Solutions to Diffusion-Wave Equation in a Body with a Spherical Cavity under Dirichlet Boundary Condition
DOI:
https://doi.org/10.11121/ijocta.01.2011.0035Keywords:
Diffusion-wave equation, Laplace transform, Fourier transform, Legendre transform, Weber transform, Mittag-Leffler functionAbstract
Solutions to time-fractional diffusion-wave equation with a source term in spherical coordinates are obtained for an infinite medium with a spherical cavity. The solutions are found using the Laplace transform with respect to time t, the finite Fourier transform with respect to the angular coordinate Ï•, the Legendre transform with respect to the spatial coordinate μ, and the Weber transform of the order n+1/2 with respect to the radial coordinate r. In the central symmetric case with one spatial coordinate r the obtained resultscoincide with those studied earlier.
Downloads
References
Bagley, R.L. and Torvik, P.J. Fractional calculus model of viscoelastic behavior. J. Rheol., 30, 133- 155 (1986). CrossRef
Carpinteri, A. and Cornetti, P., A fractional calculus approach to the description of stress and strain localization. Chaos, Solitons Fractals, 13, 85-94 (2002). CrossRef
Magin, R.L., Fractional Calculus in Bioengineering. Begell House Publishers, Inc, Connecticut (2006).
Mainardi, F., Fractional calculus: Some basic problems in continuum and statistical mechanics. In: A. Carpinteri and F. Mainardi, eds. Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien, pp. 291-348 (1997).
Mainardi, F., Applications of fractional calculus in mechanics. In: P. Rusev, I. Dimovski and V. Kiryakova, eds. Transform Methods and Special Functions. Bulgarian Academy of Sciences, Sofia, pp. 309-334 (1998).
Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339, 1-77 (2000). CrossRef
Metzler, R. and Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37, R161-R208 (2004). CrossRef
Povstenko, Y.Z., Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses, 28, 83-102 (2005). CrossRef
Rabotnov, Yu.N., Creep of Structural Elements, Nauka, Moscow (1966). (In Russian).
Rabotnov Yu.N., Elements of Hereditary Solid Mechanics. Mir, Moscow (1980).
Rossikhin, Yu.A. and Shitikova, M.V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev., 50, 15-67 (1997). CrossRef
Uchaikin, V.V., Method of Fractional Derivatives. Artishock, Ulyanovsk (2008). (In Russian).
West, B.J., Bologna, M. and Grigolini P., Physics of Fractal Operators. Springer, New York (2003). CrossRef
Zaslavsky, G.M., Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 371, 461-580 (2002). CrossRef
Kilbas, A., Srivastava, H.M. and Trujillo, J.J., Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).
Povstenko, Y.Z., Time-fractional radial diffusion in a sphere. Nonlin. Dyn., 53, 55-65 (2008). CrossRef
Herzallah, M.A.E., El-Sayed, A.M.A. and Baleanu, D., On the fractional-order diffusion-wave process. Romanian J. Phys., 55, 274-284 (2010).
Miller, K.S. and Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993).
Podlubny, I., Fractional Differential Equations. Academic Press, San Diego (1999).
Klimek, M., On Solutions of Linear Fractional Differential Equations of a Variational Type. Czestochowa University of Technology (2009).
Baleanu, D., Mustafa, O.G. and Agarwal, R.P., On the solution set for a class of sequential fractional differential equations. J. Phys. A: Math. Theor., 43, 385209 (7pp) (2010). CrossRef
Baleanu, D., Agarwal, R.P., Mustafa, O.G. and Cosilschi, M., Asymptotic integration of some nonlinear differential equations with fractional time derivative. J. Phys. A: Math. Theor., 44, 055203 (9pp) (2011). CrossRef
Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi, eds. Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien, pp. 223-276 (1997).
Gorenflo, R. and Mainardi, F., Fractional calculus and stable probability distributions. Arch. Mech., 50, 377-388 (1998).
Mainardi, F. and Gorenflo, R., On Mittag-Lefflertype functions in fractional evolution processes. J. Comput. Appl. Math., 118, 283-299 (2000). CrossRef
Jiang, X.Y. and Xu, M.Y., The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems. Physica A, 389, 3368-3374 (2010). CrossRef
Lenzi, E.K., da Silva, L.R., Silva, A.T., Evangelista, L.R. and Lenzi, M.K., Some results for a fractional diffusion equation with radial symmetry in a confined region. Physica A, 388, 806-810 (2009). CrossRef
Lenzi, E.K., Rossato, R., Lenzi, M.K., da Silva, L.R. and Gon¸calves, G., Fractional diffusion equation and external forces: solutions in a confined region. Z. Naturforsch. A, 65, 423-430 (2010).
Narahari Achar, B.N. and Hanneken, J.W., Fractional radial diffusion in a cylinder. J. Mol. Liq., 114, 147-151 (2004). CrossRef
Ozdemir, N., Agrawal, O.P., Karadeniz, D. and Iskender, B.B., Axis-symmetric fractional diffusion-wave problem: Part I - Analysis, In: 6th Euromech Nonlinear Dynamics Conference (ENOC-2008), Saint Petersburg, Russia, 30 June-4 July 2008.
Ozdemir, N., Agrawal, O.P., Karadeniz, D. and Iskender, B.B., Fractional optimal control problem of an axis-symmetric diffusion-wave propagation. Phys. Scr. T, 136, 014024 (5pp) (2009). CrossRef
Ozdemir, N. and Karadeniz, D., Fractional diffusion-wave problem in cylindrical coordinates. Phys. Lett. A, 372, 5968-5972 (2008). CrossRef
Ozdemir, N., Karadeniz, D. and Iskender, B.B., Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A, 373, 221-226 (2009). CrossRef
Povstenko, Y.Z., Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation. Int. J. Eng. Sci., 43, 977-991 (2005). CrossRef
Povstenko, Y.Z., Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solid Struct., 44, 2324-2348 (2007). CrossRef
Povstenko, Y.Z., Fractional radial diffusion in a cylinder. J. Mol. Liq., 137, 46-50 (2008). CrossRef
Povstenko, Y.Z., Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Quart. J. Mech. Appl. Math., 61, 523-547 (2008). CrossRef
Povstenko, Y.Z., Fundamental solutions to threedimensional diffusion-wave equation and associated diffusive stresses. Chaos Solitons Fractals, 36, 961-972 (2008). CrossRef
Povstenko, Y.Z., Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses, 31, 127-148 (2008). CrossRef
Povstenko, Y.Z., Fractional radial diffusion in an infinite medium with a cylindrical cavity. Quart. Appl. Math., 67, 113-123 (2009).
Povstenko, Y., Evolution of the initial box-signal for time-fractional diffusion-wave equation in a case of different spatial dimensions. Physica A, 389, 4696-4707 (2010). CrossRef
Povstenko, Y., Dirichlet problem for timefractional radial heat conduction in a sphere and associated thermal stresses. J. Thermal Stresses, 34, 51-67 (2011). CrossRef
Qi, H., Liu, J., Time-fractional radial diffusion in hollow geometries. Meccanica, 45, 577-583 (2010). CrossRef
Debnath, L. and Bhatta, D., Integral Transforms and Their Applications. 2nd ed. Chapman & Hall/CRC, Boca Raton (2007).
Doetsch, G., Anleitung zum praktischen Gebrauch der Laplace-Transformation und der ZTransformation. Springer, M¨unchen (1967).
Galitsyn, A.S. and Zhukovsky, A.N., Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev (1976). (In Russian).
Ozisik, M.N., Heat Conduction. John Wiley and Sons, New York (1980).
Sneddon, I.N., The Use of Integral Transforms. McGraw-Hill, New York (1972).
Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F., Higher Transcendental Functions, vol. 3. McGraw-Hill, New York (1955).
Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions. Dover, New York (1972).
Downloads
Published
How to Cite
Issue
Section
License
Articles published in IJOCTA are made freely available online immediately upon publication, without subscription barriers to access. All articles published in this journal are licensed under the Creative Commons Attribution 4.0 International License (click here to read the full-text legal code). This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your work will ensure your right to make your work freely and openly available.
Under the Creative Commons Attribution 4.0 International License, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, so long as the original authors and source are credited.
The readers are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
This work is licensed under a Creative Commons Attribution 4.0 International License.