Brezzi-Pitkaranta stabilization and a priori error analysis for the Stokes Control

Authors

  • Aytekin Cibik Gazi University
  • Fikriye Yilmaz Gazi University

DOI:

https://doi.org/10.11121/ijocta.01.2017.00312

Keywords:

Finite element, Brezzi-Pitkaranta stabilization, optimal control, Stokes equations

Abstract

In this study, we consider a Brezzi-Pitkaranta stabilization scheme for the optimal control problem governed by stationary Stokes equation, using a P1-P1 interpolation for velocity and pressure. We express the stabilization as extra terms added to the discrete variational form of the problem.  We first prove the stability of the finite element discretization of the problem. Then, we derive a priori error bounds for each variable and present a numerical example to show the effectiveness of the stabilization clearly.

Downloads

Download data is not yet available.

References

Abergel, F., Temam, R., On some optimal control problems in fluid mechanics, Theoret. Comput. Fluid Mech., 1 (6), 303-325, 1990.Crossref

Arnold, D., Brezzi, F., Fortin, M., A stable finite element for the Stokes equations, Calcolo 21, 337-344, 1984.Crossref

Adams, R.A., Sobolev Spaces, Academic Press, New York, 1975.

Baiocchi, C., Brezzi, F. and Franca, L., Virtual bubbles and Galerkin-least-squares type methods (Ga. L. S.), Comput. Methods Appl. Mech. Engrg., 105, 125-141, 1993.Crossref

R. Becker and P. Hansbo, A simple pressure stabilization method for the Stokes equation, Commun. Numer. Meth. Engng, 24, 2008.

Barrenechea, G.R. and Blasco, J., Pressure stabilization of finite element approximations of time-dependent incompressible flow problems, Computer Methods in Applied Mechanics and Engineering, 197:1-4, 219-231, 2007.

Bochev, P. and Gunzburger, M., Least-squares finite-element methods for optimization and control for the Stokes equations, Comput. Math. Appl., 48, 1035-1057, 2004.Crossref

Brezzi, F. and Pitkaranta, J., On the stabilization of finite element approximations of the Stokes problem, in Efficient Solution of Elliptic Systems, W. Hackbush, ed., vol. 10 of Notes on Numerical Fluid Mechanics, Vieweg, 11-19, 1984.

Brooks, A. and Hughes, T., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32, 199-259, 1982.Crossref

Casas, E., Optimality conditions for some control problems of turbulent flows, in: Flow Control, Minneapolis, MN, 1992, in: IMA Vol. Math. Appl., vol. 68, Springer, New York, 127-147, 1995.Crossref

Codina, R. and Blasco, J., Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations, Numer. Math., 87, 59-81, 2000.Crossref

Douglas, J. and Wang, J., An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52,495-508, 1989.Crossref

Franca, L. and Hughes, T., Convergence analyses of Galerkin-Least-Squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods. Appl. Mech. Engrg., 105, 285-298.,1993.Crossref

De los Reyes, J.C., Meyer, C. and Vexler, B., Finite element error analysis for state-constrained optimal control of the Stokes equations, WIAS Preprint No. 1292, 2008.

Gunzburger, M., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice and Algorithms, Academic Press, Boston, 1989.

Hecht, N., New development in FreeFem++, J. Numer. Math. 20, no. 3-4, 251-265, 2012.Crossref

Heinkenschloss, M. and Leykekhman, D., Local Error Estimates for SUPG Solutions of Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems, Rice University, Houston, CAAM Technical Report TR08-30, 2008.

M. Hinze, N. Yan and Z. Zhou, Variational discretization for optimal control governed by convection dominated diffusion equations, J. Comput. Math., 27, 237-253, 2009.

Latche, J.-C. and Vola, D., Analysis of the Brezzi-Pitkaranta Stabilized Galerkin Scheme for Creeping Flows of Bingham Fluids, Siam J. Numer. Anal., 42:3, 1208-1225, 2004.Crossref

Layton, W.J., A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133, 147-157, 2002.Crossref

Lions, J.L., Optimal control of systems governed by partial differential equations, Springer Verlag, New York, 1971.Crossref

Rees, T. and Wathen, A.J., Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations, SIAM J. Sci. Comput., 33(5), 2903-2926, 2011.Crossref

Rösch, A. and Vexler, B., Optimal Control of the Stokes Equations: A Priori Error Analysis for Finite Element Discretization with Postprocessing, SIAM J. Numer. Anal., 44, 1903-1920, 2006. Stoll, M. and Wathen, A., All-at-once solution of time-dependent Stokes control, Journal of Computational Physics, 231(1), 498-515, 2013.

Sun, T., Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem. Int. J. Numer. Anal. Model. 7, 87-107, 2010.

Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Amer Mathematical Society, 2010.

Zhou, Z. and Yan, N., The local discontinuous Galerkin method for optimal control problem governed by convection-diffusion equations, International Journal of Numerical Analysis & Modeling 7, 681-699, 2010.

Downloads

Published

2016-12-12
CITATION
DOI: 10.11121/ijocta.01.2017.00312
Published: 2016-12-12

How to Cite

Cibik, A., & Yilmaz, F. (2016). Brezzi-Pitkaranta stabilization and a priori error analysis for the Stokes Control. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(1), 75–82. https://doi.org/10.11121/ijocta.01.2017.00312

Issue

Section

Research Articles