Approximate solution of generalized pantograph equations with variable coefficients by operational method

Authors

  • Yalçın Öztürk
  • Mustafa Gülsu

DOI:

https://doi.org/10.11121/ijocta.01.2017.00308

Keywords:

Pantograph equations, Chebyshev polynomials, approximation method, operational matrix method

Abstract

In this paper, we present efficient direct solver for solving the generalized pantographequations with variable coefficients. The approach is based on the second kind Chebyshev polynomialstogether with operational method. The main characteristic behind this approach is that it reducessuch problem to ones of solving systems of algebraic equations. Only a small number of Chebyshevpolynomials are needed to obtain a satisfactory result. Numerical results with comparisons are givento confirm the reliability of the proposed method for solving generalized pantograph equations with variable coefficients.

Downloads

Download data is not yet available.

References

J.R. Ockendon and A.B. Tayler, The dynamics of a current collection system for an electric locomotive. Proc. Roy. Soc. London, Ser. A, 322, 447-468 (1971). Crossref

A.B. Tayler, Mathematical Models in Applied Mathematics. Clarendon Press, Oxford, (1986).

W.G. Ajello, H.I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math., 52, 855-869 (1992). Crossref

M.D. Buhmann and A. Iserles, Stability of the discretized pantograph differential equation. Math. Comput., 60, 575-589 (1993). Crossref

G. Derfel, On compactly supported solutions of a class of functional-differential equations, in Modern Problems of Function Theory and Functional Analysis. Karaganda University Press, Kazakhstan,

A. Feldstein and Y. Liu, On neutral functional-differential equations with variable time delays. Math. Proc. Camb. Phil. Soc., 124, 371-384 (1998). Crossref

G. Derfeland N. Dyn, D. Levin, Generalized refinement equation and subdivision process. J. Approx. Theory, 80, 272-297 (1995). Crossref

M. Sezer and A. Akyuz, A Taylor method for numerical solution of generalized pantograph equation with linear functional argument. J. Comp. Appl. Math., 200, 217-225 (2007). Crossref

M. Sezer, S. Yalnbas and N. Sahin, Approximate solution of multi-pantograph equation with variable coefficients. J. Comp. Appl. Math., 214, 406-416 (2008). Crossref

A. Saadatmandi and M. Dehghan, Variational iteration method for solving a generalized pantgoraph equation. Comp. Math. Appl., 58, 2190-2196 (2009). Crossref

D. J. Evans, K.R. Raslan, The Adomian decomposition method for solving delay differential equation. Int. J. Comp. Math., 82(1), 49-54 (2005). Crossref

M. Buhmann, A. Iserles, Stability of the discretized pantograph differential equation. J. Math. Comp., 60, 575-589 (2005). Crossref

D. Li., M.Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation. Appl. Math. Comp., 163, 383-395 (2005). Crossref

F. Shakeri, M. Dehghan, Solution of the delay differential equations via homotopy perturbation method. Math. Comp. Modelling, 48, 486-498 (2008). Crossref

Y. Muroya, E. Ishiwata, H. Brunner, On the attainable order of collocation methods for pantograph integro-differential equations. J. Comp. Appl. Math., 152, 347-366 (2003). Crossref

Z. Huan-Yu, Variational iteration method for solving the multipantograph delay equation. Physics Letter A, 372 (43), 6475-6479 (2008). Crossref

M. Sezer, M. Gulsu, A new polynomial approach for solving difference and Fredholm integro-difference equations with mixed argument. Appl. Math. Comp., 171, 332-344 (2005). Crossref

S. Ping Yang, A.G. Xiao, Convergence of the variational iteration method for solving multi-delay differential equaitons. Comp. Math. Appl., 61(8), 2148-2151 (2011). Crossref

M. Z. Liu, D. Li, Properties of analitic solution and numerical solution of multi-pantograph equation. Appl. Math. Comp., 155, 853-871 (2004). Crossref

E. Yusufoglu, An efficint algorithm for solving generalized pantograph equation with linear functional argument. Appl. Math. Comp., 217, 3591-3595 (2010). Crossref

A. El-Safty, M.S. Salim, M.A. El-Khatib, Convergence of the spline function for delay dynamic system. Int. J. Comp. Math., 80(4),509-518 (2004). Crossref

L. Fox, I.B. Parker, Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London, (1968).

J. C. Mason and D. C. Handscomb, Chebyshev polynomials. Chapman and Hall/CRC, New York, (2003).

J. P. Body, Chebyshev and fourier spectral methods, University of Michigan, New York, (2000).

A. Saadatmandi, M. Dehghan, Numerical solotion of hyperbolic telegraph equation using the Chebshev tau method. Numer. Meth. Partial Diff. Equations, 26, 239-252 (2010). Crossref

M. Lakestani and M. Dehghan, Numerical solution of Riccati equation using the cubic B spline scaling functions and Chebyshev cardinal functions. Comp. Physics Communications, 181, 957-966 (2010). Crossref

M. Lakestani and M. Dehghan, Numerical solution of fourth order integro differential equations using Chebyshev cardinal functions. Inter. J. Com. Math., 87, 1389-1394 (2010). Crossref

A. Saadatmandi and M. Dehghan, The numerical solution of problems in calculus of variation using Chebyshev finite difference method. Phys. Letter A, 22, 4037-4040 (2008). Crossref

R. K. Pandey and N. Kumar, Solution of Lane-Emden type equations using Berstein operational matrix of differentiation. New Astronomy, 17, 303-308 (2012). Crossref

A. Saadatmandi and Mehdi Dehghan, A new aperational matrix for solving fractional-order differential equations. Comp. Math. Appl., 59, 1326-1336 (2010).Crossref

K. Parand, M. Razzaghi, Rational Chebyshev tau method for solving higher order ordinary differential equations. Int. J. Comput. Math., 81:73-80 (2004).

M. Razzaghi and S. Yousefi, Legendre wavelets operational matrix of integration. Int. J. Syst. Sci., 32(4), 495-502 (2001). Crossref

E. Babolian and F. Fattahzadeh, Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comp., 188:417-425 (2007). Crossref

G.P. Rao and K.R. Palanisamy, Walsh stretch matrices and functional differential equations. IEEE Trans. Autom. Control, 27, 272-276 (1982). Crossref

C. Hwang, Solution of a functional differential equation via delayed unit step functions. Int. J. Syst. Sci., 14(9), 1065-1073 (1983). Crossref

C. Hwang and Y.P. Shih, Laguerre series solution of a functional differential equation. Int. J. Syst. Sci., 13(7), 783-788 (1982). Crossref

Downloads

Published

2016-12-12
CITATION
DOI: 10.11121/ijocta.01.2017.00308
Published: 2016-12-12

How to Cite

Öztürk, Y., & Gülsu, M. (2016). Approximate solution of generalized pantograph equations with variable coefficients by operational method. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(1), 66–74. https://doi.org/10.11121/ijocta.01.2017.00308

Issue

Section

Research Articles