Minimax fractional programming problem involving nonsmooth generalized ?-univex functions

Authors

  • Anurag JAYSWAL
  • Rajnish KUMAR
  • Dilip KUMAR

DOI:

https://doi.org/10.11121/ijocta.01.2013.00102

Keywords:

Nondifferentiable minimax fractional programming, α-univexity, sufficient optimality conditions, duality

Abstract

In this paper, we introduce a new class of generalized ?-univex functions where the involved functions are locally Lipschitz. We extend the concept of ?-type I invex [S. K. Mishra, J. S. Rautela, On nondifferentiable minimax fractional programming under generalized ?-type I invexity, J. Appl. Math. Comput. 31 (2009) 317-334] to ?-univexity and an example is provided to show that there exist functions that are ?-univex but not ?-type I invex. Furthermore, Karush-Kuhn-Tucker-type sufficient optimality conditions and duality results for three different types of dual models are obtained for nondifferentiable minimax fractional programming problem involving generalized ?-univex functions. The results in this paper extend some known results in the literature.

Downloads

Download data is not yet available.

Author Biography

Anurag JAYSWAL

Applied Mathematics

Assistant Professor

References

C. R. Bector, B. L. Bhatia, Sufficient optimality and duality for a minimax problems. Utilitas Math., 27, 229-247 (1985).

C. R. Bector, S. K. Suneja, S. Gupta, Univex functions and univex nonlinear programming. Proceedings of the Administrative Sciences Association of Canada, 115-124, (1992).

S. Chandra, B. D. Craven, B. Mond, Generalized fractional programming duality: A ratio game approach. J. Austral. Math. Soc. Ser. B, 28, 170-180 (1986). CrossRef

A. Charnes, W. W. Copper, Goal programming and multi-objective optimization. Part I, European J. Oper. Res.1, 39-54 (1977). CrossRef

S. Chandra, V. Kumar, Duality in fractional minimax programming. J. Austral. Math. Soc. Ser. A, 58, 376-386 (1995). CrossRef

F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York, 1983.

L. Fan, Y. Guo, On strongly α-preinvex functions. J. Math. Anal. Appl., 330, 1412–1425 (2007). CrossRef

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl., 80, 545-550 (1981). CrossRef

M. A. Hanson, B. Mond, Further generalizations of convexity in mathematical programming. J. Inform. Optim. Sci., 3, 25-32 (1982).

A. Jayswal, Non-differentiable minimax fractional programming with generalized -univexity. J. Comput. Appl. Math., 214, 121-135 (2008). CrossRef

H. C. Lai, J. C. Liu, K. Tanaka, Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl., 230, 311-328 (1999). CrossRef

H. C. Lai, J. C. Lee, On duality theorems for a nondifferentiable minimax fractional programming. J. Comput. Appl. Math., 146, 115-126 (2002). CrossRef

J. C. Liu, Optimality and duality for multiobjective fractional programming involving nonsmooth -convex functions. Optimization, 36, 333-346 (1996). CrossRef

J. C. Liu, Optimality and duality for multiobjective fractional programming involving nonsmooth pseudoinvex functions. Optimization, 37, 27-39 (1996). CrossRef

X. J. Long, J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity, Numerical Algebra, Control and Optimization. 1, 361-370 (2011).

S. K. Mishra, R. P. Pant, J. S. Rautela, Generalized -invexity and nondifferentiable minimax fractional programming. J. Comput. Appl. Math., 206, 122-135 (2007). CrossRef

S. K. Mishra, J. S. Rautela, On nondifferentiable minimax fractional programming under generalized -type I invexity. J. Appl. Math. Comput., 31, 317-334 (2009). CrossRef

M. A. Noor, On generalized preinvex functions and monotonicities. J. Ineq. Pure Appl. Math., 5, 1-9 (2004).

W. E. Schmitendorf, Necessary conditions and sufficient conditions for static minimax problems, J. Math. Anal. Appl., 57, 683-693 (1977). CrossRef

I. M. Stancu Minasian, Fractional programming theory, methods and applications. Kluwer, Dordrecht, 1997.

S. Tigan, On some fractional programming models occurring in minimum-risk problem. in: A. Cambini, E. Castagnoli, L. Martine, P. Mazzoleni, S. Schaible (Eds.), Generalized Convexity and Fractional Programming with Economics Applications, Springer-link, Berlin, 1990.

J. Von Neumann, A model of general economic equilibrium. Review of Economics Studies, 13, 1-9 (1945). CrossRef

T. Weir, A dual for multiobjective fractional programming. J. Infor. Optim. Sci., 7, 261-269 (1986).

S. R. Yadav, R. N. Mukherjee, Duality for fractional minimax programming problems. J. Austral. Math. Soc. Ser. B., 31, 484-492 (1990). CrossRef

X. J. Zheng, L. Cheng, Minimax fractional programming under nonsmooth generalized -d-univex. J. Math. Anal. Appl., 328, 676-689 (2007). CrossRef

G. J. Zalmai, Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems. Optimization, 30, 15-51 (1994). CrossRef

Downloads

Published

2012-09-08
CITATION
DOI: 10.11121/ijocta.01.2013.00102
Published: 2012-09-08

How to Cite

JAYSWAL, A., KUMAR, R., & KUMAR, D. (2012). Minimax fractional programming problem involving nonsmooth generalized ?-univex functions. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 3(1), 7–22. https://doi.org/10.11121/ijocta.01.2013.00102

Issue

Section

Applied Mathematics & Control