) and (12), (7)
and (13), and (9) and (14), respectively, give the
following results:

1

2
Cv21 ≤ E1(t) ≤ K exp(

2K

C
),

1

2
Cv2 ≤ E2(t) ≤ K exp(

2K

C
),

and

1

2
y2 ≤ E3(t) ≤ K exp(2K).

Thus, the energy functions E1, E2, and E3 are
bounded. This also implies that all the mo-
tions of (4), (6), and (8) are bounded in mag-
nitude. Hence, the related systems (or circuits)
are strongly passive. �

4. Discussion

The properties of energy function and its Lie de-
rivative determine the criteria of Lyapunov sta-
bility theory. Thus, our natural approach in this
paper may be applicable to all physical systems
whatever the orders of the systems. Here, we will
only improve the stability of some second order
systems that relevant to our study. In this con-
nection, the stability of the following differential
equations (with their arguments) has been inves-
tigated in [25] and [30], respectively,

x′′ + a(t)f(x, x′)x′ + b(t)g(x) = 0 (a1)
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V0 =
1

2
y2 + b(t)

∫ x

0
g(ξ)dξ + k, (a2)

(k > 0, constant),

V ′0 = −a(t)f(x, y)y2 + b′(t)

∫ x

0
g(ξ)dξ; (a3)

and

x′′ + x′ + p(t)g1(x) + q(t)g2(x) = 0, (b1)

V (t, x, y) =
1

2
y2 + p(t)G1(x) + q(t)G2(x), (b2)

where Gi(x) =
∫ x
0 gi(ξ)dξ (i = 1, 2),

V ′(t, x, y) = p′(t)G1(x)− p(t)xg1(x)

+ q′(t)G2(x)− q(t)xg2(x).
(b3)

Remark 1

There may be some objection regarding to the
derivative of Lyapunov functions, but power-
energy relationship shows that this objection is
unfounded. For example, consider a series LRC
circuit which has b(t)g(q) voltage on a time vary-
ing nonlinear capacitor with q(t) charge that flows
in the circuit. Let PC , WC be the power and
energy of the capacitor. Then, we have the fol-
lowings:

(i) PC(t) = b(t)g(q)dqdt = b(t)g(q)q′,

(ii) WC(t) =
∫ q
0 b(t)g(s)ds, WC(0) = 0

where ds = q′(t)dt. Then,

(iii) d
dtWC(t) = b(t)g(q)q′.

Thus, for the construction of energy and power
functions that associated with capacitors, we
nicely apply the above loop. This may enable us
to improve the stability of many systems, because
the above algorithm eliminates to take the partial
derivative of WC(t).

(A) The natural approach improves the
result given in [25] such as:

(a1) may represent a LRC circuit (dissipative)
system with

x′ = y,
y′ = −a(t)f(x, y)y − b(t)g(x).

(a4)

The natural energy function for (a4) must be

V (t, x, y) =
1

2
y2 +

∫ x(t)

0
b(t)g(s)ds. (a5)

Since, (a5) has been constructed from the power-
energy relationship of (a4). The Lie derivative of
(a5) is

V ′(t, x, y) = −α(t)f(x, y)y2. (a6)

(a6) is the dissipated power of (a4) and verified
by (1). The difference between (a2) and (a5), and
between (a3) and (a6) state our improvement.

(B) The natural approach improves the
results given in [30] such as:

The actual energy function for (b1) is

V (t, x, y) =
1

2
y2 +

∫ x(t)

0
[p(t)g1(s)

+ q(t)g2(s)]ds,

(b4)

where ds = x′(t)dt, p > 0 and q > 0 are con-
tinuous functions on [0,∞), g1, g2 are continuous
functions on <, satisfying (A1) of [30].

Then, the time derivative of (b4) along the solu-
tions of (b1) gives

V ′(t) = −y2 < 0. (b5)

In fact, the coefficient of x′ in (b1) is 1, and (b5)
is confirmed by (1) due to the suitable tool. The
comparisons between (b2) and (b4), and between
(b3) and (b5) give our improvement.

Further, the approach in this study also improves
many results in the books [1] and [24] that based
on Lyapunov approach. This list can be extended
for the other related references that not cited here.

5. Conclusion

The energy of a system determines its behavior.
In this context, this paper plays two important
roles in the Lyapunov stability theory. First, it
provides the construction of the energy function,
which may obtain from the physical meaning of
the given system. Second, it implies that the de-
rivative of the energy function along the system
trajectories is equal to the negative value of the
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dissipated power in the system. These further
clarify the Lyapunov stability. Hence, one can
nicely check the derivative of the energy function
of a given physical system with (1). The proposed
approach can be applicable to higher order differ-
ential systems. From now on, everyone involved
in the subject will be able to find the same stabil-
ity results for a system under consideration. We
hope this present work will open new doors in the
stability analysis of differential systems.
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