The Numerical Solutions of a Two-Dimensional Space-Time Riesz-Caputo Fractional Diffusion Equation

Authors

  • Necati OZDEMIR
  • Derya AVCI
  • Beyza Billur ISKENDER

DOI:

https://doi.org/10.11121/ijocta.01.2011.0028

Keywords:

Caputo, Riesz, Gr¨unwald-Letnikov, Fourier Series, Laplace Transform

Abstract

This paper is concerned with the numerical solutions of a two dimensional space-time fractional differential equation used to model the dynamic properties of complex systems governed by anomalous diffusion. The space-time fractional anomalous diffusion equation is defined by replacing second order space and first order time derivatives with Riesz and Caputo operators, respectively. By using Laplace and Fourier transforms, a general representation of analytical solution is obtained as Mittag-Leffler function. Gr\"{u}nwald-Letnikov (GL) approximation is also used to find numerical solution of the problem. Finally, simulation results for two examples illustrate the comparison of the analytical and numerical solutions and also validity of the GL approach to this problem.

Downloads

Download data is not yet available.

Author Biography

Necati OZDEMIR

Mathematics  Department

References

Zhuang, P., Liu, F., Space-Time Riesz Fractional Partial Differential Equations with Periodic Conditions. Numer. Math. J. Chinese (English Ser.), 16, 181-192 (2007).

Shen, S., Liu, F., Anh, V., Turner, I., The Fundamental Solution and Numerical Solution of The Riesz Fractional Advection-Dispersion Equation. IMA J. Appl. Math., 73, 850-872(2008). CrossRef

Chen, J., Liu, F., Turner, I., Anh, V., The Fundamental and Numerical Solutions of The Riesz Space-Fractional Reaction-Dispersion Equation. ANZIAM J., 50, 45-57 (2008). CrossRef

Yang, Q., Turner, I., Liu, F., Analytical and Numerical Solutions For The Time and Space-Symmetric Fractional Diffusion. ANZIAM J., 50, 800-814 (2008).

Zhuang, P., Liu, F., Anh, V., Turner, I., Numerical Methods For The Variable-Order Fractional Advection-Diffusion Equation With A Nonlinear Source Term. SIAM J. Numer. Anal., 47, 1760-1781 (2009). CrossRef

Meerschaert, M.M., Tadjeran, C., Finite Difference Approximations For Fractional Advection-Dispersion Flow Equations. J. Comput. Appl. Math., 172, 65-77 (2004). CrossRef

Yang, Q., Liu, F., Turner, I., Numerical Methods for Fractional Partial Differential Equations with Riesz Space Fractional Derivatives. Appl. Math. Model., 34, 200-218 (2010). CrossRef

Ciesielski, M., Leszczynski, J., Numerical Solutions of a Boundary Value Problem for the Anomalous Diffusion Equation with the Riesz Fractional Derivative. Computer Methods in Mechanics (CMM-2005), June 21-24, Czestochowa, Poland (2005).

Ciesielski, M., Leszczynski, J., Numerical Solutions to Boundary Value Problem for Anomalous Diffusion Equation with Riesz-Feller Fractional Operator. J. Theoret. Appl. Mech., 44(2), 393-403 (2006).

Gorenflo, R., Iskenderov, A., Luchko, Y., Mapping Between Solutions of Fractional Diffusion-Wave Equations. Fract. Calc. Appl. Anal., 3, 75-86 (2000).

Saichev, A.I, Zaslavsky, G.M., Fractional Kinetic Equations: Solutions and Applications. Chaos, 7, 753-764 (1997). CrossRef

Povstenko, Y.Z., Thermoelasticity That Uses Fractional Heat Conduction Equation. J. Math. Sci. (N. Y.), 162, 296-305 (2009). CrossRef

Meerschaert, M.M, Scheffler, H.P, Tadjeran, C., Finite Difference Methods For Two-Dimensional Fractional Dispersion Equation. J. Comput. Phys., 211, 249–261 (2006). CrossRef

El-Sayed, A.M.A., Gaber, M., On The Finite Caputo and Finite Riesz Derivatives. Electronic Journal of Theoretical Physics, 12, 81-95 (2006).

Ozdemir, N., Agrawal, O.P., Karadeniz, D., Iskender, B.B., Analysis of an axis-symmetric fractional diffusion-wave problem. J. Phys. A: Math. Theor., 42, 355228 (10pp) (2008).

Ozdemir, N., Karadeniz, D., Fractional Diffusion-Wave Problem in Cylindrical Coordinates. Phys. Lett. A, 372, 5968-5972 (2008). CrossRef

Agrawal, O.P., Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain. Nonlinear Dynam., 29, 145-155 (2002). CrossRef

Hilfer, R., Fractional Diffusion Based on Riemann-Liouville Fractional Derivatives. J. Phys. Chem. B, 104, 3914-3917 (2000). CrossRef

Mainardi, F., The Fundamental Solutions For The Fractional Diffusion-Wave Equation. Appl. Math. Lett., 9, 23-28 (1996). CrossRef

Povstenko, Y.Z., Time-Fractional Radial Diffusion in A Sphere. Nonlinear Dynam., 53, 55-65 (2008). CrossRef

Povstenko, Y.Z., Fractional Radial Diffusion in A Cylinder. Journal of Molecular Liquids, 137, 46-50 (2008). CrossRef

Luchko, Y.F., Matrinez, H., Trujillo J.J., Fractional Fourier Transform and Some of Its Applications. Fract. Calc. Appl. Anal., 11 457-470 (2008).

Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

Oldham, K.B., Spanier J., The Fractional Calculus. Academic Press, New York (1974).

Podlubny, I., Fractional Differential Equations. Academic Press, San Diego (1999).

Samko, S.G, Kilbas, A.A., Marichev O.I., Fractional Integrals and Derivatives - Theory and Applications. Gordon and Breach, Longhorne Pennsylvania (1993).

Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order. Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri and F. Mainardi, Eds), 223-276, Springer, New York (1997).

Downloads

Published

2011-06-30
CITATION
DOI: 10.11121/ijocta.01.2011.0028
Published: 2011-06-30

How to Cite

OZDEMIR, N., AVCI, D., & ISKENDER, B. B. (2011). The Numerical Solutions of a Two-Dimensional Space-Time Riesz-Caputo Fractional Diffusion Equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 1(1), 17–26. https://doi.org/10.11121/ijocta.01.2011.0028

Issue

Section

Numerical Methods